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Résumé

Ce mémoire présente 1’étude du lieu des singularités de type II pour un mécanisme parallele
cinématiquement redondant a (6+2) degrés de liberté dont I'architecture est préalablement
donnée. Cette étude se concentre sur les conditions mathématiques telles que le déterminant
de la matrice jacobienne s’annule pour toutes configurations dues a la mobilité interne du
mécanisme permise par la redondance cinématique. Pour ce faire, la construction d’'une ma-
trice partageant les mémes conditions de singularité que la matrice jacobienne du mécanisme
est présentée. La réécriture du déterminant de cette matrice par une sommation de quatre
sous-déterminants pondérée par les parametres de mobilité interne du mécanisme mene a
un systeme d’équations non linéaires a résoudre pour obtenir le lieu des singularités. Une
méthode d’élimination de variables, le résultant des polyndmes, est ensuite appliquée de
maniere récursive a ce systeme d’équations afin d’en extraire les conditions pouvant le ré-
soudre. Les lieux de singularité sont ensuite analysés suivant deux cas de figure. Le premier
se penche sur les configurations spécifiques du mécanisme ot I’angle de torsion de la plate-
forme est nul, et le second se concentre sur le cas général, ol1 cet angle de torsion n’est pas
nécessairement nul. Dans le premier cas d’analyse, il est montré que les lieux de singularité
se situent a l'extérieur de l'espace atteignable du mécanisme cinématiquement redondant.
Dans le second cas d’analyse, il est montré que 1’'espace en orientation demeure quelque
peu affecté par la présence de singularités, bien que leur localisation par des équations ma-
thématiques analytiques simples soit possible. Finalement, une comparaison graphique des
espaces atteignables en orientation entre le mécanisme cinématiquement redondant et le
mécanisme non redondant standard est effectuée afin de visualiser I'impact de 1'ajout de la

redondance cinématique sur l’agrandissement de I'espace en orientation.
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Abstract

This thesis presents the study of the type II singularity locus of a kinematically redundant
(6+2) degree-of-freedom parallel mechanism whose architecture is prescribed. This study
focuses on the mathematical conditions for which the determinant of the Jacobian matrix
vanishes for all configurations of the internal mobility in the mechanism due to its kinematic
redundancy. To do so, a matrix that captures the same conditions of singularity as the Ja-
cobian matrix is presented. The expansion of the determinant of the aforementioned matrix
into a weighted sum of four sub-determinants whose weighting factors correspond to the
internal mobility parameters leads to a nonlinear system of equations whose solution yields
the locus of singularity. A method of elimination theory, the resultant of polynomials, is
applied afterwards on the system of equations in a recursive manner to extract the mathe-
matical conditions corresponding to the solution. The loci of singularity are then analyzed
following two cases. The first case focuses on the specific configurations of the mechanism
where the torsion angle of the platform is zero, whereas the second case takes into account
the general configurations, i.e. the configurations in which the torsion angle is not neces-
sarily zero. In the former case of analysis, it is shown that the loci of singularity lie outside
of the reachable orientational workspace of the kinematically redundant mechanism. In the
latter case of analysis, it is presented that the orientational workspace is still somewhat re-
strained by singularities, yet their localization by simple analytical mathematical equations
is possible. Finally, a graphical comparison of the orientational reachable workspace of the
kinematically redundant mechanism and that of the standard non-redundant mechanism is
performed to visualize the impact of the kinematic redundancy on the enhancement of the

orientational workspace.
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Avant-propos
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15 septembre 2021, accepté le 3 décembre 2021 et publié le 12 janvier 2022 dans le journal
Mechanism and Machine Theory, de 'éditeur Elsevier. L'insertion de ce premier article com-
porte des modifications par rapport a la version publiée. Une premiere se situe dans la mise
en page des annexes. Le titre de 'annexe a aussi été modifié afin de faciliter sa référence au
texte. La Figure 1.4 a été déplacée pour des raisons de clarté. Le texte de l'insertion de ce
premier article comporte des modifications mineures de reformulations de mots suggérées
par le jury d’évaluation. Ma contribution pour ce premier article est celui de premier auteur.
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pour publication le 30 juin 2022 et publié le 19 juillet 2022. L'insertion de ce second article ne
comporte qu'une seule modification au niveau des équations par rapport a la version publiée
et se trouve a 1’équation (2.30) afin que celle-ci puisse bien entrer a 1'intérieur des marges de
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Introduction

Les robots a architecture paralléle, ot plusieurs chaines cinématiques disposées en paral-
lele relient une plateforme & une base, ont su démontrer leurs capacités prometteuses pour
des criteres clés d’applications robotiques. Parmi d’autres, on leur associe des performances
dynamiques notables, des potentiels de déplacement de charges élevées ainsi qu'une pré-
cision sur le positionnement trés intéressante. Ces fonctionnalités de l’architecture parallele
ont mené cette famille de robots a se faire une place dans une quantité d’applications. En
effet, on peut retrouver des mécanismes paralleles dans des dispositifs d’isolation de micro-
vibrations dans l'espace [1], mais surtout sur des chaines d’empaquetage dans l'industrie
alimentaire et pharmaceutique [2; 3]. Dans le domaine médical, on développe des robots
paralléles pour des dispositifs d’assistance pour les manoeuvres chirurgicales, par exemple,
durant la craniotomie [4], la télé-échographie [5] ou encore 1’endoscopie [6]. D(i a leur faible
inertie en mouvement, les robots paralléles sont aussi de bons candidats pour l'interaction
humain-robot & faible impédance [7; 8; 9; 10]. Finalement, on observe les robots paralleles
dans des taches de préhension et positionnement (pick-and-place) a haute vitesse [11; 12], ou

encore dans 1'usinage [13; 14].

Le contrepoids principal a une utilisation plus vaste des architectures paralleles dans les
applications robotiques est la présence de configurations singulieres a 1'intérieur de leur es-
pace de travail atteignable [15]. De telles configurations singulieres sont problématiques, car
elles peuvent, entre autres, engendrer une perte locale de contrdle du mécanisme, des bris
d’équipement ou porter atteinte a la sécurité d’un opérateur a proximité. Ainsi, il est pri-
mordial d’éviter ces configurations singulieres dans la planification de trajectoire du robot,
ce qui méne inévitablement a une réduction de son espace de travail utile. Afin de résoudre
le probléme des singularités dans les robots paralléles, plusieurs ont choisi d’insérer une re-
dondance cinématique dans les architectures paralleles standards [16; 17; 18; 19; 20]. Ainsi, le
mécanisme jouit de degrés de liberté supplémentaires, via un ajout d’articulations actionnées
dans les chaines cinématiques déja existantes, ce qui rend possible une mobilité interne dans
le mécanisme. Cette mobilité interne permet de reconfigurer certaines chaines cinématiques
dans le mécanisme pour une pose de la plateforme donnée, et cette fonctionnalité peut étre

judicieusement mise en oeuvre pour éviter des configurations singulieres [21; 22; 23].



Plus récemment, des architectures ont été proposées pour lesquelles le nombre de degrés
de liberté supplémentaires qui sont ajoutés au mécanisme par la redondance cinématique
garantit d’éviter toutes les singularités dans 'espace de travail atteignable du robot [24; 25].
Autrement dit, pour toute position et orientation de l'effecteur, il existe au moins une confi-
guration des articulations actionnées telle que le mécanisme n’est pas en configuration sin-
guliere. Des architectures de robots plans avec les mémes capacités d’évitement de toutes
les singularités ont été proposées [26; 27]. Dans [26], le robot cinématiquement redondant
possede trois degrés de libertés supplémentaires (six degrés de liberté au total dans le plan)
pour s’assurer 1’évitement de toute singularité. D’un autre c6té, [27] propose une architec-
ture ne requérant qu'un seul degré de liberté redondant supplémentaire pour les mémes
performances d’évitement de singularité. Il est donc pertinent de se demander si un nombre
maximum de degrés de liberté redondants ajoutés au mécanisme est toujours nécessaire

pour garantir 1’évitement de toutes configurations singulieres.

Ce mémoire se concentre donc sur I'analyse du lieu des singularités pour une architecture
cinématique trés semblable & celle proposée par [25], mais ayant deux degrés de liberté re-
dondants au lieu de trois (huit degrés de libertés au total au lieu de neuf). L'objectif est donc
de déterminer en quoi est-ce que retirer un degré de liberté redondant & une architecture ci-
nématiquement redondante exempte de configurations singulieres affecte I’espace de travail
utile du robot résultant. On peut donc s’attendre a découvrir des configurations singulieres
dans lesquelles la redondance cinématique ne sera d’aucune utilité a leur évitement. La ques-
tion est plut6t d’évaluer si, malgré la présence de ces potentielles singularités, le mécanisme
parallele offre tout de méme des débattements en orientation qui soient significativement

élargis par rapport a un mécanisme non redondant standard.



Chapitre 1

Singularity Analysis of a
Kinematically Redundant (6+2)-DOF
Parallel Mechanism for Zero-Torsion
Configurations

1.1 Résumé

Il est connu que 'espace en orientation des mécanismes paralléles est restreint par les confi-
gurations singulieres de type II. Récemment, un mécanisme parallele cinématiquement re-
dondant a (6+3) degrés de liberté (DDLs) a été proposé. Il a été montré que, pour l'archi-
tecture spécifique proposée, un minimum de trois DDLs redondants est nécessaire pour ga-
rantir 1’existence d’une configuration non singuliére pour toute pose de la plateforme. Ce
travail présente une architecture différente comportant plutét deux DDLs redondants, et a
pour objectif de déterminer le lieu des singularités pour des configurations a torsion nulle.
Les résultats indiquent que les singularités mathématiquement possibles se situent a I'exté-
rieur de I'espace atteignable, suggérant que pour des trajectoires a torsion nulle, deux DDLs
redondants sont suffisants pour agrandir considérablement 1’espace de travail de 1’architec-
ture proposée. Un exemple de trajectoire est présenté afin de démontrer les capacités du

mécanisme d’atteindre de telles orientations sans rencontrer de singularités inévitables.

1.2 Abstract

The orientational workspace of parallel mechanisms is known to be restricted due to singu-
lar configurations of type II. Recently, a (6+3)-degree-of-freedom (DOF) kinematically redun-
dant parallel mechanism was proposed based on the well-known Gough-Stewart platform.

It was shown that, for the specific architecture proposed, a minimum of three redundant



DOFs is necessary to guarantee the existence of a non-singular configuration for any pose of
the platform. This work presents a different architecture with two redundant DOFs instead
of three, and has for primary objective to derive the singularity locus for zero-torsion con-
tigurations. The results indicate that the mathematically possible singularities are outside
of the reachable workspace, suggesting that for zero-torsion trajectories, two kinematically
redundant DOFs are sufficient to greatly enhance the orientational workspace of the pro-
posed architecture. An example path with large tilting angle is presented in a multimedia
extension of the article in order to demonstrate the capability of the mechanism to reach such

orientations without encountering inevitable singularities.

1.3 Introduction

Parallel mechanisms are known to have advantageous payload to mass ratio, low inertia and
dynamic properties compared to conventional serial mechanisms. However, such benefits
are obtained at the expense of poor orientational workspace, due to the presence of type II
singularities inside the reachable workspace of the mechanism [15]. This type of singularity
corresponds to configurations in which some forces and moments at the platform cannot
be supported by the mechanism even if all actuators are locked, resulting in a local loss of

control over the mechanism.

Different approaches have been explored to increase the rotational workspace of parallel
mechanisms, namely actuation redundancy and kinematic redundancy (see [28] for a re-
view). In redundantly actuated parallel mechanisms, the number of DOFs is smaller than
the number of actuators. Hence, internal antagonistic forces can be produced at the plat-
form, making the control of such mechanisms more challenging [29; 30; 31; 32; 33]. Yet, ef-
fective approaches were proposed to simultaneously measure internal and external forces
for the control of redundantly actuated parallel mechanisms [34], to compare the singularity
loci of non-redundant and redundant mechanisms [35; 36] and to enlarge the workspace by
singularity-free mode changes [37].

On the other hand, kinematically redundant parallel mechanisms possess as many DOFs
as actuators. Thus, the platform has fewer DOFs than the whole mechanism, resulting in
possible internal motion of the mechanism for singularity avoidance for a given pose of the
platform and without generating internal antagonistic forces. This feature has been exploi-
ted, for example, to allow infinite rotation of the platform of kinematically redundant planar
parallel mechanisms [27; 38; 39] and even to operate a gripper while avoiding singular confi-
gurations [40; 41].

In [42; 25], a novel kinematically redundant architecture with (6+3)-DOF akin to the well-
known Gough-Stewart (GS) platform was presented. It was shown that the orientational
workspace is much larger than that of the conventional GS platform and that any singular



configuration can theoretically be avoided using three redundant DOFs. In [43], it was poin-
ted out that conventional Jacobian-based methods sometimes fail to identify singularities
or wrongly identify some in the presence of kinematic redundancy. In [44; 45], an alterna-
tive geometric approach for singularity avoidance in kinematically redundant planar paral-
lel mechanisms was proposed. The approach is based on instantaneous centres of rotation
(ICR), providing a more intuitive sense of closeness to a singularity. However, the use of ICR
is better suited to locate singularities for specific and instantaneous poses of the mechanism
in its workspace rather than to describe a locus of singular configurations in all the works-
pace. Moreover, the extension of the proposed method to kinematically redundant spatial
manipulators may be very difficult.

In this paper, a kinematically redundant (6+2)-DOF parallel manipulator, whose specifically
chosen geometry is similar to that of the MSSM Gough-Stewart platform, is introduced. The
novel architecture is meant to be a compromise between the singularity-free (6+3)-DOF robot
proposed in [25] and the relative geometric simplicity of the standard Gough-Stewart plat-
form, which limits possible mechanical interferences. The singularity locus of the proposed
architecture is derived for zero-torsion orientations (tilted rotations only). The derivation is
conducted using the linear expansion of the determinant of the Jacobian matrix [46] to assess
type II singularities while establishing the assumptions that guarantee the robustness of the
method. The objective is to observe how removing one DOF from the singularity-free (6+3)-
DOF GS platform presented in [42; 25] affects the performances in tilted orientations for a
particular architecture designed to simplify the singularity conditions. It is to be mentioned
that this work has not for objective to propose any new method for singularity analysis as
a general framework, but to focus more precisely on the study of the singularity locus of a
given kinematically redundant (6+2)-DOF parallel mechanism.

1.4 Kinematic modelling

In this section, the kinematic modelling of a general kinematically redundant platform based
on the principle of redundant leg proposed in [42; 25] is recalled. Consider an architecture
with k redundant degrees of freedom, i.e., k redundant legs and 6 — k non-redundant legs.
Each non-redundant leg is of type HPS, where H stands for a Hooke-joint, P stands for an
actuated prismatic joint and S stands for a spherical joint. The two sub-legs of a redundant
leg are of type SPR, where R stands for a revolute joint. A fixed frame O(x,y, z) is defined
at the base and a mobile frame P(x’,y/, z’) is defined on the platform. The attachment points
at the base for non-redundant legs are noted A; with j = (k+1),...,6, whereas attachment
points of redundant legs are noted A;; and A;, with i = 1,..., k. The attachment points at
the platform for the redundant legs are noted B;, i = 1, ..., k, while for non-redundant legs,
they are noted Bj, j = (k+1),...,6. The two sub-legs of redundant leg i are connected at
point S;, which is a revolute joint, constraining points B;, S;, A; 1, A;» to remain in the same



plane. Next, vector p is the position vector of the origin of the mobile reference frame at-
tached to the platform expressed in the fixed reference frame, and vector e; is a unit vector
along the axis passing through the attachment points A; 1, A; ». Matrix Q is the rotation ma-
trix from the base frame to the moving frame. Finally, all vectors are expressed in the fixed
reference frame, except for b; and b;-, which connect the origin of the moving frame to points

B;, Bj, and are expressed in the moving frame. The constraint equation corresponding to the

FIGURE 1.1 — Geometric modelling of a kinematically redundant spatial robot based on the
architecture proposed in [25].

length of a non-redundant leg is given by
p]2 = (b]'—a]')T(b]'—a]‘), j= (k+1),...,6, (1.1)

with
b; = p+ Qb’, (1.2)

where a; is the position vector of point A; expressed in the fixed frame. The constraint equa-

tion corresponding to the length of the redundant link B;S; is written as
2= (s;—b)l(si—b;), i=1,...,k (1.3)
Next, the constraint equation for the length of the sub-legs of a redundant leg is given by
p%h =(si—aj)(si—a;y), i=1,...,k, h=12 (1.4)

where a; ), is the position vector of point A, , in the fixed frame. Finally, the constraint equa-
tion representing the coplanarity of points B;, S;, A; 1, Ai » is written as

[(bi—ai,l) Xei]T(Si_ai,l) :0, i:1,...,k (1.5)

After taking the derivative with respect to time of constraint equations (1.1),(1.3),(1.4), and

(1.5), the expressions can be rearranged to obtain the system of equations

Jt=Kp (1.6)



where t = [pTwT]7 is the six-dimensional Cartesian velocity vector of the platform, inclu-

ding the angular velocity vector of the platform, noted w, and p is the joint velocity vector

of dimension (6 + k) x 1, noted :

p = 1011012 - Pr1s P2 Prsts - - Ps) -

Matrices J and K are the Jacobian matrices, which are written as

(s1—by)T [Qb] x (s1 —by)]”
J— (s —by)" [Qb}, x (s — by)]"
(bry1 —ag1)T (@b, X (bryq — ag1)]”
(bs —as)" [Qb; x (b —ae)]" |, ,
and
K — Kj Ok (6-k)
06—k)x2k K> 6 (6+k)
where
Pk+1 --- O
K= | o i
0 o P6] (6 yx(6-k)
rlel rlTnl 0 0
K =
0 ... 0 r,zmk r,fnk Kok
with
r; = (s; —b;),
m; = P;ﬁ[(si —a;0) x [(b; —a;1) x e/]],
n; = FZ’?[[(bi —a;1) X &) X (s; —aj1)],

i = [(si—ai1) x (si — ;)] [(bi —a;1) X ej].

(1.7)

(1.8)

(1.9)

(1.10)

(1.11)

(1.12)
(1.13)

(1.14)

(1.15)

The reader is referred to [25] for the detailed derivation of the velocity equations leading to

the Jacobian matrices.

1.5 Proposed architecture and simplified model for the singularity

analysis

A (6+2)-DOF kinematically redundant parallel robot is proposed in this work. The architec-

ture of the robot is illustrated schematically in Figure 1.2a, while a physical model is shown



in Figure 1.3 for better visualisation. The robot includes four non-redundant legs and two
redundant legs. The geometric arrangement of the robot is akin to that of the Gough-Stewart
platform with the attachment points of the non-redundant and redundant legs on the plat-
form and the base located on the vertices of a square. The robot is shown in its reference
configuration in Figure 1.2a (top view), where the fixed and moving reference frames coin-
cide, except for an offset along the z axis. The singularity analysis of this robot can be perfor-
med using the formulation of the Jacobian matrix derived in Section 1.4. However, in order
to simplify the singularity analysis, an alternative approach is used, in which a matrix that
captures the singular behaviour is formulated. Here, singularities refer to poses (position
and orientation) of the platform that are singular for any configuration of internal motion
allowed by the kinematic redundancy. These configurations may also be referred to as inevi-
table singularities since they cannot be avoided using the kinematic redundancy. It should
be emphasized that the matrix defined here and used for the singularity analysis is an al-
ternative form of the Jacobian matrix J defined above, in which some of the lines might be
scaled. Since applying a scaling factor to some of the lines of a matrix does not affect the
singularity conditions, the alternative form of the Jacobian matrix nevertheless captures the
singular behaviour of the robot and is used as a tool to simplify the determination of sin-
gularities. Indeed, referring to Figure 1.2a and given the architecture of the redundant legs,
it is clear that the force applied on the platform by the redundant links is constrained to
lie in a direction that is a linear combination of the directions of the two sub-legs. In other
words, the redundancy of the leg can be used to select the direction in which the redundant
leg applies a force to the platform, as long as this direction is in the plane formed by the
sub-legs. Therefore, for the purpose of singularity analysis, an alternative form of matrix J is
then constructed in which the force applied to the platform by a redundant leg is written as
a linear combination of the two non-redundant legs replacing the given redundant leg in the
mechanism of Fig. 1.2b. Indeed, because of the constraint introduced by the revolute joint
at point S;, the plane of motion of the redundant link can be described by the plane formed
by the corresponding non-redundant legs in the mechanism of Fig. 1.2b. This formulation is
now detailed.

Consider the architecture presented in Figure 1.2b. A fixed reference frame R(O, x,y,z) and a
mobile reference frame R'(P, x’, 1/, z") are defined. Vector p connecting the origin of the fixed
frame O to the origin of the moving frame P describes the position of the platform in the fixed
reference frame. The distance from the attachment points B;,i = 1,2 and Bj,j =3,...,6
at the platform to point P is set to one unit for scaling purposes. The distance from the
attachment points at the base, i.e., points A]-, j =3,...,6, for the non redundant legs, and
Aip, 1=1,2, h =1,2, for the sub-legs of a redundant leg, to point O is equal to ﬁ[ﬂ, where
B is a scaling factor used to define the ratio between the base and the platform. Vector a; is
the constant position vector of point A; expressed in the reference frame, whereas b} is the

constant position vector of point B; in the mobile frame. The same is said for vector a; as



FIGURE 1.2 — Top view of the proposed architecture with the nomenclature used in Section
1.4 (1.2a) and top view of a redundantly actuated architecture that is used as a geometric
construction for singularity analysis purposes (1.2b).

(a) CAD model of the proposed architecture. (b) Detailed view of a redundant link.

FIGURE 1.3 — Physical model of the presented architecture.

the constant position vector of point A; j, and for vector b/ as the constant position vector of
point B;, expressed in the fixed and mobile reference frames respectively. These vectors are

given by :

ag = a1] = [ﬁ/ ﬁl O]T/ a2 = az = {ﬁ/ _ﬁ/ O]Tl a4 = az] = [_,Br _ﬁr O]T/ a2 = a5 = {_,B/ ﬁ/ O]T
(1.16)
b’y =[1,0,0]", b2=[100", b3=b4=1[0,-1,0", bs=bs=[01,0". (1.17)



We also have in the fixed reference frame :

b; = p +Qb’;, i=1,2, (1.18)
b;=p+Qb’;, [ =3,...,6, (1.19)

where b; and b; are the position vectors of points B; and B; expressed in the fixed reference
frame, and Q is the rotation matrix between the fixed and mobile reference frames. The
convention of rotation used here is the one proposed in [47], namely the Tilt and Torsion re-
presentation. The choice of this convention for rotations is preferred over the classical ZYZ
convention for robotic applications, because it facilitates the visualization of tilted orienta-
tions without any intrinsic torsion. The rotation matrix Q is written as

|
195}
—
=
N—
(9}
—~
<=
N—
o
—
=
N—
195}
Yy
(n)
N—

)
)+c(@)c(p) s(p)s(0) |, (1.20)
—s(0)c(y) —s(0)s () c(6)

where ¢(-) and s(+) stand for cos(-) and sin(-), and ¢ = ¢ — 0. Angles 0, 7, ¢ are respectively
the tilt angle, the torsion angle, and the orientation of the axis around which the tilt rotation
is performed.

As mentioned above, in the architecture proposed in this paper, four legs are non-redundant,
and four others belong to two redundant legs. A redundant leg consists of two sub-legs joi-
ned together by a revolute joint with a common link attached to the platform by a spherical
joint (Fig. 1.4).

Platform

Spherical joint

Revolute joint

Prismatic joint

Spherical joint
FIGURE 1.4 — Layout of a redundant leg.

The two sub-legs and the redundant link lie in the same plane. Thus, the forces applied by
the redundant leg are transmitted to the platform via the common link. Because the lines of
the Jacobian matrix are based on the Pliicker coordinates of the forces applied to the plat-
form, two of the six lines, associated with the redundant legs, can be represented as a linear
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combination of the Pliicker coordinates of the sub-legs. The proposed architecture has the
attachment points of the two redundant links at the platform on opposite sides of point P.
According to the architecture presented (see Fig. 1.2a), we choose legs p3, p4, 05, o6 as non-
redundant, and p11, p12, P21, P22 as the sub-legs of the two redundant legs. The construction of
a matrix J' capturing the same conditions of singularity as the Jacobian matrix J from equa-
tion (1.8), i.e. their determinant vanishes for the same configurations of the platform, is then
conducted. The four lines of matrix J' corresponding to the initial non-redundant legs are
derived exactly as for the original Jacobian matrix J (see equations (1.1) and (1.2)). The two
lines of the matrix corresponding to the direction of the redundant links are now expressed
as a linear combination of the two lines connecting point B; to the base attachment points
of the sub-legs A;1 and A;», as illustrated in the construction of Fig. 1.2b. It is pointed out
that the expression of these lines of the matrix are equivalent, except for possibly a scaling
factor. Indeed, the kinematically redundant legs constrain the redundant link to lie in the
given plane but kinematic redundancy can be used to select any direction in that plane. One
can then define matrix J' as

[ u{ (lel X ul)T
uzT (Qb’y x uy)7T
;| (bs—a3)T (Qb'3 x (b3 —a3))"
= , 1.21
= by —a) (@b x (bs— )" (.20
(bs —as5)" (Qb’s x (bs —a5))"
(b —ag)” (Qb’s x (bs —ag))"
with
u; = coser(b; —ayp) +siner(by —ap), (1.22)
uy = cos€z(by — ap1) +sinex(by — ap), (1.23)

where €1, €; are the kinematic redundancy parameters representing the possible reorienta-
tion of the common link of each redundant leg. Vectors u;, u, represent the orientation of the
force vectors from the linear combination of the forces direction exerted by the two sub-legs
applied at the attachment points at the platform. These two vectors are constructed in order
to capture the behaviour in force transmission of the redundant links. It is now clearly ap-
parent that rows 1 and 2 of matrix J' are linear combinations of the directions corresponding
to the plane defined by the sub-legs and therefore they capture the possible directions of
the forces applied to the platform by the redundant legs. In order to visualize this feature in
terms of Pliicker vectors, one can rearrange matrix J as

11



Ccos €1V + sin€ejvyy
COSs €2V31 + sin€xvyy
V3

!/
J = , (1.24)
V4

V5

with
Vih = [(bi —a;;)" (Qb; x (b; — ai,h))T} i=1,2 h=1,2,
V]': [(b]—a])T (Qb/] X (b]—a]))T} 7 j:3""’6’

where the linear combination of vectors vy, vi and va1, oy, defining the vectors associated

(1.25)

with the common links of the redundant legs appears more clearly. Vectors v; ; and v; are the
Pliicker vectors of the lines corresponding to the sub-legs of the redundant legs illustrated as
non-redundant legs in the construction of Fig. 1.2b. It is recalled that equation (1.24) is equi-
valent to the Jacobian matrix J except for the fact that the magnitude of the vectors of lines 1
and 2 may be scaled. Nevertheless, the directions of the vectors characterized by the lines of
matrix J/, which are the same directions of the forces applied to the platform by the legs, are
thus the same as those of the real Jacobian matrix. This results in matrices J' and J having the
same singularity conditions, and simplifying the derivation of these conditions. In the next
section, equation (1.24) is used to determine the singularity conditions for orientations with

zero-torsion.

1.6 Singularity Analysis

As mentioned above, the Jacobian matrix J and matrix J' share the same conditions for sin-
gularity. An inevitable singular configuration is one for which, from equation (1.24), the de-
terminant of J' vanishes for any value of the kinematic redundancy parameters, €; and e;.
In order to facilitate the determination of the singularities, the approach presented in [46]
is adapted to the kinematically redundant robot. Applying the linear decomposition of the
determinant [48] to equation (1.24), we can rearrange det(J’) as

det(J/):C(el)C(ez) ’Vn V21 V3 Vg V5 V6‘+C(€1)S(€2) ‘Vn V V3 Vg Vs Ve‘

+5s(e1)c(e2) ‘Vlz Vo1 V3 V4 Vs V6‘+S(€1)S(€2) ‘Vlz vy vz vy vs vgl, (1.26)

det(J') = c(e1)c(€e2) D1 + c(e1)s(e2) D2 + s(e1)c(e2) D3 + s(€1)s(€2) Dy, (1.27)
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where Dy, ..., D4 form together the linear decomposition of the determinant of J'. Hence, it is
clear that an inevitable singular configuration occurs when D; =0, i =1,...,4,i.e., all four
determinants defined in equation (1.26) are equal to zero simultaneously, because in such a
situation the internal motion of the mechanism represented by parameters €1, €2 will be of
no help to stay away from the singular configuration. The locus of inevitable singularities
then consists of the intersection of four singularity loci, namely the loci defined by D; =
0,...,D4 = 0. For the standard Gough-Stewart platform, Fichter [49] described a singular
configuration that can occur for any position of the platform, namely when the platform
undergoes a rotation of 90° around an axis orthogonal to the plane of the base, when the
platform is parallel to the base. Therefore, we introduce two sub-types of inevitable singular
configurations for our analysis, namely, the singular configurations that are independent
from the position of the platform (they depend solely on orientation), and those that depend

on orientation and position.

1.6.1 Singular configurations independent from the position

Applying the linear decomposition of the determinant on the Jacobian matrix of the general
Gough-Stewart platform, Mayer St-Onge and Gosselin [46] obtained a general expression
for its expansion. This linear decomposition may be applied to all four sub-determinants to

obtain expressions written as

D; = i,1x3 + Fi,2x2y + Fi,3x22 + Fil4x2 + Fi,5xy2 + F exyz + F; 7xy
+F,8xz% + Foxz + Fi10x + F 11y + F12y°z + Fo3y” + Fipayz?
+Fi,15yZ + Fi,16y + Fi,17Z3 —+ Fi,lSZZ + Pjrlgz + Fi,20/ i= 1, ey 4, (128)

where F;1,...,Fio withi = 1,...,4, are coefficients depending only on the orientation co-
ordinates and the architecture parameters, and variables x, y, z are the Cartesian coordinates
of the origin of the mobile frame. It may be seen thatif F;;,...,F, oo withi =1,...,4, are all
equal to zero simultaneously, then the mechanism is in a singular configuration independent

from position coordinates and unavoidable with kinematic redundancy.

To simplify the upcoming derivation, the substitution of the tangent of the half-angle is used.
Hence, this substitution is applied to the tilt and azimuth angles (6, ¢) of [47] which are now
replaced by t1, t;, where

6
t1 = tan 5 tr = tan % (1.29)

The approach is rather straightforward and consists in finding the conditions for ¢1, ¢, that
make all 80 coefficients of the application of equation (1.28) to the four determinants D, ..., Dy
vanish. The strategy employed is to target the coefficient Fi,j, j=1,...,20,among the 80 pos-
sible and non-zero coefficients with the simplest expression in t1, t5, so that its roots for these
two angles are easily obtained. These roots are then the only conditions in t1, t; that cancel
this specific coefficient and so might cancel all the 80 coefficients simultaneously. Thus, the

13



roots obtained in one variable (f; or ¢;) are then substituted one at a time into the remaining
coefficients to verify what additional conditions on the other variable (f; or ;) make all of the
non-zero remaining coefficients vanish. For example, one of the non-zero coefficients with

the easiest form to work with is given by

_256P%H (15 — 1)
MENCESECESIE

(1.30)

Thus, independently from the expressions of the other coefficients, this specific coefficient

vanishes for

t =0, (1.31)
t, =0, (1.32)
ty = =+1, (1.33)
t — oo, (1.34)
ty — oo (1.35)

Hence, to make all 80 coefficients equal to zero simultaneously, at least one condition among
equations (1.31) to (1.35) must be met. Following this remark, each of the conditions from
equations (1.31) to (1.35) are substituted one at a time into the remaining non-zero coeffi-
cients to evaluate if an additional condition on the second variable, ¢; or t, depending on
the variable of the first condition, may cancel all coefficients. Applying this framework leads
to equation (1.34) being the only condition among the five previously mentioned that may
cancel all 80 coefficients with a second condition on variable t,. These pairs of conditions are
given by

(t1 — Fo0,t = 1+ 1/2), (t — Fo0,t =1 —V/2)
(1 — +oo,ty = —1+1/2), (f1 = +oo,ty = —1 —/2) (1.36)

which correspond to a tilt angle of 180° around four specific axis orientations with respect to
the y axis in the fixed reference frame, namely £45° and +135°. Indeed, when ¢t; — +oo is
substituted into the remaining non-zero coefficients among the initial 80, all but two vanish.

The last two non-zero coefficients are given by

328%(15 — 613 +1)

Fq7 = , (1.37)
(5+1)?
328%(13 — 613 +1)
F3p7 = — CES)E , (1.38)

where it is easier to see that the second condition in variable t, to cancel all coefficients
simultaneously is tohavet, = 1+ V2 ort; = —14 /2. All other first conditions of equations
(1.31), (1.32), (1.33) and (1.35) lead to no other singularity locus.
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FIGURE 1.5 - Inevitable singularities (black dots) in tilted orientation independent from plat-
form position.

Figure 1.5 emphasizes the fact that in tilted trajectories, singular configurations that are in-
dependent from the platform position are not really restrictive in practice. Indeed, the plat-
form is theoretically able to be tilted by 180° in all directions before encountering a potential
singularity. Such orientations of the platform could not be reached in practice due to me-
chanical interference. The singularities presented in Figure 1.5 may also be confirmed using
a geometric approach, that is to say with Grassmann geometry, firstly introduced by Mer-
let [50] for parallel robots whose Jacobian matrices are based on Pliicker vectors. Indeed,
the above singular configurations correspond to condition 3b of the Grassmann analysis, in
which four lines belong to the union of two pencils of lines that are not coplanar and that
share a common line. In the proposed architecture, the condition occurs when the platform
is in an orientation such that the line passing through points Bs, Bs and Bs, By is parallel to

segments AzA4 and AsAe. Then, segment B3 4Bs ¢ is the intersection of the two flat pencils
of lines spanned by non-redundant legs 3,4 and 5, 6. Any internal motion of the redundant

mechanism cannot avoid this singularity.

1.6.2 Position dependent singular configurations

The determination of the position dependent inevitable singularities is based on the use of
the resultant of polynomials. Consider the general univariate polynomials

Pi(x) = apx" + ...+ a1x + ao, (1.39)
Pz(x) = bmxm+...+b1x+b0, (140)

with 1, m # 0. The resultant of P (x) and P»(x) for variable x is given by
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Resultant(Py, Py, x) = ay'by, [ [(ai — B;), (1.41)
ij

where a; is a root of polynomial P;(x), and f; is a root of polynomial P;(x). The resultant
vanishes if and only if P;(x) and P,(x) have at least one root in common. For example, the
resultant of P} (x,y) and P;(x,y), with respect to variable x yields a polynomial in y, whose
roots are the conditions on variable y for P} (x,y), P; (x,y) to have at least one common root

in x.

Expanding the coefficients F; 1,..., Fi20, i = 1,...,4 for each of the determinants D;, ..., Dy,
we observe that all of these determinants are of degree 1 for variable x, degree 2 for variable
y, and degree 2 (D1, D4) or 3 (D3, D3) for variable z. When all the Dy, ..., Dy vanish, their
four roots in x are equal. If x; is the root in x of determinant D;, then a necessary condition,
but not yet sufficient, would be to have simultaneously x; = x4 and x, = x3. These pairs
were chosen because D and Dy, represent two arrangements of the legs of the architecture
that show a certain symmetry, as well as the pair D,, D3. To obtain the above two necessary
conditions, we apply the resultant with respect to variable x on the pairs D1, D4 and D5, D3,
which is calculated from the determinant of their Sylvester matrix :

d d
f(y,z,t1,t2) = Resultant(Dy, Dy, x) = 11 41 , (1.42)
dio dao
_ _|da1 d3p
¢(y,z,t1,t2) = Resultant(D,, D3, x) = , (1.43)
dro dzp
with
di1 = Fy5y* + Figyz + Fi7y + Fi82° + Fioz + Fi 19, i=1,...,4 (1.44)
dio = Fi11y® + Fi1oy?z + Fii3y* + Fiayz* + Fi 1592
+ Fi 16y + F;172° + Fi 182> + Fi19z + Fio, i=1,...,4 (1.45)

However, to have at the same time x; = x4 and x = x3, f and ¢ must share a common root.
Because f, g are of degree 2 in y and of degree 4 in z, we apply, in a similar manner, another
resultant to f and g with respect to variable y, namely

f2.0 £ 0

h(z, t1,t2) = Resultant(f, g,y) = ? ;2 ? 2‘2 , (1.46)
o fi & &

Ofoogo

where f; and g;,i = 0,1,2, are the coefficients of the powers i of variable y in expressions
f(y,z,t1,t2) and g(y, z, t1, t2). Figure 1.6 shows the complete diagram of the resultant’s ap-
plication over the determinants expressions. From equation (1.46), we see that the roots of
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h(z, t1,t2) give the conditions for which f(y, z, t1, t2) and g(y, z, t1, t2) share a common root
in variable y, such that substituted in Dy, ..., D4 gives simultaneously x; = x4 and x; = x3.
One must then verify the last condition so that x; = x, = x3 = x4 to obtain all the requi-
rements for an inevitable singularity. The detailed expressions of equations (1.42),(1.43) and
(1.46) are given in Appendix A.

Dl(wvya 2 t17t2)

Dy(,y, 2,t1,t2)

h=R,(f,9)

D3(£7y~, Z, tla t2)

FIGURE 1.6 — Cascaded application of the resultant on the polynomials.

From equation (1.46), one can obtain that the roots of h(z, t1, tp) for p > 1 are

 anh
T ErnER) -
_ 41ty
2T e B 149
VA L (AR V2 A
e 26 ((B—1)t5+ (—6p —2)15 + B 1), (1.49)
V328 3B+ 1)(B+1)
VA L (AR V2 A
. 2 (B + (-6 —2)5+B 1), (1.50)
V328 +3(B+1)(#+1)
o, (1.51)
t=—1,0,1. (1.52)

It is pointed out that none of the denominators of the roots in z can vanish for values of 1, t>
in R. Substituting z; in equations (1.42) and (1.43) leads to a unique root in y in f and g which
is

BE+DB-DHE+(28+6)F+28-2)5+ (H+1)(B—1)
(B+1)2(5+1) '

Substituting z; and y in Dy, ..., D4 makes all four expressions equal to zero, independently

yi = (1.53)

from the value of x. Proceeding the same way with z, leads to the negative of equation (1.53).
This locus of inevitable singularities is presented in Figure 1.7 for = 2.
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x=0

FIGURE 1.7 - Singularity Locus described by equations (1.47) and (1.53).

Figure 1.7 is a representation of the singularity locus described by equations (1.47) and (1.53),
independent from the position along the x axis, which are parameterized by the tangent of
the half-angles of tilted orientation. The shape of this singularity locus in the Cartesian space
is a pair of solid cylinders whose longitudinal axis is in the plane z = 0 and parallel to the x
axis of the fixed referential frame. The cylinders are symmetrical with respect to the xz plane.
A section of this locus is presented in Fig 1.7 for x = 0. Inside the disk-shaped section of the
locus in the Cartesian space appears graduation marks for the orientation variables (¢, 8). To
each pair of spatial coordinates (y, z) of the locus corresponds a pair of angular coordinates
in tilt (¢, 0) that leads to a singular configuration. However, one may verify that this type
of singularity places the platform in a configuration such that the attachment point of two
adjacent non-redundant legs at the platform is on the line passing through their attachment
points at the base. In other words, the two adjacent non-redundant legs are colinear in the
base plane. This configuration may be easily avoided by design, for instance, by having the

minimum length of all legs longer than B units.

Next, replacing z3 from equation (1.49) into equations (1.42) and (1.43), and solving for
y yields four roots, two for each resultant, namely y1,y» for f(y,z,t1,t2) and ys,ys for
2(y,z, 11, t2). It is easily noted that y; and y3 are the two equal roots of f,g under z = z3
given by

1y\(42 2
8t> (((—% + B+ (2 LB+ -1+ w)

Y13 =
\/313 — 265+ 3(15+ 1)2(12 + 1)

Back substituting again ¥ = y; = y3 and z = z3 into the four determinants leads to x; = x4

(1.54)

and x; = x3, but not yet x;y = x» = x3 = x4. The additional condition to get x; = x, =
X3 = x4 is not achievable in R for t1, t5. Thus, the determinants Dy, ..., D4 do not all vanish
for a common root in x. However, one may see that the back substitution of y = y; = y3
and z = z3 brings common roots in t; for the pairs D;, D4 and for D,, D3, but distinct from
one pair to the other. This means that while D; and D4 may be cancelled for their common
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root in x, D, and D3 may simultaneously be cancelled for their common root in f;, and vice
versa. Yet, any of the roots of t, of Dy, Dy or D;, D3 substituted into the expression of z3
leads to a global maximum of one unit for coordinate z. This means that for these singular
configurations to occur, the platform is always at an elevation lower than one unit, which
is a region of poor interest. The surface given by the expression of z under this singularity
is shown in Figure 1.8. Furthermore, it can be observed that this singularity brings two legs

coplanar to the base plane for any value of the scaling factor g # 1.

FIGURE 1.8 — Surface plot of z3 from equation (1.49) under the corresponding conditions of
singularity.

The last condition to investigate with z = z3 is the case when y» = y4. The equation is
verified for the additional condition t, = +1 4+ /2, but the rest of the development leads to
a specific instance of the derivation with z = z; 5, and will not be expanded here. Also, the

derivation for z = z4 yields results similar to those obtained for z = z3.

The following roots of equation (1.46), namely equations (1.51) and (1.52), are associated with
specific tilt orientations. The root t; = 0, a tilt angle of zero degree, refers to the platform
being parallel to the base, and in this case, the singularity occurs only if z = 0, which has no
practical purpose. The root t; = 0, the angle describing the axis with respect to the y axis in
the fixed reference frame around which the platform is tilted, leads to one singularity locus

of significance :

24 (B—1 H+28-1
_2p-1) L AE2C1 (1.55)

2+1 £ +1

20 (B —1 t4+2p—1
Z:_%, =ty (1.56)

t+1 t1+1

This locus is represented in Figure 1.9. The singular configurations of the platform are pa-
rameterized by the tilt angle § when y = ¢ = 0. Though this locus may appear dangerous
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because the value of z is not constrained to be lower than one unit, this singularity implies
two pairs of legs being superimposed, a configuration that is mechanically unreachable. In-
deed, one could substitute respectively (1.55) and (1.56) into (1.25) and observe that

p—1. Bl
,3 21/ 5 — ,B

B-1. L, B-1
,B 11, 3 = ‘B

It is now clear that this singular configuration requires two non-redundant legs to be coli-

V2, (1.57)

V4 =

Vg =

Vi2. (158)

near with the two sub-legs of a redundant leg. More specifically, two non-redundant legs
intersect at the attachment point at the platform of a redundant link while being coplanar
with the plane of the redundant leg. Thus, whatever the orientation of the redundant link,
three Pliicker vectors will form a planar pencil of lines. Using Grassmann analysis described
by Merlet [50], the singular condition 2 is fulfilled in these circumstances. The locus is depic-
ted in Fig. 1.9, where the mechanism is shown in a side view at a home position — and not
in the just presented singular configuration — to expose the scaling of the singularity locus
with respect to the mechanism. To lie in the singular configuration, point P of the platform
must remain on the circular curves of Fig. 1.9, in the plane y = 0, with the corresponding tilt
angle 6. Equations (1.55) and (1.56) prescribe the x and z coordinates of this singularity locus

as functions of the tilt angle and scaling parameter .

FIGURE 1.9 —Singularity locus represented by equations (1.55) and (1.56) (left and right circle
respectively) for = 2 in the xz plane.

While the singular locus represented in Figure 1.9 may not be reachable in practice due to
mechanical interference, it can still be approached, resulting in potentially undesirable large
efforts in the joints, thus making the analytical expressions of the locus relevant.
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The last two roots of equation (1.46), namely ¢, = +1, lead to another singularity locus of

the form

B+1)H2+B-1
t12 +1
2t

y=+ , (1.59)

z=% (1.60)
which places again the z coordinate of the platform at a maximum value of one unit for all
t.

1.7 Discussion on the Singularity Locus

In Section 1.6, the methods to analyze the singularity conditions of the (6+2)-DOF kine-
matically redundant manipulator were introduced and the results were presented. Concer-
ning the singular configurations that are independent from the platform’s position (equation
(1.36)), it was shown that a tilt angle of 180° is necessary to reach such singular pose. Ho-
wever, because of the architecture of the manipulator, mechanical interferences prevent such
rotations at the platform. We consider this inevitable singularity to be out of the reachable
workspace. The singularity locus associated with equations (1.47) and (1.48) implies two
non-redundant legs of the mechanism being coplanar with the base plane, which is rejected.
While the singular configurations corresponding to equations (1.49) and (1.50) may be loca-
ted inside the reachable workspace, the elevation of the platform always remains below one
unit, for all values of the tilt angles and scaling factor B. Moreover, it can be observed that,
again, this singular configuration brings two non-redundant legs in the plane of the base,
which is rejected. As long as the distance between the reference point on the platform and
the base plane is larger than one unit (z > 1), which is very low considering the scaling of the
mechanism, it can be guaranteed that the robot is far from possible singular configurations.
In cases where it would be desired to operate the robot below this limit, it is still possible to
find analytical expressions characterizing the singularity locus. Next, singular configurations
corresponding to equation (1.51) are of no interest because they require the platform to be
coplanar with the base. Finally, the singularity locus described by the condition of equations
(1.55) and (1.56) is pratically unreachable because of mechanical interferences, but it may be
approached, resulting in large forces in the legs. Mathematical expressions describing this
locus are then necessary to stay away from the locus during the path planning stage. The-
reby, with all the singular configurations that are mathematically correct for the particular
architecture proposed in this paper, we may suggest that for a workspace with zero torsion,
the conditions for singularities lie either outside of the reachable workspace due to mecha-
nical interference, or at an elevation of the platform that is considered of poor interest for

most applications. Thus, we note that for the particular architecture presented, having only
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two redundant degrees of freedom greatly enhances the performance of the GS platform for

tilted trajectories.

In a general perspective, the chosen approach to derive the conditions for singularity had
the benefit of dissociating the singular configurations dependent from position coordinates
from those that are not, although the results of the latter may be obtained with the analysis
of the former. Secondly, the use of the linear decomposition of the determinant of the alter-
native Jacobian matrix J' fragments the initial system of one equation into a system of four
nonlinear equations to be simultaneously satisfied, which facilitates the further derivation.
Lastly, the strategic application of the resultant of polynomials eliminates a Cartesian va-
riable at each step and makes it possible in most cases to parameterize independently the
x, v,z coordinates of a singular locus in the orientation variables ¢; and t,, which is easier to

interpret than an implicit equation.

1.8 Path planning

Usually, the path planning for kinematically redundant manipulators [51] is conducted using

) 0
6=7't+(1-JD(-u3)), (1.61)

with , the joint velocity vector, J/, the generalized inverse of Jacobian matrix J, I, the identity
matrix, u, a scaling constant and —g—z, the gradient of an objective function 7(0). However,
this approach does not guarantee that mechanical limitations and interference are avoided,
even if the objective function () is a distance to such mechanical limits. Thus, a numerical
method is preferred in this work for path planning, where a performance index, the singu-
larity locus and the mechanical limitations are functions of the orientation of the redundant
links. It is then possible to elaborate algorithms for path planning that include more faith-

fully such mechanical constraints.

1.8.1 Mechanical limitations

The redundancy resolution in the redundant parameters space has to take into account the
maximum and minimum lengths of the sub-legs as well as the possible mechanical interfe-
rence between the redundant leg, the spherical joint and the platform. Figure 1.10 illustrates
the limits of an angle 7 (V/im,lower) due to the maximum length of a sub-leg (0i1 mqx) for a
given position of point B;, i = 1,2 (a given pose of the platform).

Without loss of generality, consider the mechanical limits in actuator length of sub-leg p; ;.
Let rj; be the vector from point B; to A;1, and 7;1, its norm. A mechanical limit restricts angle
v due to pi1 if pi1 max < i1 +1 01 if i1 in > i1 — I, where [ is the length of the redundant
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FIGURE 1.10 — Mechanical limit of a sub-leg.

link. In that case, with the law of cosines, one can write

plzl,max = rizl + 12 - 211’1'1 COs 2, (162)
2 12 2
ra Tt I°— Oi1,max
= - 1.63
Cos &y o (1.63)
The same calculation may be conducted for a limitation due to pj1 uin. Also, one can obtain
cosag = B (1.64)
[leil[|[xa ]

Thus, in order to respect the limitation in maximum length of a sub-leg (i.e., pi1,max), the
lower and upper values of -y are given by

Viim = &3 & &2. (1.65)

Similar expressions can be obtained for the minimum length of a sub-leg (i1 in). Concerning
the mechanical interference between a sub-leg and the spherical joint or the redundant link
and the platform, the reader is referred to [42] due to space limitation. A reference frame
(e, ki, gi) with g; being normal to the plane of the two sub-legs is defined to easily express
vector s; in the fixed reference frame from angle ;. This transformation is obtained with

e; x (b; —a;)
- , 1.66
8 Jle; x (bi —an)]] (160
gi X e
k=22 " (1.67)
g % el
S; = bz‘ + li COS 7y;€e; — li sin ’)’iki. (168)

In the next sub-section, the results for the path planning are presented. Because the main
objective is to assess the capabilities of singularity avoidance in the mechanism, only me-
chanical limitations due to mechanical interference and minimum/maximum lengths of the
legs that constrain the possible orientations of the redundant links were implemented in the
redundancy resolution. In order to consider mechanical limitations associated with joints

minimum /maximum velocities, a framework is found in [42] and [51].
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1.8.2 Performance index

The kinematic redundancy yields infinitely many solutions to the inverse kinematic pro-
blem. Hence, one may exploit this feature to stay away from singularities along a given
Cartesian trajectory. It is known that approaching a singular configuration results in high
force/torque in the actuators. Thus, the redundancy resolution consists here in following
the minimum value of a force index in the actuators while abiding by the mechanical limita-

tions. From the kinematic-static duality, one can write

T =KT'J Tw, (1.69)

which describes the relation between the efforts (forces and moments) applied on the plat-
form, w, and the forces/torques at the actuators, T, for a general parallel manipulator. Kine-
matic redundancy permits changes in matrices K, J, thus distributing differently the efforts
applied on the platform to the legs. Many approaches can be chosen for the redundancy re-
solution. One could find the coordinates 7y = [, ..., ¥k such that the Euclidean norm of T
is minimal. Another approach could be to choose v so that the maximum component of T is
the farthest from a certain threshold (infinity norm). Yet another approach would be to mini-
mize the maximum norm of a row of matrix K'J~7, in other words, the minimization of the
force transmission index [42]. This last method was applied for the redundancy resolution
of the path planning presented in this paper.

7,(rad)
N

o

0

<

v,(rad)

FIGURE 1.11 - Singularity locus in the redundant parameters space.

Figure 1.11 exposes the singularity locus (red curves) in the space of the redundant parame-
ters (namely <1, 72) for the first step of a path with a tilt angle of 80°. The full animation of the
path planning is available in the multimedia extension of the article. The dashed cyan box
refers to the most restrictive limits on angles 1, 7> due to the different types of mechanical

interference presented above. The coloring represents the ratio between the maximal force



transmission index of matrix K'J~7, x, over the maximum force index of an actuator, ..
This last index is the ratio between the maximum force produced by an actuator over the
payload carried by the platform. For this application, actuators capable of providing 5200
N and a payload of 75 kg whose centre of mass is located 0.3 m above the plane passing
through the spherical joints at the platform are used. The path consists in tilting the platform
from 0° to 80° around an axis parallel to the reference frame x axis (see Fig. 1.2a), and then
rotating this axis from 0° to 360° before tilting back the platform from 80° to 0°. Also, the
planned path for the full tilt rotation was defined by a polynomial of degree five to guaran-
tee the continuity up to the second degree between the three steps of the path. The path is
conducted at a fixed Cartesian point, [0,0, 1.75]m. The scaling factor B used is equal to 2.25
and the unit is set to 0.35 m. The path has continuous profile in angular position, velocity
and acceleration for the tilt and azimuth angles. The animation of the path planning in the
multimedia extension shows the redundant links orientation chosen (red star) in the space
of redundant parameters over path progression in order to minimize the force transmission
index while remaining inside the boundary imposed by mechanical interference (cyan da-
shed boxes). The algorithm used for this task is simply a gradient descent of the performance
index along the closest neighbors in 1, 2 space while respecting the mechanical constraints
defined in the same space. For the specific path chosen, the forces in the eight actuators to
support the inertia of the payload during the path are shown in Figure 1.12.
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FIGURE 1.12 — Forces in the actuators along the 80° tilt path.

From Fig. 1.12, the profile of the actuator forces emphasizes the fact that the platform does
not approach singular configurations along the path with a tilt angle of 80° of the platform in
every direction. Indeed, the forces in the actuators never exceed three times the weight of the

platform payload. It is also interesting to observe a certain symmetry in the force profile of

25



the actuators, mainly due to the symmetry of the architecture added to the symmetry of the
path. Finally, the smoothness of the path planning is confirmed by the profiles of the forces

in the actuators.

1.9 Conclusion

The primary objective of this paper was to study the impact of having two redundant DOFs
—instead of three, as proposed in [25]— in a slightly different architecture, on the orientatio-
nal workspace for zero torsion of a GS-like platform. The kinematic equations were recalled,
as well as the derivation of the Jacobian matrices J and K. A simplified model of the architec-
ture with the same condition of singularities was proposed in order to facilitate its analysis.
Then, the singular locus was partitioned into two sub-types of singular configurations. The
analysis showed that, for zero-torsion trajectories, the proposed architecture has only four
specific orientations of inevitable singularities independent from position. However, these
orientations require the platform to be tilted by 180°, which is not limiting in a practical
sense, because mechanical interference will occur prior to these singular configurations. The
other mathematically possible singular configurations were shown to be either of no inter-
est because of the position of the platform in the workspace, or mechanically unreachable.
Indeed, the only singular locus that may be approachable requires a tilt angle of the plat-
form of more than 90° above the area bounded by attachment points at the base of the legs
(referring to Fig. 1.9). Hence, the singularity analysis of the proposed mechanism suggests
that the orientational workspace is still greatly enhanced for zero-torsion trajectories com-
pared to a standard Gough-Stewart platform, for which the maximum reachable tilt angle is
close to 45° [25], even with only two kinematically redundant DOFs. Finally, path planning
was conducted for a 80° tilt angle of the platform while respecting the mechanical limita-
tions and force limitations of the actuators for a large payload to visualize the avoidance of
singular configurations. For application purposes, tasks that are accomplished with axisym-
metric tools at the end-effector, for example, welding of machining, do not require torsion
rotations. Thus, these applications would find much interest for the proposed mechanism
due to its performances of singularity avoidance in tilted orientations. Moreover, the torsion
rotation could even be implemented directly at the end-effector for certain application objec-
tives such as motion simulation, at the cost of affecting the parallel nature of the mechanism.
Future work will concentrate on the development of a prototype as well as on the derivation
of the singular locus of the mechanism with non-zero torsion to fully observe the impact of
having two redundant DOFs instead of three.
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1.10 Multimedia extension

A video named "80degrees_Tilted Trajectory.mp4" is given with the electronic version of the
article. This short video is an animation of a simulated path planning for zero torsion of the
end-effector, with a tilt orientation of 80 degrees. In the animation, the red star represents
the choice of redundant angles y; and 7, according to a gradient descent of a performance
index, while respecting the mechanical limits of the mechanism (dashed cyan boxes) and the

singularities (red curves) along the path.
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Chapitre 2

Singularity Analysis of a
Kinematically Redundant (6+2)-DOF
Parallel Mechanism for General
Configurations

2.1 Résumé

Les mécanismes paralleles souffrent de singularités de type II qui réduisent leur espace utile
de travail en orientation. Ajouter la redondance cinématique dans ces mécanismes agrandit
leur espace de travail en leur fournissant des capacités d’évitement de singularités. Cepen-
dant, un nombre croissant de degrés de liberté (DDLs) cinématiquement redondants requiert
des actionneurs supplémentaires et peut rendre la résolution de la redondance plus com-
plexe. De plus, des exemples existent dans la littérature dans lesquels un nombre minimal
de DDLs redondants sont utilisés afin de produire un espace de travail libre de singulari-
tés pour un mécanisme plan. Dans ce travail, ’architecture d’'un mécanisme paralléele ciné-
matiquement redondant a (6+2)-DDLs est étudiée et son lieu de singularité est déterminé.
Les résultats montrent que, méme si certaines singularités demeurent toujours a l'intérieur
de I'espace atteignable du mécanisme, celles-ci peuvent étre localisées précisément a 1'aide

d’expressions mathématiques simples pour des besoins de planification de trajectoire.

2.2 Abstract

Parallel mechanisms suffer from type II singularities which reduce their useful orientational
workspace. Adding kinematic redundancy in parallel mechanisms enhances their orienta-
tional workspace by providing singularity avoidance capabilities. However, an increasing
number of kinematically redundant degrees of freedom (DOFs) requires additional actua-
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tors and makes the redundancy resolution more complex. Moreover, examples in the lit-
erature exist where a minimal number of kinematically redundant DOFs was used to pro-
duce a singularity-free orientational workspace for planar mechanisms. In this work, the
architecture of a kinematically redundant (6+2)-DOF parallel mechanism akin to the well-
known Gough-Stewart platform is studied, and its singularity locus is derived. The results
show that, while some singularities still remain in the useful workspace of the mechanism,
they can be accurately localized with simple closed-form analytical expressions for trajec-
tory planning purposes. Furthermore, the redundancy resolution may find itself easy to
handle, since the avoidable singularities and mechanical interference can be mapped into
the 2-D space of the redundant parameters. Finally, the proposed architecture is considered
as a compromise between obtaining a singularity-free workspace and handling easily the

redundancy resolution for the trajectory planning.

2.3 Introduction

Parallel mechanisms have attracted much attention in the past decades due to their dynamic
performances and their load carrying capacity advantages over their serial counterparts [50].
The main restriction to such interesting features is the presence of singularities inside their
workspace. These singular configurations come in three types [15], where the first two are
defined here. Type I singularities imply that nonzero joint velocity vectors produce a null
Cartesian velocity vector, and happen typically at the boundary of the workspace. Type II
singularities occur when, for a null joint velocity vector, the Cartesian velocity vector is non-
zero. In type II singular configurations, the end-effector may not resist some forces and mo-
ments, and the control of the mechanism is lost. Two approaches are generally used to avoid
singular configurations at the design stage, namely, actuation redundancy and kinematic
redundancy [28]. While both approaches successfully reduce the singular configurations in
parallel mechanisms [52; 53], they also have their own limitations.

On one hand, actuation redundancy induces antagonistic forces in the mechanism because
there are more actuators than the number of degrees of freedom (DOFs), resulting in a more
challenging control, but it allows the modulation of the stiffness in the mechanism. In [34]
for example, a device to measure the internal forces in the redundantly actuated planar pa-
rallel mechanism had to be designed to facilitate its control. In [31], the problem of minimal
independent coordinates mode switching in the command of redundantly actuated paral-
lel mechanisms was addressed with a solution that includes a formulation of the dynamic

model of the mechanism by its n redundant coordinates.

On the other hand, kinematic redundancy brings internal motion in the mechanism due to
its number of DOFs being higher than that required at the end-effector, resulting in easier

control. However, in this case, the redundancy resolution becomes more difficult with an
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increasing number of kinematically redundant DOFs. Despite this last issue, great progress
has been recently presented with kinematically redundant parallel mechanisms, due to their
capability to enhance their singularity-free workspace [54; 27; 41]. In [27; 38; 39], a kinema-
tically redundant parallel mechanism with full rotability is presented. In [41], [24], [25] and
[42] for example, kinematically redundant parallel mechanisms with (6+3)-DOF were pre-
sented, each with a workspace exempt of singular configurations. It is even discussed in [24]
and [40] to operate a gripper with a kinematically redundant degree of freedom.

While in [26; 55] the authors proposed a kinematically redundant (3+3)-DOF planar parallel
mechanism proven to avoid all type II singularities, the authors of [27] presented a kinema-
tically redundant (3+1)-DOF planar parallel mechanism with the same capability of singula-
rity avoidance, plus a very simple redundancy resolution. In this work, it is thus of interest to
investigate the effect of the withdrawal of one kinematically redundant DOF out of three on
the presence of singularity of type II for a parallel mechanism whose architecture is similar

to the one presented in [25].

The analysis of singular configurations is of paramount importance while designing a paral-
lel mechanism. In [44; 45], a geometric method based on instantaneous centre of rotation was
proposed. In [56], the singular value decomposition was used for the physical interpretation
and analytical formulation of the singularities. In [57; 58; 35], screw theory was employed to
approach the singularity analysis, while in [59], the Linear Implicitization Algorithm (LIA)
and the Study kinematic mapping were preferred. In [60], a kinematically redundant (3+3)-
DOF parallel robot was divided into two sub-mechanisms in order to facilitate the singula-
rity analysis. In [61], the constant orientation singularity surfaces were investigated when

transformed into a characteristic plane corresponding to the plane of the platform.

In a recent work [62], a method based on the linear decomposition of the determinant of the
Jacobian matrix combined with the application of the resultant of polynomials to form nonli-
near systems of equations was proposed for the singularity analysis of a given kinematically
redundant (6+2)-DOF parallel mechanism. More specifically, in the singularity analysis pre-
sented in [62], the linear decomposition of the determinant of the Jacobian matrix J was
tirstly applied in order to factor out the variables describing the internal motion in the me-
chanism (kinematic redundancy), i.e., the feature allowing the avoidance of singularity. An
equivalent form of the Jacobian matrix determinant was then found, where the determinant
is expressed as a summation of four sub-determinants, each of which multiplied by a coeffi-
cient written as a function of the variables corresponding to the kinematic redundancy. Thus,
the condition to meet an unavoidable singularity was to verify that all four sub-determinants
equal zero simultaneously. This first system of four equations gave the conditions for unavoi-
dable singularities. The four equations to satisfy, the expressions of four sub-determinants in
six variables, were written as polynomials in one of the Cartesian variables with the lowest

degree, where the coefficients of the particular Cartesian variable were functions of the re-
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maining five variables. Secondly, the resultant of polynomials was applied on three pairs of
sub-determinants in order to eliminate the first Cartesian variable, and by doing so, building
a second system of equations to be solved. The application of the resultant of polynomials
was then used a second time on the new set of equations, again considered as polynomials
of the Cartesian variable with the lowest degree. Finally, the conditions to satisfy this second
set of equations could be found, which were also used to verify that the initial system of four
equations could be solved. Then, the expression of a locus of unavoidable singularities was
discovered. However, the analysis was limited to configurations with zero torsion only in
order to investigate the singularity locus of tilted orientations.

In this paper, a generalization of the method presented in [62] is conducted that takes into ac-
count all orientations in the singularity analysis of the specified architecture. Hence, the main
objective of this paper is to investigate the singularity locus of type II of a given kinemati-
cally redundant (6+2)-DOF parallel mechanism rather than to propose a new framework for
the singularity analysis of general parallel mechanisms. This paper is structured as follows :
Section 2.4 introduces the kinematic modelling of the general architecture of a kinematically
redundant (6 + k)-DOF parallel mechanism and the particular architecture studied in this
work. Section 2.5 presents the singularity analysis of the proposed architecture. Finally, Sec-
tion 2.6 discusses the limitations of the orientational workspace of the proposed mechanism

due to unavoidable singularities.

2.4 Kinematic Modelling

2.4.1 General architecture

This section briefly recalls the kinematic modelling of a general kinematically redundant
(6+k)-DOF parallel mechanism as firstly described in [25]. The reader is referred to the deri-
vation presented in [25] for more details. Consider an architecture with k redundant legs —
i.e., k redundant DOFs — and 6 — k non-redundant legs. The non-redundant legs are of type
HPS while the two sublegs of a redundant leg are of type SPR, where H refers to a Hooke
joint, P refers to an actuated prismatic joint, S to a spherical joint and R refers to a revolute
joint. A simplified CAD model of the proposed mechanism is exposed in Fig. 2.1 to visualize
the architecture of interest. A redundant leg is defined by points A, 1, A;», S; and B; in Figure
2.2, which introduces the nomenclature used for the upcoming derivation for a general case

of kinematically redundant parallel mechanism.

For the redundant leg i, with i = 1,...,k, the sublegs have their attachment points at the
base in A;1 and A;, by spherical joints, and are linked in S; by a revolute joint. While it
may not seem obvious in Fig. 2.1 that the attachment points at the base in A;; and A;»
are spherical joints (they are in fact universal joints), a revolute joint along the axis of each
subleg, not shown in Fig. 2.1, is necessary to obtain the desired equivalent spherical joint in
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FIGURE 2.1 — Simplified CAD model of the specific architecture.
Y Revolute Joint
X Hooke Joint

% Spherical Joint

m Prismatic Actuated Joint

FIGURE 2.2 — Geometric representation of a kinematically redundant parallel mechanism as
tirstly proposed in [25].

A;1 and A;,. The redundant link B;S; associated with the redundant leg i is attached by a
spherical joint at the platform in B;. The joint coordinates associated with redundant leg i are
the lengths of the two sublegs, noted p; ; and p; . Moreover, because the two sublegs and the
redundant link of a redundant leg are linked together by a revolute joint, A; 1, A;»,S; and
B; are constrained to belong to the same plane, i.e., both sublegs and the redundant link are
coplanar. The non-redundant leg j, with j = k+1,...,6, is attached at the base in A; by a
Hooke joint and at the platform in B; by a spherical joint. The joint coordinate associated with
non-redundant leg j is the extension of the leg, noted p;. A fixed reference frame O(x,y, z)
is attached at the base while a moving reference frame P(x’,/,z’) is attached at the moving
platform. Vector p is the position vector of point P expressed in the fixed reference frame.
A rotation matrix Q describes the rotation of the reference frame P(x’,1/,z") with respect to

the fixed reference frame. Vectors b/ and b; are the position vectors of the attachment points
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on the platform for the redundant and non-redundant legs respectively, and are expressed
in the moving reference frame. All other position vectors, namely a;;, ap, aj, s, b;, b; and e;
are expressed in the fixed reference frame. Referring to Figure 2.2, the constraint equations
are given by
p]2 = (bj—aj)T(b]'—aj), j: (k+1),...,6, (2.1)
with
b]‘ =p-+ Qb/, (2.2)
for a non-redundant leg, and
2= (s;—b)l(si—b;), i=1,...,k (2.3)
with

for a redundant link. The constraint equation for a subleg of a redundant leg is expressed as
pf,h =(si—aj)(si—ayy), i=1,...,k, h=1,2 (2.5)

The last constraint equation represents the coplanarity of points A;1, Ajp, Si, B; and is written

as
[(bi—a,',l) xei]T(si—aill) :O, 1= 1,...,k, (2.6)

with e;, the unit vector oriented from point A;; to point A;. Taking the time derivative of
equations (2.1), (2.3), (2.5) and (2.6) with further simplifications and substitutions (see [25])
leads to the system of equations

Jt=Kp, (2.7)

with J and K, the Jacobian matrices, t, the six-dimensional Cartesian velocity vector and p,

the joint velocity vector. Vectors t and p are respectively given as

t= '] @8
P = 1011012 -, 0k1 Pk2 Pkits -1 06", (2.9)

with p and w, respectively the velocity of point P and the angular velocity of the platform.

The Jacobian matrices are written as follows

(s1—b1)T [Qb] x (s —by)]”

(sk —by)T [Qb;, x (sg —by)]" 51
— .10
J (bry1 —arp1)” [Qby % (bt — agg)]” 210

(bs —ag)” [Qbg x (bg —ag)]" |
6x6
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and

O-rxax Koo [ 610
where
pk+1 .« e 0
K, = : U (2.12)
0 v 06] (6-tyx(6-1)
rlel rlTnl 0 ... 0
K, = : : (2.13)
0 ... 0 rfm rfng|
with
1, = (si—b;), (2.14)
m; = i’ll[(sz —a;p) x [(b; —a;1) x e]], (2.15)
n; = f;’?[[(bz’ —a;1) X e X (s; —a;j1)], (2.16)
Hi = [(Si — aill) X (Sl‘ — airz)]T[(bi — aill) X ei]. (2.17)

2.4.2 Particular architecture

A specific architecture for a kinematically redundant (6+2)-DOF parallel mechanism was
proposed in [62] and its singularity analysis for general configurations is addressed in this
paper. The specific architecture studied is now recalled. In the proposed architecture, the
attachment points at the base and the platform are located on the vertices of a square. The
architecture of the proposed mechanism is represented in Figure 2.3 using the notation pre-
sented in Section 2.4.1, where the mechanism lies in its reference configuration, with an offset
along the z axis. Because the force applied to the platform by a redundant link is in fact a
linear combination of the forces deployed by the associated sublegs, a similar matrix sha-
ring the same conditions for singularity as the Jacobian matrix from equation (2.10) may be

constructed. Indeed, referring to Figure 2.4, vector s; may be expressed as

s; = b; + l; cos y;e; — [; sin y;k;, (2.18)
with
e; x (b; —a;»)
_ 2)_ 2.19
B = Jles x (bi — a2 1)
ki =gi xe; (2.20)

where [; is the length of the redundant link, and +; is the orientation of the redundant link
with respect to the reference axis e;.
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FIGURE 2.3 — Top view of the proposed architecture in its home configuration with an offset
along the z-axis (Joints symbols are the same as in Fig. 2.2).

FIGURE 2.4 — Orientation of the redundant link in the plane of the redundant leg i.

Once equation (2.18) is substituted into equation (2.10), the Jacobian matrix J becomes

(i cosyie; — lisinyiky)T  [Qb) x (I3 cosyreq — Iy siny1k; )] |
(12 COS Y22 — 12 sin ’)/zkz)T [lez X (lz COS 22 — lz sin ’)/zkz)]T
J= (b3 —a3)" [QbY x (b3 —a3)]T . (2.21)

T

L (be — ag)T [Qbj x (bs — a6)]" d6x6

It is clear from equation (2.21) that the first two rows of the Jacobian matrix J are linear
combinations of the Pliicker coordinates of lines of orthogonal vectors in the planes of the
redundant legs (namely the lines parallel to e; and k;, see Fig. 2.4). These linear combinations
of vectors represent the Pliicker coordinates of lines in the direction of the redundant links
B;S;. Moreover, any pair of linearly independent vectors lying in the plane of a redundant
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leg may generate all vectors in that plane. Thus, because the objective of the present work is
to find singular poses of the mechanism which cannot be avoided with the kinematic redun-
dancy, i.e., for any linear combination in the first two rows of Jacobian matrix J, those first
two rows may be replaced by any linear combination of two linearly independent vectors in
the plane of each of the redundant legs. Then, it is of interest to find vectors in each plane of
the redundant legs whose expressions are simple. The chosen vectors to replace ki, e1, ko, >
are the vectors going from point A; ) to point B;, withi = 1,2 and h = 1,2. These vectors
cease to be linearly independent when point B; lies on the segment passing through points
A;j1 and A;, which is a configuration generally avoided in trajectory planning considering
the near coplanarity of the sublegs of a redundant leg to the plane of the base. Thereby, a ma-
trix J capturing the same unavoidable singular configurations as Jacobian matrix J is given

by

[ ulT [Qb/l X ul]T
uZT [Qb’z X uz]T
< |(bs—a3s)" [Qb'3x (b3 —a3)]"
= , 2.22
J (b4 — a4)T [Qb/4 X (b4 — a4)]T ( )
(bs —as)" [Qb's x (bs —as)]"
_(b6 — a6)T [Qb/6 X (bé — a6)]T_
with
u; = COs€; (bl — 31,1) + sin € (b] — allz), (2.23)
up = coser(by —apq) +sinex(by —azp), (2.24)

where €1, €; are kinematic parameters describing the linear combination of the two pairs of
linearly independent vectors in each plane of the redundant legs that gives the direction of
the forces applied to the platform. In other words, €1 and €, are generic variables used as
coefficients in the linear combinations of vectors that give the orientation of the redundant
link B;S;. Their interpretation is purely mathematical, i.e., they represent the set of all linear
combinations of two given vectors in the plane of their respective redundant leg in order
to express the orientation of the vector along the corresponding redundant link. An unavoi-
dable singular configuration happens if the determinant of matrix J is zero for any value of

parameters €1, €3.

Following the nomenclature for the geometric entities in Section 2.4.1 and referring to Figure

2.3, the geometric parameters are now detailed and given as

a1 = ag = [,B/ ,B/ O]T/ b/l = [1/ 0/ O]T/
ajp =az = [B,—B,0]7, b'> =[-1,0,0]7,
12 =a3=[B,—pB,0] 2= ] (225)
a1 = a4 = [_ﬁl _ﬁ/ O]TI b,3 = b/4 = [O/ _11 O]T/
Ao = as = [_,B/ ,B/ O]Tl b,5 = b/6 = [0/ 1/ O]T/
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where one unit is defined as the distance between the attachment points on the platform
and its centroid. Parameter f3 is a scaling factor and must be positive, and the length of the
vertices at the base is 2. The convention used to represent the rotations is the one proposed
in [47], namely the Tilt and Torsion representation. With this representation, it is easier to
decouple the tilt of the platform from the intrinsic torsion induced with the representation

of Euler angles. The rotation matrix, Q, is given as
c(@)c(@)c(y)+s(P)s(y) c(p)c(@)s(y)—s(p)c() c(¢)
Q=1 s@c@)c()—cl@)s) s@)c@)sy)+c(p)c(y) s@)sO) |, (226)
—s(8)c(y) —s(0)s () c(
where c(-) and s(+) are respectively the cosine and sine of the argument (-), and ¥y = ¢ — 0.
Also, the rotation angles ¢, 0, ¢ are respectively the torsion angle, the tilt angle, and the angle

of the axis, with respect to the y axis in the fixed reference frame, around which the tilt of the
platform is performed.

With the Pliicker coordinates of lines,
Vinh = |:[b1 - ai,h]T [Qb/i X (bl — ai,h)]T:| , 1 = 1,2 h = 1, 2, (227)
Vi = {[bj —aj]" [Qb’; x (b; - aj)]T} , jJ=3,...,6 (2.28)

equation (2.22) is rewritten as

c(e1)vig +s(er)vin
C(€2)V2,1 + S(GZ)VZ,Z

Vs (2.29)

—
Il

V4

Vs

Ve

to simplify further derivations. In the next section, the conditions for singularity will be

derived from equation (2.29).

2.5 Singularity Analysis

In this work, singular configurations are defined as poses (position and orientation) of the
platform in which the mechanism is in a singularity for any configuration of the redundant
legs. In other words, in such a Cartesian pose, the kinematic redundancy of the mechanism
cannot be used to avoid the singularity. In this section, the general singularity locus of the
proposed mechanism is derived in two steps. Firstly, the singular configurations that depend
only on orientation coordinates are addressed to visualize their impact on the orientational
workspace. Secondly, a more general framework is presented to assess the singularities that
also depend on position coordinates.
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2,51 Position independent configurations

In order to completely separate the position coordinates from the orientation coordinates in
the expression of the determinant of matrix J, a double application of the linear decomposi-
tion of the determinant [46] is conducted. With the property det(MT) = det(M), where M
is a square matrix, and from the linear dependency of the determinant on its columns, from

equation (2.29) one has

det(J) = c(e1)c(e2) ‘VlT,l V;l vg VZ Vg vg’-l-c(q)s(ez) ’V1T,1 VzT,z vg VZ V5T véT‘

—i—s(eﬂc(ez)‘v{2 Vi, Vi v, Vi vﬂ—l—s(q)s(eﬁ‘v{z Vi, Vi Vi Vi Vi

(2.30)

7

which separates the expression of the original determinant in a weighted sum of four simpler

sub-determinants, namely

D, = V{l VZT,1 vg VZ vg vg , (2.31)
D, = vlT’1 v£ 5 V;; VZ VST vg , (2.32)
D5 = V{ ) v£ . viovi ovE vy, (2.33)
Dy = v{z v£ , vi vl vi VI, (2.34)

where | - | stands for the determinant of its matrix argument. This first linear decomposition
of the determinant brings out the condition to meet in order to reach a singular configuration

unavoidable with kinematic redundancy, which is
D1 =Dy = D3 =Dy =0. (2.35)

Based on the structure of the determinant of the Jacobian matrix, whose rows are the Pliicker
coordinates of the lines associated with the direction of the legs in the mechanism, a second
linear decomposition on each of the sub-determinants with the strategy employed in [46]

leads to expressions of the form

D; =F 3+ Fi;xzy + Fil3xzz + Fil4x2 + Fi,5xy2 + Fi¢xyz + F; 7xy
+F;8xz% + Fioxz + F10x + F11y° + Fiaoy°z + Fi13y? + Fi 14y
+F;15yz + F 16y + Fi172° + Fi182% + Fi19z + Fioo, i=1,...,4 (2.36)

In equation (2.36), coefficients F; ; with j = 1, ..., 20 are strictly dependent on orientation co-
ordinates and geometric parameters. Hence, the second application of the linear decomposi-
tion on each of the four sub-determinants leads to a total of 80 coefficients F; ; dependent on
orientation coordinates. To satisfy equation (2.35) independently from position coordinates,
all of the 80 coefficients must be equal to zero simultaneously. Thus, the strategy proposed
here is to target one of the 80 coefficients whose expression is of the simplest form, and to
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list the conditions on the orientation variables for which this coefficient vanishes. Each of
the conditions found may be substituted one at a time into all other nonzero coefficients to
obtain the additional conditions on the two remaining orientation variables that make the
remaining coefficients vanish. Again, to find the additional conditions that make the other
coefficients vanish, one of the nonzero remaining coefficients whose expression is the sim-
plest is targeted for the rest of the derivation. The detailed derivation is now presented. For
simplicity, the substitution of the tangent of half-angles is used, in order to bring together
the sine and cosine of an orientation angle under one variable. Hence, the orientation angles
8, ¢, o may now be referred to by their corresponding orientation parameter, 1, t,, t3 for the
rest of the derivation, which are given by

0 ¢ o
t; = tan 5 t, = tan 5 t3 = tan > (2.37)

After analyzing the nonzero coefficients among the 80 from the double linear decomposition

of the determinant, one of the simplest expressions is given by

(ts = 1) (t2+ 1) (tats + 1) (—t3 + 1) B3>
(k2 +1) (2 +1)° (12 +1)°

It can be observed from equation (2.38) that, independently from the expression of all the

(2.38)

Fr6 = 256

other coefficients, the conditions to make this particular coefficient vanish are

b =0, (2.39)
t — oo, (2.40)
ty = =+1, (2.41)
ty = t3, (2.42)
ty = —:3. (2.43)

If the condition t; = 0 is substituted into the coefficient from equation (2.38) and the other
F; j nonzero coefficients, all but two vanish. The last two coefficients have together the only
additional condition f3 = +1 to make them equal to zero. Thus, a singular configuration
independent from position coordinates is found if (t1, t,t3) = (0,2, +1) and corresponds
to a rotation of 90° around an axis perpendicular to the plane of the base while the platform
is parallel to the base. This singularity is well known with parallel mechanisms akin to the
Gough-Stewart architecture [49] and is referred to as Fichter’s singularity. Next, applying
the same procedure from the start with the initial condition #; — +co, which corresponds to
a tilt angle of +180° of the platform, substituted into the other F; ; nonzero coefficients, all

but two vanish. The last two nonzero coefficients are given by

=323 ((13 —2tr — L)ts + 13 +2tr — 1) (3 4+ 2ta — )t3 — 5+ 2t5 + 1)

. , (44
2,17 (+1)2(5+1) o

p _RB((B-20 -1+ 85+2-1)((B+26 1) —5+2+1) (2.45)
317 = BB +1) ’ '
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and they yield the same two additional conditions to cancel them simultaneously, namely,

£ 42t —1
P L bk (2.46)
2 — 2ty — 1
12 =2t —1
=2 "2 71 (247)
trs+2t) —1

These conditions on variable ¢3 and t; — F-co constitute another singular configuration, and
consist in a generalisation of the preceding singularity for which the platform is parallel
to the base, but for 6 = £180° instead of 8 = 0°. The next condition from equation (2.38) is
tr = 1. After substituting this condition into the other coefficients, twenty-six of them remain
nonzero. The additional condition to make the expression of the remaining simplest coeffi-
cients vanish is f3 = £1. This condition is sufficient to make all the remaining twenty-six co-
efficients go to zero simultaneously, and thus constitutes a singular configuration. The same
results for t3 are obtained with the condition t, = —1. Hence, a singularity locus independent
from position coordinates exists for (t1,tp, t3) = (t1,1,£1) and (t1, t, t3) = (t1, —1,£1). Mo-
reover, the derivation with the first conditions t, = t3 and t, = —% leads to the same results
as for the first condition t, = £1 and are thus not displayed here. This singular configura-
tion is associated with condition 3b) of Grassmann geometry, presented in [50], for which the
intersection of two planar pencils of lines is possible between the four non-redundant legs of
the mechanism. Such a configuration is obtained when the line passing through attachment

points B3 4 and Bs ¢ (see Figure 2.3) is parallel to lines Az A4 and AsAg. In this configuration,
whatever the orientation of the two redundant links, the intersection of the two planar pen-
cils of lines generated by the lines in direction of the four non redundant legs 3, 4, 5 and 6
still exists, as represented in Figure 2.5 by the line D, which belongs to both planar pencils
of lines. In Fig. 2.5, the two redundant legs were omitted for clarity purposes, because they
do not participate directly in the singular configuration. Moreover, in the description of the
singularity locus, the attachment points B3 and By are assumed to be coincident, as well as
points Bs and Be. In the real mechanism, these points are not coincident (see Fig. 2.5), but
are really close to each other with respect to the dimensions of the mechanism. Hence, the
singular configuration may not be perfectly met in practice, but it could certainly be closely
approached, resulting in enormous efforts in the actuators.

This last case concludes the analysis for position independent singularities analysis. The
locus of singularities in the space of the orientation variables 6, ¢, ¢ in cylindrical coordinates
is shown in Figure 2.6, where all three different sets of equations previously derived are
graphically represented. The locus is symmetrical with respect to the plane § = 0°, and only
the upper part of the graph is shown (i.e., 6 € [0,180°]). In Figure 2.6, the circle at 6 = 0
corresponds to the Fichter’s singularity, i.e., the platform is rotated of £90° around an axis
perpendicular to the base while the platform is parallel to the base. The curves at § = 180°
are an equivalent of the Fichter’s singularity, but when the platform is upside down. The

structure of the curves may seem more complicated to visualize. This is due to the fact that
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FIGURE 2.5 - Intersection of two planar pencils of lines for 0 = —%,¢ = 7,0 = =7, =
2.25.

when the platform is tilted of 8 = +180° around a given axis of orientation ¢ with respect
to the y axis of the fixed reference frame in the plane of the base, a certain torsion angle
o will place the platform into Fichter’s singularity. This angle ¢ is a function of the axis
orientation angle ¢ around which the platform is tilted (see equations (2.46) and (2.47)).
Finally, the two vertical lines in Figure 2.6 correspond to a configuration of the platform

where the segment B3 4B5 ¢ is parallel to the segments A3 A4 and AsAs. Thus, whatever the
tilt angle 6 of the platform, an intersection between two planar pencils of lines generated by

four non-redundant legs is formed and a singularity occurs (see Fig. 2.5).

FIGURE 2.6 — Locus of singular configurations independent from position coordinates.

Nonetheless, the orientational workspace is restrained mainly when the torsion angle ¢ is
equal to £90° for —180° < 6 < 180°. Moreover, the singularity locus depicted in Figure
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2.6 is generally not really restrictive considering that for large tilt angles, mechanical inter-
ference will occur before singular configurations can be reached. Indeed, for this particular
architecture, numerical simulations taking into account the maximum and minimum length
of the legs, physical contact between a pair of legs and passive joints limits indicate that the
maximum tilt angle at a reference configuration of the platform is almost 105°. However,
even with minimal mechanical interference (i.e. larger reachable orientational workspace),
it is almost certain that a tilt angle of £180° results in the legs colliding with the platform
itself. Thereby, these results close the derivation of the singularity locus independent from

position coordinates.

2.5.2 Position dependent configurations

From equation (2.35), a highly nonlinear system of four equations in six variables (x, y, z, t1,
ty, t3) is obtained that describes the general singularity locus. In previous work [62], this
system of equations was manipulated using the resultant of polynomials on the expressions
of the sub-determinants D;,i = 1,...,4, but only for zero-torsion configurations. A similar
approach is used here. By inspection of the expressions of the coefficients F; 1, F; 5, F; 3 and
F 4 withi =1,...,4 (see equation (2.36)) for all four sub-determinants, it can be observed
that they are all equal to zero for any value of the orientation variables, which is to say that
all sub-determinants are of degree one in x (they have a unique expression for a root in x).
If x; is the root in x of sub-determinant D;, then a necessary condition for an unavoidable
singularity is to have x; = xp = x3 = x4. Using the resultant of polynomials, this condition

can be translated to
Resy (D1, D;) = Resy(Dy, D3) = Resy (D1, Dy) =0, (2.48)

where Res, (A, B) stands for the resultant of polynomials A and B with respect to variable x.
The resultant of polynomials A and B with respect to variable x is given by the determinant
of their Sylvester matrix, namely

an 0 0 by, 0 0
ap-1 an b1 bn
Ap—2 Ay bu—2 b1
: Ap_o 0 by 0
Resy(A,B) = | g, R by S by | (2.49)
0 ag : a,q O bo © by
0 . ayo 0 . by
0 0 ag 0 0 bo
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where a Ji with f = 0,...,n is the coefficient of the power f of variable x in polynomial
A of degree n, while by with ¢ = 0,...,m is the coefficient of the power ¢ of variable x
in polynomial B of degree m. If expression (2.49) equals zero, then polynomials A and B
share at least one common root in variable x. For example, the Sylvester matrices of pairs
of polynomials in equation (2.48) are all 2 x 2 matrices, because all sub-determinants are
of degree one in x. The use of the resultant of polynomials is also motivated by the fact
that it captures the conditions for which a polynomial becomes independent from the initial
variable taken by the resultant. This feature will be useful later in the derivation of some
results.

Equation (2.48) represents a new system of three nonlinear equations in five variables
(v, z, 1, to, t3). The three expressions of the resultants can also be considered as polynomials
in variables y or z themselves. One would remark that the three resultants with respect to
variable x obtained above are of degree two in y while they are of degree three or four in z.
Therefore, with the definition

Rl = Resx(Dl, Dz), (250)
Rz = Resx(Dl, Dg), (251)
R3 = Resx(Dl, D4), (252)

a strategic way to fulfill equation (2.48) would be to have Ry, Ry, R3 sharing a same root in y.

Another application of the resultant for variable y is conducted on Ry, Ry, R3 leading to

R4 = ReSy(Rg, Rl)/ (253)
R5 = Resy(R3, Rz), (2.54)

and the last system of equations to be met is
Ry =Rs5=0. (2.55)

A word of caution must be stated when considering equation (2.55). Indeed, because
Ri, Ry, R3 are of degree two in variable y (they each have two roots in y), satisfying equa-
tion (2.55) does not necessarily guarantee y1 = y» = y3, assuming y; is one of the two roots
of resultant R;, j = 1,2, 3. However, to meet equation (2.48), Ry, Rz, R3 must share the same
expression for their root in y, and a necessary but not yet sufficient condition is to satisfy
equation (2.55). One must then verify that y; = y» = y3 is possible after solving equation
(2.55). The framework of the application of the resultant to eliminate variables x and y is
represented schematically in Figure 2.7.
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D](I,y72,t]7t27t3)

Ri(y, z,t1,ta, t3)

DZ(I7y727t17t27t3) ‘_’R4(Z,t1.‘t27t3)

[ RQ(y7Z7t17t27t3)

D3(m7yaz7t17t27t3) R5(27t17t27t3)

> R3(y,z,t1,12,13)

D4(‘/L.7y7 Z7t17t27t3)

FIGURE 2.7 — Diagram of the resolution scheme.

After expanding the expressions of R4 and Rs, it can be observed that their structure is simi-

lar. In fact, both expressions have four distinct roots in variable z (two of which are common

to R4 and Rs), and they share multiple common roots in variables t;, t, t3. The expression of

R4 and Rs are given by

with

and

-

Ry(z, 11, b2, t3) = p1(t1, ta, t3) pa(to, t3) p3(ta, t3) | |(z —zi),
i=1
8
R5(Z/ tl/ t2/ t3) - Pl(tlr t2/ t3)p2<t2/ t3)p3(t2’ t3) H(Z - Zj)’
j=5

p1=(btz+1) (B—-1) (E-1) (> =2t —1) (b —t3) t,

p2 = (t32—2t3—1) t22—|— (2t32—|—4t3—2) tz—t32—|—2t3—|—1,

p3 = c1ty? 4 caty — ¢y,

a=((B+1)H*—2tp—p+1),
=28 (f32—|—2t3—1).

(2.56)

(2.57)

(2.58)
(2.59)
(2.60)

(2.61)
(2.62)

The powers of the factors py, pa, p3, (z — ;) and (z — z;) have been omitted for clarity. Also,

z; and z; are the roots in z of the resultants R4 and Rs. The roots in z for Ry are

Akt +1)(ta — 1)

MEEEIDELDELD)

2y — 201815 + 8ty + 835 — gat2 + 81)
ga(t3+2tr — 1) ’

M:_%ﬂ&é+&@+&@—&h+&l

g4(t% — 2t2 — 1)
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where

g1= B+ —6B5+p—1, (2.66)
2 = 16Bt; — 16t3, (2.67)
g3 = (2 —6B)t3 +36Bt5 — 68 — 2, (2.68)
= B+1D)*B+1)(HE+1), (2.69)

while the roots in z for Rs are

4t1(t2t3 + 1)(t2 — t3)

_ ) 2.70

BRI E (B 270

2y = 2t (8113 + 8215 + 8315 — g2t2 + 81) @.71)
qu(t5 =2t — 1) ’ ‘

s = 2t (5115 + 25 + g3t5 — gt + g1). 272)

(3 +2t —1)

One easily sees that R4 and Rs share their common roots z; > and z56. Moreover, as it can
be observed from equations (2.56) and (2.57), R4 and Rs share the same expressions for their
roots in t1, t5, t3, and these roots are given by

t =0, (2.73)
ty = +1, (2.74)
ty = +1, (2.75)
th =142, (2.76)
tr = t3, (2.77)
b= L (2.78)
t3
1—2t3— 24+ (V24 V282)
ty = > , (2.79)
2 —2t; 1

(1—2f3—t§)5i\@\/(t§+1)((ﬁ2+ﬁ+%)t§—25t3+ﬁ2—ﬁ+%)
2= (3 —2t3—-1)p+15+1 '

(2.80)

To determine the position dependent singular configurations, the proposed strategy is as
follows : for each pair of common roots in z, t, t5, t3 of R4 and Rs, backsubstitute them into
Ri, Ry, R3, and verify whether a common root in y exists between the three resultants. If
s0, a common expression for a root in x should be found with the four sub-determinants,
meaning that a singular configuration occurs under the conditions derived. In sub-section
2.5.3, attention will be given to the roots in z that make R4 and Rs vanish, while the sub-
section 2.5.4 will focus on the roots in ty, t5, t3 that make R4 and Rs equal to zero.
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2.5.3 Roots in z making R4 and Rs5 equal to zero

From equation (2.63) making both R4 and Rs equal to zero, the common root in y for
Ri, Ry, R3 is given by
Mlt% + uzt% + u3t% — Upty +uq

Y= , (2.81)
Uy
where
uw=((B+1)B+B-1)(B+1), (2.82)
Uy = 8t3ts, (2.83)
us = ((2B — 6)t3 + 2B+ 6)t3 + (2B +2)15 + 2B — 2, (2.84)
ug = (B+1) (5 +1)2(5+1). (2.85)

With the conditions on z and y mentioned above backsubstituted into the four sub-
determinants, all of them vanish, independently from x. Bringing the investigation fur-
ther, these singular configurations imply that the attachment points of two adjacent non-
redundant legs on the platform are lying on the line passing through their attachment point
at the base. In other words, two adjacent non-redundant legs are colinear in the plane of the
base. This singular configuration is rejected, because it requires that two legs of the mecha-

nism be coplanar to the plane of the base.

One could also be interested in finding additional conditions on t1, t5, 3 so that the other
roots in z, namely z3, zy4, z7, zg from equations (2.64), (2.65), (2.71) and (2.72) are equivalent.
Four pairs of equations can be written, which are z3 = z7,z3 = 23,24 = zy and z4 = zs.
Only the conditions z3 = z7 and z4 = zg are of interest. Indeed, it is readily observed that, in
fact, zz = —zg and z4 = —2z7, so these expressions can only be met for z = 0, which is of no
interest for most application purposes. Because the condition to meet z3 = z7 is very similar
to the condition to satisfy z4 = zg, as well as their respective results, only the derivation for
the condition z3 = zy is presented. In trying to satisfy z3 = zy, one easily sees from equations
(2.64) and (2.71) that the only additional condition on orientational variables which verifies
the previous equation without having z3 = z7; = 0 is therefore t, = 0. Under the additional

condition ¢, = 0, z3 = z7 is verified and the expression of the root in z becomes
26 ((B+D)t5 —6p5+p—1)
- (B+1)(2+1)2
and z = z3 7 backsubstituted into Ry, Ry, R3 gives the following common root in y
260285+ 155 -2B41)
(5+1)

Finally, substituting the conditions on z, y, t; in the four sub-determinants leads to the com-

237 =

, (2.86)

(2.87)

mon root in x, given by

(2 +2B+1)t3+ (8Bt2 —4B)3 + 13+ 28— 1
(B +1)(5+1)2 '

(2.88)
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The closed-form equations (2.86), (2.87) and (2.88) describe a singularity locus, and the confi-
guration of the platform is such that the two non-redundant legs adjacent to a redundant leg
are together coplanar to the plane of the redundant leg, and intersect the attachment point
of the redundant link on the platform. This configuration is depicted in Figure 2.8, where
non-redundant legs p3 and ps are coplanar to redundant leg 1, and intersect at the attach-
ment point of the redundant link at the platform. Also, it should be noted that, in Figure 2.8,
the legs of the mechanism that do not take part directly in the singular configuration were
removed for clarity purposes.

FIGURE 2.8 — Singular configuration of equations (2.86), (2.87) and (2.88) for t; = —7,t, =
0,t3 =0and B = 2.25.

In terms of Grassmann geometry, this configuration is identified as condition 2, in which the
lines associated with three Pliicker vectors form a planar pencil of lines [50]. However, while
this singularity locus exists, it requires very large tilt angles, plus two pairs of legs being
almost superimposed, which is hardly mechanically reachable. Moreover, the platform lies
in positions mostly unreachable by the mechanism, due to simultaneously large extension
and retraction among the legs. Finally, in Figure 2.8, one may observe that the attachment
points of the two sublegs at the base are not exactly coincident with the attachment points
of legs p3 and pe. This arrangement results in the impossibility of non-redundant legs p3
and pe to be exactly coplanar with the redundant leg 1. Thus, this singular configuration
could be approached, but not precisely met in practice. Its description is nonetheless of great
importance for trajectory planning. In fact, this singularity locus is a generalization of a result
found in [62] for zero-torsion trajectories. This case closes the analysis for the roots in z that
may make the resultants R4 and Rs equal to zero. In the next subsection, the derivation will
focus on the roots in t1, fp, t3 that simultaneously make the resultants R4 and Rs equal to

Zero.
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2,54 Roots in t, 1, t3 making R4 and Rs5 equal to zero

In this section, the backsubstitution of the roots in t, t;, t3 into the resultants Ry, Ry, R3 is
presented in order to derive the conditions for singularity.

Backsubstitution of equation (2.73)

The first root in the orientation variables to be substituted into Ri, Ry, R3 is ;1 = 0 (see
equation (2.73)). This condition makes all three resultants vanish, as well as the two sub-
determinants Dj, Dy. Only the expressions for D, D3 remain nonzero, and the two additio-
nal necessary conditions to cancel them are z = 0, which is rejected, or t3 = =£1, a result
already found in Section 2.5.1.

Backsubstitution of equation (2.74)

From equation (2.74), the second roots that cancel simultaneously Ry4, Rs are f3 = +1. Be-

cause the results with t3 = 1 and t3 = —1 are similar, only those for t3 = —1 are derived.
After substituting t3 = —1 into the first three resultants, a common root in y exists and is
given by

2t (=B + 2 (B3 + 1)+ B)
B z(B+1)(B+1) '

Once the above conditions are also substituted into the four sub-determinants, a common

(2.89)

root in x is also found and its expression is

H(((5 -8 + 1 —1)2° + 4pt)

X =—
z(BB+1)(5+1)

(2.90)

Thus, the above equations describe a singularity locus that can be reached by the mecha-
nism. Figure 2.9 shows the singularity locus in the x, y space described by equations (2.89)
and (2.90). In this singular configuration, for any value of the z coordinate, the locus is akin to
the ones pictured at Figure 2.9, where a pair of orientation variables t; and f;, or orientation
angles 6 and ¢, generates the corresponding x and y coordinates of the singular configura-
tion. When comparing Figure 2.9a and Figure 2.9b, it can be observed that the locus changes
significantly when the z coordinate is increasing, i.e., it is getting larger (see the graduations
on the x and y axes). A representation of the platform for such a singular configuration is
depicted in Figure 2.10. It can be seen in Figure 2.10 that this unavoidable singular configu-
ration is met inside the reachable workspace of the mechanism without the occurrence of
mechanical limitation or mechanical interference. Nonetheless, this singular locus is descri-
bed by simple equations which can be easily implemented in a controller for path planning

purposes.
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(a) (b)

FIGURE 2.9 - Singularity surface parameterized by orientation angles ¢,  in the x, y space
for p=2,0 = —90°6 € [0,90°] and z = 2 units (2.9a) and z = 12 units (2.9b).

FIGURE 2.10 — Singular configuration of equations (2.89) and (2.90) for 6 = —%,¢ = Z,0 =
—%,z=600mm and 8 = 2.25.

Backsubstitution of equation (2.75)

Afterwards, the roots t = =+1 from equation (2.75) are addressed. Only the results for
tp = —1 are derived. This condition cancels simultaneously Rj, Rz, R3, and when substi-
tuted into the four sub-determinants, the expressions obtained do not depend on x, and they

are simpler. The four sub-determinants can be cancelled by the additional condition t3 = £1,
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independently from position, and this case was addressed in Section 2.5.1. The other condi-

tions for singularity from the simplified equations of sub-determinants are given by

(B-DHE+B+H+ (B+DE+ L1
(B+1)(55+1)
24 (2 —1)

z= i(t% IDELD (2.92)

y==+ , (2.91)

However, it can be observed that this locus of singularity is a special case of equations (2.63)
and (2.81) for t, = —1, which is a more general case, and moreover rejected because it im-
plied legs to be coplanar with the plane of the base. Similar results are obtained with t, = 1.

Backsubstitution of equation (2.76)

The next roots common to Ry, Rs are t, = 14+ /2 (see equation (2.76)). Only the derivation
fortp = 14+ 2 is presented. Once substituted into Rj, Ry, R3, a common root in y may
indeed be found, and its expression is

V2z((BE + B+ D)2+ 282t + 2B+ f— 1)
24 (13 —2t5 — 1)

y=- . (2.93)
This condition also substituted into the four sub-determinants leads to their cancellation,
independently from x, for
L V2h(-263-1)
(2 +1)(£2+1)

These two conditions in y and z constitute a locus of singularity, but they are also a special

(2.94)

case of equations (2.63) and (2.81) for t, =1 + V2, and are thus not interesting.

Backsubstitution of equations (2.77) and (2.78)

Next, the derivation of the two conditions t, = t3 and t, = —% from equations (2.77) and
(2.78) leads to an impossibility of having y1 = y» = y3, assuming y; is one of the two roots of
resultant R;, j = 1,2,3, if z # 0, which is rejected.

Backsubstitution of equation (2.79)

For equation (2.79) to be substituted into Ry, Ry, R3, a simplification is firstly made with

(-1+v2)(-1-V2)

ty = oy , (2.95)
A+ V2)(s+v2-1) 2 06
tr = Thiliy2 . (2.96)
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The derivation with equation (2.95) is introduced. Substituted into Ry, Ry, R3, this condition
gives a unique root in y for each resultant. These roots are given by

2V/2zt1%t3 +\/2zt32 — 2 Btit32 — 2z — 2Bty
y1=— 5 , (2.97)
2t (t32 4+ 1)

2V 4 V222 + 2B it — V22 + 2B (2.98)
Y2 = 2t (t:2+1) ' '

(1232 B+ 12+ t32B+ 2% ts + 132 + B— 1) z2V/2
Y3 = — > ) (2.99)
2t (tg, =+ 1)

The additional conditions on z to meet y; = y; and y; = y3 are

V2t

z=—2L (2.100)
241
2t
z= # (2.101)
241

which means that y1, y2, y3 cannot be equal if z # 0, which is obviously rejected. However,

V2t
241

one can observe that z = + is also a root of Ry, Rz, R3 once equation (2.95) is substituted

V2t
2417
example, Rj is still cancelled with this expression of z, independently from y. Thus, Ry, Ry, R3

into them. In other words, while y; = y, may be satisfied with the condition z = — for

being cancelled by expressions in y and z, the four sub-determinants can be solved for their
common root in x, and constitute a locus of singularity. Yet, the rest of the derivation is
not presented, because this locus exists for a value of z under one unit for all ¢;, which is
considered of poor interest for application purposes. Because similar results are found with
expression (2.96), the derivation is not presented.

Backsubstitution of equation (2.80)

The last case to be considered is that of equation (2.80), which is the last condition to make
Ry, R5 vanish simultaneously. Only the derivation for the positive form of equation (2.80)
is presented. Backsubstituting the last root in f; into the resultants Ry, R, and R3 leads to
rather complex expressions. Nonetheless, they can be solved for their respective roots in y.
Each resultant has two roots in y, one of which is common to the three resultants, and its
expression is given by

_ 3z(v1 +v2)v3

_ 3o+ o)os 2.102
4 4t1 (0405 + vg) ( )
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with

U1 = —gﬁ (ts* + 213~ 1) ﬁ\/<<ﬁ2+5+;> f32—25f3+5z—ﬁ+;> (> +1),
(2.103)

@

4 4 2 1
Uy = <t34—|—3t33+2t32—3t3—|—1> 132—1—5 (t32—|—1) (t32—2t3—1)ﬁ+§ (t32+])2,
(2.104)
1
= (> +1) (12 +1) B2+ (17 — 28— 1) p— = (t32 +1) (h—1) (t1 +1), (2.105)
3 3 1
o= (gt et ) e (gt et g g (81
(2.106)

05:\@\/<([32+,5+;> t32—2[3t3+,82—5+;> (t32+1), (2.107)
= (> +1) ((t32+1)52+(t3 —2t3—1)[3+ ts> + >(t32+2t3—1)ﬁ. (2.108)

This root in y substituted into the four sub-determinants would be normally sufficient to find
a unique common root in x among them. However, in this particular case, one observes that
D; vanishes and that D4 becomes independent from variable x, and has the easiest form to
work with, which is expressed by a function of z multiplied by a polynomial in ¢3 of degree
16. Because of the high degree of the polynomial in ¢3 of Dy, it is not possible to find analytical
expressions for its roots. Thus, a numerical method is required to completely investigate the
cases where Dy could be equal to zero due to one of its roots in t3. The other possibility to
make Dy vanish is that the z coordinate of the platform is equal to the root in z of Dy, which
is given by

V2t (B+1) 12+ B —1) |
VB B+ 62 —2pts+p2 = p 1) (22 +1) (12 +1)

While equation (2.109) along with equations (2.80) and (2.102) make D4 equal to zero, and

z ==

(2.109)

substituted into the last two sub-determinants D, and D3 also make them vanish, it can be
observed, from Figure 2.11, that the z coordinate of the platform in this singular configura-
tion is always below one unit, for all values of torsion angle ¢ and tilt angle 6. Hence, this
condition for singularity is considered non restrictive, because it may not even be reachable
in practice, that is to say, this singularity locus lies outside of the mechanism’s reachable

workspace. This case concludes the derivation with the common root in y from equation
(2.102).

One could be interested in finding additional conditions for which the second roots in y of
resultants Ry, R, and R3 are equal. Consider y1, 2,3, the second roots in y of resultants
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FIGURE 2.11 — Height of the platform (z coordinate, in units) for § = 2 with singularity
conditions given by equations (2.80), (2.102) and (2.109).

R1, Ry, R3 following the backsubstitution of equation (2.80). The condition to observe, for
example, y; = Yy, is met for one in

V2t ((B+1) 1> +p—1)

2=+ , (2.110)
J(B B+t 2Bt p—p+) (12 +1) (2 +1)

b= 1, 2.111)

t3:::tAZ§§§EZE_ (2.112)

2p+1

It is readily observed that the expression of variable z to verify y; = y», as a necessary but
not yet sufficient condition to obtain y; = y» = ys3, is the same as equation (2.109) and thus
will not be taken any further. The condition t3 = +1 verifies y; = y, = y3, but it constitutes
in fact a particular case of the singularity condition from equation (2.89) with the value of ¢,
given by equation (2.80). Thus, the expression t3 = £1 as a condition to verify y; = y» is not
relevant. Finally, equation (2.112) may verify y; = y» = y3 with the additional condition on
variable z given by

I 2 -1t
V2B - VAR -1+ 1) B

which is no other than equation (2.109) with the particular value of t3 given by equation

(2.113)

(2.112). Thus, these conditions do not lead to any further locus of singularity restraining the
orientational workspace of the mechanism, and these last cases conclude the analysis for the
singularities dependent from position coordinates.

53



2.6 Discussion

Sections 2.5.1 and 2.5.2 presented a method to derive the conditions for singularity in the
kinematically redundant (6+2)-DOF parallel mechanism proposed in this work. It is to be
mentioned that, in Sections 2.5.3 and 2.5.4, many results were chosen not to be disclosed,
because they lead to either special cases of a more general result already derived, or to a z
coordinate of the platform in singular configuration located under one unit, which is dee-
med non restrictive for the useful workspace. For the singular configurations that are inde-
pendent from position coordinates, it is shown that the orientational workspace is mainly
restrained when the torsion angle ¢ equals £90° (see Fig. 2.6), a condition also observed in
many other architectures akin to the Gough-Stewart platform. Aside from this condition, the
other position independent singularities require a tilt angle of the platform of £180°, which
is hardly reachable without encountering mechanical interference. Nonetheless, analytical

expressions for singularities of this case were found.

Concerning the position dependent singularities, the derivation led to analytical expressions
of two main loci of singular configurations of interest, namely those expressed by equations
(2.86), (2.87), (2.88) (see Fig. 2.8), and equations (2.89), (2.90) (see Fig. 2.10). Indeed, these loci
do not require legs to be coplanar to the plane of the base, nor a z coordinate of the platform
under one unit. While the first locus seems mechanically unreachable, it may be approa-
ched resulting in large forces in the actuators, and thus its description by simple analytical
equations is very important for trajectory planning. The second locus of interest is easier to
run into, because it does not lead to mechanical interference prior to reaching the singular

configuration.

With the application of the method for the derivation of the singularity locus for the propo-
sed architecture, many singular configurations where found to be under one unit for the z
coordinate. While these singularities exist and may be described by analytical expressions,
they often result in configurations in which some legs in the mechanism are coplanar to the
plane of the base, which is highly undesirable. Moreover, in such configurations, the struc-
ture is extremely flattened, resulting in the legs requiring large forces to support the payload,
an unwanted situation in practical applications. Finally, while the use of the resultant of po-
lynomials to solve the initial nonlinear system of equations of four sub-determinants led to
many analytical expressions for singularity loci, very few cases require an alternative nume-
rical method. In these cases, the general expressions become too complex and are difficult to
work with, but they constitute a small fraction of the results derived.

From a general perspective, the analysis of the results shows that the workspace of the me-
chanism is mainly restricted by singularities occurring for a torsion of the platform of +-90°.
Nevertheless, the singularity loci are accurately described by simple analytical expressions

which is an interesting contribution for the singularity analysis of the given kinematically
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redundant mechanism. Finally, from the primary objective of this paper, the impact on the
singularity loci of having two kinematically redundant DOFs instead of three, as proposed
in [25], consists in few singular configurations still remaining in the workspace mainly cau-
sed by the torsion of the platform, though they are easily localized by simple closed-form
analytical expressions for the vast majority. Moreover, the resolution of the kinematic redun-
dancy for path planning may be simplified, because the mechanical interference associated
to the orientation of the redundant links and the singularities can be mapped onto the 2-D
space of the redundant angles along the path, instead of a space of higher dimension with a
higher number of kinematically redundant DOFs.

2.7 Conclusion

This work presented the architecture of a kinematically redundant (6+2)-DOF parallel me-
chanism akin to the Gough-Stewart platform. The main objective consisted in analyzing how
including two kinematically redundant DOFs instead of three — like in other recently pro-
posed architectures — affects the capabilities of the mechanism to avoid singular configura-
tions, as a motivation to develop an architecture that facilitates the redundancy resolution.
The approach chosen for the derivation of the singularity locus of the specific architecture
began with the construction of an alternative matrix J capturing the same conditions for sin-
gularity as Jacobian matrix J. A combination of the linear decomposition of the determinant
of matrix J followed by a cascaded application of the resultant of polynomials led to the
elimination of position variables in order to raise the conditions for unavoidable singular
configurations. These conditions were, for the vast majority, expressed by simple closed-
form analytical equations, which is an interesting observation. From the relevant singularity
loci derived and presented in this work, it is observed that the principal remaining singu-
lar configurations of the mechanism arise with a +-90° torsion angle of the platform. Thus,
while the orientational workspace for tilted rotations for this particular architecture did not
seem directly affected by singularities with two kinematically redundant DOFs, as propo-
sed by [62], it is still restrained by type II singularities when torsion rotations are taken
into account. Nevertheless, this work brought the contribution of describing the singularity
loci with simple expressions, most of them parameterized by orientation variables, which is
considered important for an architecture with such a high number of degrees of freedom.
However, while the use of the linear decomposition of the determinant and the cascaded
application of the resultant of polynomials to solve the system of equations of singularity
may be applied to any kinematically redundant mechanism whose Jacobian matrix J has
linear combinations of vectors in its rows or columns, the simplicity and symmetry of the
architecture of the mechanism may have a significant impact on the complexity of the pro-
cedure involved in extracting simple analytical expressions for the locus of singularity. Fi-

nally, while the proposed architecture has not yet a fully singularity-free workspace, the
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mechanism may be considered as a compromise between a maximized enlargement of the
orientational workspace and a lighter redundancy resolution due to a smaller number of
kinematically redundant DOFs.
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Chapitre 3

Comparaison de 1’espace atteignable
en orientation avec un mécanisme

standard non redondant

3.1 Introduction

Les deux précédents chapitres se sont concentrés sur la résolution du systéme d’équations
menant au lieu des singularités inévitables du mécanisme cinématiquement redondant a
huit degrés de liberté. La démarche purement mathématique n’a abordé que la détermina-
tion des différents lieux de singularités pour le mécanisme d’intérét, sans pour autant en
exposer visuellement les impacts sur 'espace atteignable en orientation. De plus, une com-
paraison entre l’espace atteignable pour un mécanisme standard a six degrés de liberté et
le mécanisme cinématiquement redondant n’a pas été présentée. Ce court chapitre traitera
donc d’une analyse numérique comparative entre ’espace de travail atteignable pour le mé-

canisme standard et le mécanisme redondant.

3.2 Limites a ’espace de travail d"un mécanisme paralléle

Bien que les configurations singuliéres soient plutdt restrictives pour 'espace atteignable
d’"un mécanisme parallele, les interférences mécaniques contribuent évidemment aussi a la
réduction de son étendue. Pour les architectures paralleles inspirées de la plateforme de
Gough-Stewart, ces interférences sont souvent situées aux configurations de la plateforme
telles que les élongations minimales et maximales des actionneurs prismatiques sont dépas-
sées, le débattement maximal des articulations passives est franchi, ou encore lorsque deux
actionneurs prismatiques entrent en contact I'un avec I'autre. D'un autre c6té, pour minimi-
ser l'effet de certaines limitations mécaniques sur 1'espace atteignable en orientation, nous

allons évaluer celui-ci a une élévation de la plateforme telle que les actionneurs prisma-
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tiques sont a leur élongation moyenne, afin de maximiser le débattement possible a 1’effec-
teur. Cette configuration de la plateforme sera appelée la configuration neutre. A partir de
cette configuration a position constante, un balayage sur les trois angles caractérisant I'orien-
tation de I'effecteur par rapport a la base est mené. A chaque incrément d’orientation, une
vérification est faite pour s’assurer qu’aucune interférence mécanique n’est rencontrée, ou
qu’aucune singularité n’est traversée. En ce qui concerne la rencontre d'une singularité pour
le mécanisme cinématiquement redondant, cela correspond au passage d"une orientation a
une autre au cours duquel le signe des quatre sous-déterminants change simultanément.
Finalement, pour s’assurer d'une comparaison équitable entre les deux mécanismes, leur ar-
chitecture comporte les mémes rayons de points d’attaches a la plateforme et a la base, les
mémes caractéristiques d’actionneurs et les mémes débattements maximums pour les articu-
lations passives. Les points d’attache a la base et a la plateforme pour chacune des pattes des
mécanismes standard et cinématiquement redondant qui ont été utilisés pour les prochaines
simulations sont répertoriés dans les tableaux suivants, et la Figure 3.1 représente ces points

dans le plan pour des fins de comparaison.

H aij a2 a1 apo as ay as ae H
0.816 0.816 -0.816 -0.816 0.756 -0.756 -0.756 0.756
0.758 -0.758 -0.758 0.758 -0.816 -0.816 0.816 0.816

0 0 0 0 0 0 0 0

TABLE 3.1 — Vecteurs de points d’attache a la base dans le repere fixe pour le mécanisme
cinématiquement redondant.

[ v, b’ b’ b, b's o |
0.350] [-0.350] [0.046] [-0.046] [-0.046] [0.046
0 0 0347| |-0347| |0347| |0347
0 0 0 0 0 0

TABLE 3.2 — Vecteurs de points d’attache a la plateforme dans le repére mobile pour le mé-
canisme cinématiquement redondant.

Le débattement maximal des articulations passives de Cardan a la base est fixé a 45° dans
toutes les directions. Le débattement maximal des articulations passives sphériques a la pla-
teforme est de 150° dans toutes les directions par rapport au premier axe de rotation du joint
(qui est normal au plan de la plateforme). Les actionneurs choisis, suivant ceux utilisés pour
un premier modéle CAO du mécanisme cinématiquement redondant, sont des EMC-80 de
la compagnie Rexroth, pouvant supporter une charge de 5200 N, et dont la longueur (centre
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H ai az as ay as ae H

-0.042 0.042 0.985 0.943 -0.943 -0.985
1.113 1.113 -0.520 -0.593 -0.593 -0.520
0 0 0 0 0 0

TABLE 3.3 — Vecteurs de points d’attache a la base dans le repere fixe pour le mécanisme
standard.

[ v, b’ b’s b, b's ve |
0278] [0278] [0323] [0.046] [-0.046] [-0.323
0213 | [0213| |0.134| |-0347| |-0347| |0.134

0 0 0 0 0 0

TABLE 3.4 — Vecteurs de points d’attache a la plateforme dans le repére mobile pour le mé-
canisme standard.

15 : : : : : 15
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1 ‘ 1 as . ~ag
a22.* ap
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— / ¢ L] / =
E o b5 ' * 12 E o b/2 3 * ) b/1
> > ¥
\\\ “~e-e- /,/ ‘\\\ /.‘/ //
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FIGURE 3.1 — Localisation des points d’attache a la base et a la plateforme pour les méca-
nismes standard (gauche) et cinématiquement redondant (droite).

du joint de cardan au centre du joint sphérique) completement rétractée est de 1.569 m, et la
longueur completement allongée est de 2.419 m.
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3.3 Espace atteignable en orientation pour les mécanismes

standard et cinématiquement redondant

Les graphes d’espace en orientation sont construits en coordonnées cylindriques, et suivant
la représentation des rotations Inclinaison et Torsion, telle que décrite dans [47]. La coordon-
née radiale correspond a 1’angle d’inclinaison 6 de la plateforme. La coordonnée angulaire
correspondant a I'angle ¢ de ’axe dans le plan de la base autour duquel est effectuée 1'in-
clinaison de la plateforme. La coordonnée axiale (verticale) correspond a I’angle de torsion
o de la plateforme. L'espace atteignable en orientation pour le mécanisme standard et pour
le mécanisme cinématiquement redondant est présenté aux Figures 3.2 et 3.3. Une vue de
dessus de ces mémes graphiques est représentée aux Figures 3.4 et 3.5. Les frontieres de ces
espaces atteignables sont définies par les singularités (rouge), les limites d’élongation des
actionneurs prismatiques (bleu), les plages de débattement maximal pour les articulations
passives (vert) et les interférences physiques entre deux actionneurs (magenta). Les Figures
3.2 et 3.4 montrent clairement que 1'espace atteignable en orientation est fortement limité par
les poses singulieres dans la configuration neutre du mécanisme standard, ce qui n’est pas

le cas pour le mécanisme redondant.

W Ml Débattement des actionneurs

1\ [ Débattement des articulations passives
/7 (Il Iinterférence entre actionneurs

Il Singularité

)
/
,

FIGURE 3.2 — Espace atteignable en orientation du mécanisme standard.

D’un autre coté, en comparant les Figures 3.2 et 3.3 ou 3.4 et 3.5, si 'espace atteignable du
mécanisme cinématiquement redondant peut ne pas sembler a premiere vue tant avanta-
geux par rapport au mécanisme standard malgré la quasi absence de singularités, 1’ajout
de I'étude des forces dans les actionneurs a l'intérieur de cet espace atteignable pour une

tache de déplacement de charge montre mieux l'intérét du mécanisme redondant. On s’in-
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\\, [IMDébattement des actionneurs
1\ [ Débattement des articulations passives
| . ;
/) [Ilinterférence entre actionneurs
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, gularité

180°

Il Débattement des actionneurs
[EEDébattement des articulations passives
[l interférence entre actionneurs

Il Singularité

FIGURE 3.4 — Espace atteignable en orientation du mécanisme standard, vue de dessus.

téresse donc a une section de l'espace atteignable pour chacun des mécanismes a ¢ = 0°,
par exemple, ot1 on peut visualiser 1’effort maximal nécessaire parmi tous les actionneurs du
mécanisme concerné en chaque point a l'intérieur des frontiéres de 1’espace atteignable, en

régime statique. En effet, pour un manipulateur paralléle, nous avons que
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FIGURE 3.5 — Espace atteignable en orientation du mécanisme cinématiquement redondant,
vue de dessus.

T =K'J Tw, (3.1)

ol T est le vecteur des efforts articulaires, K et J sont les matrices jacobiennes du manipu-
lateur, et w est le vecteur des efforts appliqués a l'effecteur (force et moment). Ainsi, pour
un vecteur d’efforts w et une configuration donnée de la plateforme, il est possible de déter-
miner quel est la force maximale présente dans tous les actionneurs du mécanisme, et s’en
servir comme limitation mécanique supplémentaire a I’espace atteignable en orientation. En
ce qui concerne spécifiquement le mécanisme cinématiquement redondant, on peut utiliser
la redondance afin de minimiser les efforts requis dans les actionneurs. En effet, pour une
configuration donnée de la plateforme, on peut balayer toutes les combinaisons d’orienta-
tions des membrures redondantes qui respectent leurs propres interférences mécaniques.
Pour chacune de ces combinaisons, on calcule l'effort maximal retrouvé parmi les huit ac-
tionneurs. Lorsque toutes les combinaisons d’orientation de membrures redondantes ont
été testées, on choisit 'effort minimal parmi tous les efforts maximums enregistrés plus tot.
Cet effort minimal correspondra donc a la configuration des membrures redondantes qui
minimise 1'effort maximal retrouvé parmi les huit actionneurs pour une pose donnée de l'ef-

fecteur.

Afin de mesurer les forces dans les actionneurs, chaque mécanisme est soumis a une méme
tache qui consiste a orienter une charge de 80 kg, dont le centre de masse se situe a une
distance de deux rayons de plateforme et par rapport au plan de celle-ci, dans toutes les
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configurations a l'intérieur de leur espace atteignable respectif pour un angle de torsion nul.

Les résultats sont montrés aux Figures 3.6 et 3.7.
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FIGURE 3.6 — Espace atteignable en orientation a torsion nulle en prenant en compte les
limites en efforts des actionneurs pour le mécanisme standard.
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FIGURE 3.7 — Espace atteignable en orientation a torsion nulle en prenant en compte les
limites en efforts des actionneurs pour le mécanisme cinématiquement redondant.

Dans ces graphes, les courbes en pointillés représentent les limites mécaniques uniquement
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dues aux débattements maximums des actionneurs et des articulations passives, ainsi que
des collisions entre actionneurs. En observant la Figure 3.6, on peut remarquer qu’apres une
certaine inclinaison 6 de la plateforme, dans certaines directions ¢, 1'effort maximal retrouvé
parmi les six actionneurs augmente rapidement jusqu’a dépasser la valeur limite tolérée par
les spécifications. En effet, la plus grande partie de la frontiere associée a la limite atteignable
a torsion nulle pour le mécanisme non redondant avant 1’analyse des forces était constituée
de configurations singulieres. On vérifie donc qu’a I'approche de telles configurations, les
efforts requis dans les actionneurs augmentent vivement, ce qui réduit considérablement
'espace atteignable réel. L’angle d’inclinaison 6 de la plateforme que 1’on peut effectuer dans

toutes les directions ¢ sans dépasser les limites en force est d’environ 60°.

D’un autre coté, on remarque que les limites en force des actionneurs pour le mécanisme
cinématiquement redondant, a la Figure 3.7, sont bien moins contraignantes a son espace
atteignable. En effet, puisque la frontiére de I'espace atteignable ne contient pas de singula-
rités inévitables, on peut s’en approcher sans remarquer d’augmentation critique des efforts
requis aux actionneurs. De plus, on peut se servir de la redondance afin de minimiser ces
efforts. L’angle d’inclinaison # maximal de la plateforme que 'on peut effectuer dans toutes

les directions ¢ est alors de 86°.

Ainsi, suite a cette comparaison d’espaces atteignables, lorsque 1’on inclut les efforts maxi-
mums pouvant étre supportés par les actionneurs comme limite mécanique additionnelle,
on se rend compte que l'espace en orientation du mécanisme standard est plutdt amputé
suite & une telle contrainte autour des configurations singulieres. De l'autre coté, par ses
capacités d’évitement des singularités, le mécanisme cinématiquement redondant voit son
espace atteignable beaucoup moins affecté par cette contrainte mécanique supplémentaire,
ce qui contribue grandement a favoriser cet espace en orientation par rapport a celui du
mécanisme standard non redondant. De plus, puisque les frontieres de 'espace atteignable
du mécanisme cinématiquement redondant ne sont pas contraintes par des singularités a
la position a laquelle celui-ci a été déterminé, mais bien uniquement par des limitations
mécaniques, si l'on décide plutdt d’utiliser, par exemple, des actionneurs a plus grand dé-
battement, on se retrouvera a augmenter de maniére appréciable son espace en orientation.
De son cdté, I'espace atteignable en orientation pour le mécanisme standard non redondant,
affecté des mémes changements, sera toujours contraint par des surfaces de singularités.
Ces diminutions de limitations mécaniques n’auront donc aucun impact ou presque sur son

espace atteignable en orientation.

3.4 Conclusion

Ce chapitre a présenté une comparaison graphique entre les espaces de travail atteignables

en orientation pour les mécanismes paralleles standard et cinématiquement redondant. Afin
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de rendre cette comparaison aussi significative que possible, les mémes limites mécaniques
ont été imposées aux deux mécanismes. De plus, pour que les mécanismes soient a la méme
échelle, les points d’attache des actionneurs a la base et a la plateforme de chacun ont été
disposés sur des cercles de mémes rayons. L’analyse des espaces de travail atteignables sans
considérer les forces dans les actionneurs a montré que, bien que celui du mécanisme ciné-
matiquement redondant soit sensiblement plus étendu, la différence n’est a premiere vue pas
si significative. En effet, les deux mécanismes sont contraints en angle de torsion ¢ de £90°.
En ce qui concerne les angles d’inclinaison 6 et ¢, le mécanisme cinématiquement redondant
est plus performant pour son espace atteignable. Lorsqu’une contrainte liée aux efforts dans
les actionneurs a été ajoutée afin de vérifier I'impact d’étre & proximité d"une configuration
singuliére, on a observé que l'espace atteignable en orientation du mécanisme standard en
est fortement affecté par rapport a celui du mécanisme cinématiquement redondant. Suite a
cette seconde analyse, on a pu montrer visuellement dans ce troisieme chapitre I'impact de
la redondance cinématique dans un mécanisme parallele pour 'augmentation de son espace

de travail en rotation.
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Conclusion

Ce mémoire avait pour objectif principal ’analyse des lieux de singularité pour un mani-
pulateur parallele cinématiquement redondant a (6+2) degrés de liberté. Le travail a été
présenté sous la forme de deux articles, le premier évaluant les configurations singuliéres
pour le cas spécifique ou1 I’angle de torsion est nul a la plateforme, et le second évaluant les
configurations singuliéres pour le cas général, c’est-a-dire lorsque I’angle de torsion n’est pas
nécessairement nul a l'effecteur. Un troisieme chapitre a permis de comparer graphiquement
’espace de travail en orientation du mécanisme cinématiquement redondant avec celui d'un

mécanisme standard non redondant.

Dans le premier chapitre, le modeéle cinématique du robot a été décrit. La définition d"une
singularité inévitable fut donnée. A partir de cette définition, un outil mathématique, I'ex-
pansion linéaire du déterminant, a été employé afin d’élaborer plus facilement les conditions
conduisant a un lieu de singularités inévitables. La résolution du systéeme d’équations hau-
tement non-linéaires a montré que, pour le cas ou la torsion est nulle a I'effecteur du mani-
pulateur, les singularités inévitables se situent en-dehors des limites de 1’espace atteignable
en orientation du mécanisme. Autrement dit, le manipulateur rencontre une limitation mé-
canique avant d’atteindre la configuration singuliere. Une démonstration de trajectoire a
grand débattement en inclinaison de la plateforme montre que celle-ci ne rencontre aucune
singularité, ce qui n’aurait pas été possible avec un mécanisme standard non-redondant. La
découverte de I’absence de singularités inévitables a l'intérieur de I'espace atteignable en
orientation du mécanisme pour une torsion nulle a I'effecteur montre que, pour des applica-
tions d'usinage ou de soudage ot I'outil est axisymétrique, deux degrés de liberté cinémati-
quement redondants sont suffisants pour assurer un espace de travail exempt de singularités

inévitables.

Dans le second chapitre, le modele cinématique du robot a été rappelé ainsi que la mé-
thode de construction du systéeme d’équations a résoudre. Les différentes possibilités pour
résoudre le systeme d’équations sont présentées, et substituées tour a tour afin de vérifier
quelles conditions menent réellement a des lieux de singularités d’intérét. Il est montré tout
d’abord que, lorsque la torsion est non nulle a 'effecteur, donc pour le cas général des orien-

tations de la plateforme, certaines singularités inévitables demeurent a l'intérieur de l'es-
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pace atteignable du mécanisme. Or, malgré cette limitation de 1’espace utile en orientation
du mécanisme, le lieu des singularités inévitables est tout-de-méme décrit par des équations
mathématiques simples sous forme analytique, un élément pouvant faciliter grandement la

planification de trajectoire.

Dans le troisieme chapitre, les limites mécaniques principales restreignant ’espace attei-
gnable en orientation d"un mécanisme paralléle dont I’architecture est similaire a celle de la
plateforme de Gough-Stewart ont été décrites. Une analyse de I'espace en orientation pour
un mécanisme standard et un mécanisme cinématiquement redondant a été menée, avec et
sans contraintes des efforts maximums dans les actionneurs. Il a par la suite été observé que
la contrainte des efforts maximums dans les actionneurs pour une tache de déplacement de
charge affecte beaucoup 'espace atteignable pour le mécanisme non redondant par rapport
au mécanisme cinématiquement redondant, ce dernier pouvant profiter de sa redondance

pour minimiser les efforts transmis aux actionneurs.

Dans son ensemble, ce travail a présenté une méthode de résolution pour déterminer le
lieu des singularités inévitables pour un mécanisme paralléle cinématiquement redondant
a (6+2) degrés de liberté. Bien que pour 'architecture donnée, la méthode utilisée ait fourni
des équations analytiques plutot simples, il est a noter que 1’obtention de telles expressions
et la résolution du systéeme d’équations sous forme analytique dépend fortement de la symé-
trie de I'architecture du mécanisme, et des paires de déterminants utilisées pour 1’applica-
tion du résultant des polyndmes en cascade. Néanmoins, cette méthode s’est avérée efficace
pour déterminer le lieu des singularités inévitables pour un mécanisme parallele avec un
haut degré de redondance. Suite a cette analyse, il a été montré que le mécanisme cinéma-
tiquement redondant a (6+2) degrés de liberté semble étre un bon candidat pour nombre
d’applications robotiques malgré les quelques configurations singulieres résiduelles dans
son espace de travail. Tout d’abord, parce que toutes les taches ne requérant pas de rotation
en torsion a l'effecteur peuvent étre menées sans craindre de rencontrer une configuration
singuliere, et ensuite, pour les taches nécessitant toutes les orientations, des équations ana-
lytiques simples décrivent les configurations du mécanisme a éviter. Le fait de bénéficier de
deux degrés de liberté redondants au lieu de trois dans I’architecture cinématique affecte
bien I’espace de travail en orientation du mécanisme cinématiquement redondant, mais cet
espace atteignable demeure somme toute beaucoup plus intéressant que celui du mécanisme

standard équivalent a six degrés de liberté.
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Annexe A

Expression des résultants f, ¢, /1 du
systeme d’équations de la Figure 1.6

A.1 Expressionde f(y,z, t1, )

fly,z,t1,t2) = fi(t, ) f2(y, 2, t1, 12) f3 (Y, 2, 11, £2) (A1)

avec

2STR(B 17

CERECES (a2

filt, t2) =

fly,z,t,t) = (yzh (2 + )R8 + (—4220* + (— 622 — 4B +4) > —22°)t°
—5yzty (B2 + 1) k" + (82°1* + (42% + 24 B+ 8) 12 — 42217
—5yzti (2 + 1)k* + (— 4220+ (— 622 —4B+4) 1> —228) b +yzh (H* + 1)) (A3)

fyzt )= (—z(H2+1)(B— 1)k +4yht> =2 ((B+3)1% + B — 1)zt2> + 4yt
—z(t?2+1)(B-1)) (A4

A.2 Expression de (v, z,t1, )

Sy, z, b, t2) = g1(t1, t2)§2(2, 11, 2) 83 (Y, 2, 1, £2) (A.5)
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avec

2MBTE(2 - 1)
(£24+1)6(t3+1)°

gi(ti, t2) = (A.6)

ozt h) = (z(H*+1) k> -4t +z (h2+1)) (z(H*+1) 2 +4hbh +2z (H2+1))
(A.7)

3y, 2t 1) = (yzh (2 +1) b5+ (=2t + (—4 2 +4y7 +4B) 12 +22) 1]
—9z <t12 - Z) hyts* + <6zzt14 + (—8F+812 —822—8pB) 1> +2z2) 1,3

7
—9; <t12 - 9> Hyt? + (—z2t14 + (4B 4y +4B) B+ zz> b+yzh (h2+1)) (A8)

A.3 Expression de h(z, t1, 1)

h(z, t1,t2) = hy(t1, t2)ha(z, t1, t2)h3(z, £y, t2) (A.9)

avec

2UEHB(B - DB~ DB+ 2B+ 1B+~ 1)
CERECERE

hi(ty, t2) = (A.10)

h(z,t,t2) = (z (2 +1) 2 — 4t +2z (12 4+1))" (2 (12 +1) B2 + 40t +2 (H2+ 1))
(A11)

hs(z, 1, 1) = (3t24—2t22—|—3> (2 +1) 204 + (622 —4 (B — 1)) 5+
(4887 +82% —32B — 16)12° + ( — 152 B> +42% — 80 B — 24) to*+
2 2 2 2 2y, 2 4 2 2 22
2 .
(48p°+82z" =32 —16)" + 62" —4(B—1)")H —|—<3t2 -2 +3) (h°+1)"2z" (A12)
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