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pour l’obtention

du grade de Philosophiae Doctor (Ph.D.)

Département de génie mécanique
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Abstract

A mechanism is said to be reactionless if, for any motion of the mechanism, there

is no reaction force and moment at its base or supporting structure at all times. A

systematic study of the synthesis and kinematic analysis of reactionless spatial multi-

degree-of-freedom parallel mechanisms is performed in this thesis.

Firstly, a new kind of 3-DOF parallel mechanism referred to as a parallelepiped

mechanism is proposed and a practical design is implemented. The 3-DOF paral-

lelepiped mechanisms are dynamically balanced using counterweights and counter-

rotations and are used as legs to synthesize multi-degree-of-freedom parallel mecha-

nisms. Reactionless spatial 6-DOF parallel mechanisms are obtained by dynamically

balancing each detached leg mechanism independently based on an algorithm using

point masses to replace a moving platform. The dynamic simulation software ADAMS

was used to simulate the motion of the mechanisms and to verify that the mechanisms

are reactionless at all times and for arbitrary trajectories.

Next, the synthesis of novel reactionless spatial 3-DOF and 6-DOF mechanisms

without separate counter-rotations, using four-bar linkages is addressed in this thesis.

Based on the conditions of dynamic balancing of a single planar four-bar linkage moving

in the plane, the spatial problem is shown to be equivalent to ensuring that the inertia

tensor of reactionless four-bar linkages remains constant when the planar mechanism(s)

is(are) moving. The reactionless conditions for planar four-bar linkages undergoing spa-

tial motion are first given. A mechanism composed of a pair of connected reactionless

four-bar linkages with constant inertia tensor is constructed. Then, a reactionless spa-

tial 3-DOF mechanism is synthesized using four-bar linkages and further serves as a leg
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to synthesize a reactionless 6-DOF parallel mechanism.

Finally, the kinematic analyses including the inverse and direct kinematics as well as

the determination of singularity loci and workspace of both the 3-DOF leg mechanisms

and the 6-DOF parallel mechanisms proposed in this thesis are solved. The Jacobian

matrices of the mechanisms associated with different actuation schemes are derived.

Geometrical algorithms, discretization methods or analytic methods are proposed for

the determination of the workspace and singularity analysis for the mechanisms. Fi-

nally, the graphical representations that show the relationship between the singularity

loci and the constant-orientation workspace of the proposed mechanisms are given.

Reactionless spatial multi-degree-of-freedom mechanisms have great potential ap-

plications such as space robots, telescope mirror mechanisms and some industrial high

speed devices. All the results of kinematic analysis will be of great help during the

design process and for the control of these mechanisms.

Yangnian Wu Clément M. Gosselin
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Résumé

Un mécanisme est dit équilibré dynamiquement si, pour n’importe quel mouvement

dudit mécanisme, il n’y a aucune réaction en termes de forces et de moments sur la

structure de support. Une étude systématique portant sur la synthèse et l’analyse

cinématique de mécanismes parallèles spatiaux à plusieurs degrés de liberté (DDL) et

équilibrés dynamiquement est réalisée dans cette thèse.

Premièrement, un nouveau type de mécanisme parallèle à trois DDL, désigné comme

“parallélépipède mécanique”, est proposé ainsi que sa réalisation pratique. Ce par-

allélépipède mécanique à trois DDL est équilibré dynamiquement en utilisant des con-

trepoids et contre-rotations, puis utilisé comme patte pour synthétiser des mécanismes

parallèles à degrés de liberté multiples. En effet, des mécanismes parallèles spatiaux

à six DDL équilibrés dynamiquement peuvent être obtenus en combinant des pattes

indépendamment équilibrées grâce à un algorithme qui remplace la plate-forme mobile

par des masses ponctuelles équivalentes. Des simulations dynamiques utilisant le logi-

ciel ADAMS ont été réalisées pour vérifier l’équilibrage dynamique des mécanismes en

tout temps et quelle que soit la trajectoire de la plate-forme.

Ensuite, la synthèse de nouveaux mécanismes spatiaux équilibrés dynamiquement

à trois et six DDL, sans contre-rotations séparées, mais basée sur des mécanismes à

quatre barres, est présentée dans cette thèse. Basée sur les conditions d’équilibrage

dynamique d’un mécanisme à quatre barres se déplaçant dans le plan, l’extension au

cas spatial est montrée équivalente à assurer que la matrice d’inertie de ces mécanismes

à quatre barres reste constante lors du mouvement. Conséquemment, les conditions

d’équilibrage dynamique des mécanismes à quatre barres lors de mouvements spatiaux
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sont présentées en premier lieu. Un mécanisme composé d’une paire de mécanismes à

quatre barres à matrice d’inertie constante est proposé. Ensuite, un mécanisme spatial

à trois DDL est synthétisé, basé sur les mécanismes à quatre barres précédemment

trouvés, ce mécanisme est utilisé comme patte pour un mécanisme parallèle à six DDL.

Finalement, l’analyse cinématique des mécanismes à trois et six DDL discutés

précédemment, incluant la résolution des problèmes géométriques directs et inverses

ainsi que l’étude des singularités, est présentée. Les matrices jacobiennes associées aux

différentes possibilités d’actionnement des mécanismes sont aussi présentées. Les al-

gorithmes géométriques, les méthodes analytiques et de discrétisation, sont proposés

afin de déterminer l’espace de travail ainsi que les singularités des mécanismes corre-

spondants. Enfin, les représentations graphiques établissant la relation entre lieux de

singularité et espace de travail à orientation constante sont présentées.

Les mécanismes spatiaux à degrés de liberté multiples équilibrés dynamiquement ont

un grand potentiel d’application dans des domaines variés, tels que la robotique spa-

tiale, les mécanismes d’orientation de miroirs de télescopes ainsi que certains systèmes

industriels à grandes vitesses. Tous les résultats de l’analyse cinématique seront d’un

grand secours lors de la conception mais aussi pour le contrôle de ces mécanismes.

Yangnian Wu Clément M. Gosselin
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Chapter 1

Introduction

1.1 Motivation

Parallel mechanisms are defined as architectures in which the moving payload is con-

nected to the fixed base by multiple kinematic chains. Each chain can be considered as

one mechanism and is a system with several links, joints and a base (see for instance

Figure 1.1).

As compared with serial mechanisms, parallel mechanisms are characterized by low

moving inertia, high stiffness, high dexterity, compact size and high power to weight

ratio and hence they can be controlled with a high bandwidth. Therefore, they are

especially suitable for applications requiring large load capacity or high speed and

accuracy. Parallel mechanisms have received considerable attention by both researchers

1
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Figure 1.1: Flight simulator (courtesy of CAE Electronics).

and manufacturers over the past thirty years. The first device based on a parallel

mechanism designed by Gwinnett was filed for a patent in 1928. Gough (1962) was

the first to invent and build the popular octahedral hexapod as a tire testing machine

(Bonev, 2003). This original architecture was put into practice in flight simulators

(Figure 1.1) in the 1970’s and still remains the most popular and best studied parallel

mechanism. Since the 1980’s, more and more researchers have focused on parallel

mechanisms or manipulators. So far, parallel mechanisms are used in a number of

applications in machine tools, medical robots, alignment devices (Figure 1.3(b)), haptic

devices, coordinate measuring machines and so on (Kong, 2002).

Parallel mechanisms are excellent candidates for advanced robotic applications.

However, similarly to other robotic devices, they exert forces and moments on their

base (frame) while moving, causing vibration and associated noise, wear, fatigue as

well as disturbances in the supporting structure of the mechanism (Ricard and Gos-

selin, 2000). These reaction forces and moments, the so-called shaking forces and

shaking moments, are undesirable in many applications.

In space robotics (Figure 1.2), manipulators are mounted on free-floating bodies

such as a spacecraft, a space vehicle, a satellite, or a space-station. Hence, any motion

of the manipulator has some dynamic effect on the free-floating base, by virtue of the

principle of conservation of momentum and angular momentum, and the position and

orientation of the spacecraft will be disturbed (Dubowsky, 1991; Papadopoulos, 1991).

Very often this is not acceptable because, for instance, the orientation of the solar
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Figure 1.2: Space robots (courtesy of MD Robotics).

panels or of the communications antennae should not change. To preserve the proper

position and orientation of the spacecraft, stabilizing systems like control rockets or

inertial reaction wheels are generally used. However, the operations of these systems

consume energy in space (Legnani et al., 1999).

In certain telescopes (Figure 1.3), a secondary mirror is used both for correcting

the tracking error of the telescope and for chopping for infrared observation. The

tracking error sources of the telescope are the control errors of the telescope control

system, the deflection of the telescope structure induced by gravity and wind and the

atmospheric image motion. All these disturbances do not have a specified direction and

vary continuously. Hence, the use of parallel mechanisms (Figure 1.3(b)) to move the

secondary mirror of a telescope at high frequencies may excite the structure of telescope

and make things worse.

Especially in micro and nano mechatronics (such as in microassembly machines),

vibration amplitudes may readily reach the order of magnitude of the required posi-

tioning resolution. Also in larger-scale precision devices and in systems with delicate

equilibrium, shaking forces and moments can rapidly become dominant (Herder, 2003).

In order to eliminate the undesired shaking forces and moments, reactionless mech-

anisms have been proposed or developed for some applications (see Section 1.2 for a

literature overview). A mechanism is said to be reactionless or dynamically balanced

or completely balanced if, for any motion of the mechanism, there is no reaction force
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(a) Hubble space telescope
(courtesy of NASA).

(b) Active secondary mirror
(courtesy of IPA).

Figure 1.3: Telescope mechanisms.

and moment at its base or supporting structure at all times. This property is crucial

for space robotics to preserve the momentum of the moving base and for telescopes to

avoid exciting the structure of the telescope while moving the secondary mirror at high

frequencies. In industrial applications involving high-speed motions, eliminating or re-

ducing the reactions on the base of the robot would also significantly improve the general

performance by reducing vibrations and thereby improving the accuracy. Therefore,

the development of reactionless parallel mechanisms for these potential applications

motivates our research. In this thesis, the synthesis and analysis of reactionless spatial

multi-degree-of-freedom parallel mechanisms are studied systematically.

1.2 Methodology and Literature Review

1.2.1 Dynamic balancing

For a system with constant mass, the resultant of the external forces acting on the

system equals the time rate of change of the linear momentum of the system, while

the resultant of the external moments with respect to a fixed point O (or the center
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of mass of the system) equals the time rate of change of the angular momentum about

the same point (Meriam and Kraige, 1993), namely,

ΣF = mv̇ (1.1)

ΣM = ḣ (1.2)

where ΣF is the resulting external force, m is the total mass, v is the velocity of

the center of mass of the system, ΣM is the resulting external moment about a fixed

reference point O and h is the total angular momentum of the system about the same

point.

The opposites of the terms on the righthand side of eqs. (1.1) and (1.2) are actually

the so-called shaking force and shaking moment respectively due to the moving masses

and inertia. Clearly, from eq. (1.1) and (1.2), if the linear momentum (mv) and the

total angular momentum (h) of the system remain constant for any motion at all

times the shaking force and shaking moment will vanish. Usually, the state of rest

will be included in the possible motions of the mechanism, in which case both linear

and angular momentum are zero. Therefore, in practical situations, the conditions for

dynamic balance are that for all motions of the mechanism the center of mass of the

system should remain stationary and the total angular momentum must be zero at

all times. The strategy for eliminating the shaking force is referred to as (shaking)

force balancing while the strategy for eliminating the shaking moment is referred to

as (shaking) moment balancing. The combination of force and moment balancing is

referred to as dynamic balancing.

Hence, two constraints have to be satisfied for a mechanism to be reactionless,

namely, the center of mass of the mechanism should remain fixed (stationary) and the

total angular momentum must remain constant (zero) with respect to a fixed point at

all times for arbitrary trajectories of the end-effector (Ricard and Gosselin, 2000), i.e.,

dr

dt
= 0 (1.3)

dho

dt
= 0 (1.4)

where r is the position vector of the center of mass and ho is the total angular mo-

mentum of the mechanism relative to a fixed point O. Equations (1.3) and (1.4) are

necessary and sufficient conditions for a mechanism to be dynamically balanced, i.e., re-

actionless. More specifically, eq. (1.3) implies force balancing whereas eq. (1.4) implies



6

moment balancing. Apparently, dynamic balancing includes both force balancing and

moment balancing. All the force balancing, moment balancing and dynamic balancing

approaches in the literature are based on these fundamental equations.

Note that in the context of dynamic balancing, in general, no other external forces

than gravity and no other moments than the actuator torques on the system are con-

sidered. Dynamic balancing is associated with inertia forces other than gravity. Hence,

“no reaction force” in the definition of reactionless in the present thesis actually im-

plies no reaction force other than gravity. Yet, the definition is the real case in space

(zero gravity). Additionally, eqs. (1.1) and (1.2) are only applicable to a system with

constant mass, hence, any change in platform (or end-effector) mass (e.g., picking up

an object) will deteriorate the dynamic balance. This problem is beyond the scope of

our work.

As compared with dynamically balanced mechanism, a mechanism is said to be stat-

ically balanced if every possible configuration of the mechanism is a static equilibrium

configuration. Hence, no actuator forces or torques are required to maintain the mecha-

nism in any configuration (Herder, 2003). Two static balancing methods, namely, using

counterweights and using springs, are often used. Clearly, a mechanism with a station-

ary global center of mass (force balanced) has constant gravitational potential energy

(statically balanced). Hence, force balancing implies static balancing, however, static

balancing does not imply force balancing. Although using springs is a good solution to

statically balance mechanisms without great increase of the mass of the system, there

still exist reaction forces on the base, in other words, springs do not contribute to force

balancing. Therefore, we cannot obtain reactionless mechanisms using springs. A large

number of statically balanced or gravity compensated mechanisms, serial manipulators

and multi-degree-of-freedom parallel manipulators have been developed or presented in

the literature. Since static balancing is not the subject of this thesis, we do not review

more about this issue here. The readers can refer to the theses of Herder (2001) and

Wang (1998) as well as their long lists of references. Figure 1.4 shows the prototype of

a statically balanced 6-DOF parallel manipulator using springs (Gosselin et al., 1999).

The balancing of mechanisms has been an important research topic for several

decades (e.g., Berkof and Lowen, 1969; Lowen et al., 1983; Dresig et al., 1998; Arakelian

and Smith, 1999; Kochev, 2000). Extensive studies on the balancing of planar linkages

and some research works related to the complete balancing of spatial linkages with only
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Figure 1.4: Statically balanced parallel manipulator (from Gosselin et al., 1999).

one degree of freedom have been presented in the literature.

In order to completely force balance mechanisms it must be possible to make the

global center of mass of the mechanisms stationary. This is usually accomplished by the

addition of counterweights or internal mass redistribution. Of course, adding a dupli-

cate mechanism to the initial mechanism is a primary but sometimes efficient approach

for this purpose. Several methods have been applied for the complete force balancing of

mechanisms. Most of them originate from two methods, namely the method of linearly

independent vectors and the complex mass method. The method of linearly indepen-

dent vectors was proposed by Berkof and Lowen (1969) for four-bar and six-bar linkages,

implying that the masses of arbitrarily shaped links can be redistributed in such a way

that the total center of mass becomes stationary. Tepper and Lowen (1972) subse-

quently generalized this method and presented a theorem — “Contour theorem”, i. e.,

from each link there is a contour to the ground by way of revolutes only —to determine

whether or not a linkage can be fully force balanced by the addition of counterweights

or redistribution of link masses, as well as the minimum number of counterweights of

the linkages. Using this method, Bagci (1982) presented the force balancing of planar

4-bar, 6-bar and 8-bar linkages with force transmission irregularities — with multiple

sliding pairs — by adding appropriate balancing idler loops. Kaufman and Sandor

(1971) extended the method of linearly independent vectors to the force balancing of

spatial linkages. Later, Kochev (1987) applied this approach to both planar and spatial

linkages and Yu (1987a, 1988) for spatial linkages. The method proposed by Walker

and Oldham (1978, 1979) based on the concept of mass replacement and mass flow was
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called the complex mass method by Lowen et al. (1983) and extended by Chen (1984)

to balance spatial linkages and by Ye and Smith (1994) to completely balance planar

linkages using an equivalence by which a complex planar linkage can be converted into

a number of simple equivalent sub-linkages and cranks. It was also further improved

by Yao and Smith (1993) for the force balancing of planar linkages using a step-by-step

balancing procedure based on a mass flow diagram. Kong and Yang (1998) proposed

a mass moment substitution method by which the formulation of the conditions for

complete shaking force balancing of the spatial linkages can be reduced to the mass

moment substitution of binary links, ternary links, quaternary links, dyads and spatial

serial open chains.

The first general approach for full force balancing of spatial linkages was presented

by Kaufman and Sandor (1971) and Chen (Chen 1984). They generalized the method of

linearly independent vectors (Berkof, 1969) by replacing the complex vector with alge-

braic operators of a more general form. Compared to these methods, Kochev (1987) has

developed another general method in which local coordinate systems and only Carte-

sian coordinates are used to simplify the balancing equations and which is applicable to

more types of linkages and provides fewer sufficient shaking force balancing conditions.

Yu has performed the complete shaking force and shaking moment balancing of spatial

linkages like the Bennett, RSCR and RRRSR (1987a) and partial dynamic balancing

of the RSS’R spatial linkage (1987b) by adding dyads between linkages. He also ob-

tained complete shaking force and shaking moment balancing of spatial irregular force

transmission mechanisms such as RSPC and RRCRC mechanism by using dyads and

triads (1988). However, all the spatial linkages mentioned here have only one degree of

freedom.

In the literature, partial dynamic balancing, where at least some shaking forces or

shaking moments remain after balancing, were presented for some planar and spatial

mechanisms (Berkof and Lowen, 1971; Smith, 1975; Huang and Liu, 1986; Yu, 1987b).

Yet, this is not the subject of this thesis.

Some authors have addressed the trajectory planning of manipulators in order

to generate reactionless trajectories or minimize disturbances (Dubowsky and Torres,

1991; Papadopoulos and Dubowsky, 1991; Papadopoulos and Abu-Abed, 1996; Legnani

et al., 1999; Kochev, 1990b). However, the approaches based on trajectory planning are

only suitable for some special applications. Agrawal and Shirumalla (1995) presented
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a scheme for motion planning of a dual-arm free-floating planar manipulator where one

arm is commanded to perform desired tasks while the other provides compensating

motions to keep the base inertially fixed.

Using the aforementioned approaches for force balancing, dynamically balanced

mechanisms have been achieved and presented. Most of the authors in the literature

on dynamic balancing have used additional counter-rotations — counter-rotating in-

ertial elements designed to balance the shaking moments of the mechanisms — such

as fixed-axis-inertia counterweights, planetary-gear-train or toothed-belt inertia coun-

terweights (Huang and Liu, 1986; Gao 1989, 1991; Ye and Smith 1994; Arakelian and

Smith, 1999; Esat and Bahai, 1999), additional balancing links (dyads, triads, idler

loops, etc.)(Bagci 1982, 1992; Yu 1987a, 1988) and symmetrically arranged identical

mechanisms (Kochev 2000) or active control of counter-rotation (Kochev, 1992a) or

using redundant actuation (Angeles et al., 1992). However, adding counter-rotations

to a mechanism increases its complexity and can reduce its practicality significantly,

especially in multi-degree-of-freedom systems.

The four-bar linkage is a relatively simple and common element in machines. Al-

most half of all researchers in the field of balancing have been focusing on this kind

of mechanism. The complete shaking force and shaking moment balancing of four-bar

linkages have been achieved by using separate counter-rotations such as fixed-axis-

inertia counterweights (Berkof, 1973), idler loops (Bagci, 1982), planetary-gear-train-

inertia counterweights (Gao, 1990), toothed belts (Esat and Bahai, 1999) or noncircular

gearset inertia-counterweights (Kochev, 1992). Ricard and Gosselin (2000) have also

focused on the four-bar linkage and obtained the complete balancing of the linkage in

the plane as a set of constraints on the geometric and inertial parameters of the links

but without separate counter-rotations. These dynamically balanced four-bar linkages

have been stacked up to synthesize reactionless planar 3-DOF parallel mechanisms (Ri-

card and Gosselin 2000) and reactionless spatial 3-DOF parallel mechanisms (Vollmer

and Gosselin, 2000; Gosselin et al., 2003). However, since the reactionless four-bar

linkages are balanced only in the plane, the stacked reactionless mechanisms — used as

legs to synthesize planar or spatial 3-DOF mechanisms — can only move in the plane.

Hence, these reactionless four-bar linkages cannot be directly used to synthesize reac-

tionless spatial 6-DOF mechanisms. As we mentioned above, it is impossible to further

moment balance the statically balanced 6-DOF parallel manipulator (Figure 1.4) to

finally obtain a reactionless 6-DOF parallel mechanism. Foucault and Gosselin (2002)
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Figure 1.5: Prototype of a reactionless planar 3-DOF parallel mechanism (from Fou-

cault and Gosselin, 2002).

dynamically balanced five-bar mechanisms — with parallelogram architecture — using

counterweights and counter-rotations (e.g., fixed-axis-inertia counterweights) and used

them as legs to build a reactionless 3-DOF parallel manipulator (Figure 1.5). How-

ever, it is obvious that we cannot use these dynamically balanced five-bar mechanisms

to construct spatial reactionless parallel mechanism with more than three degrees of

freedom.

In summary, as emerges from the literature, the dynamic balancing of spatial multi-

degree-of-freedom parallel manipulators or mechanisms has received virtually no atten-

tion due to the complexity of this problem. To the best of our knowledge, only a

reactionless 3-DOF spatial parallel mechanism has been presented in the literature

(Vollmer and Gosselin, 2000; Gosselin et al., 2002).

1.2.2 Kinematic Analysis

The kinematic analysis of parallel mechanisms including inverse and direct (or forward)

kinematics, workspace and singularity analyses are important issues in the context of

design and control of the mechanisms.

Computing the set of actuated joint coordinates from the set of Cartesian pose

(position and orientation) of the end-effector is referred to as inverse kinematics. Since
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the trajectories of the mechanism are usually given in the Cartesian space while the

actuators are mounted at joints, the solution of the inverse kinematics is necessary for

controlling a manipulator.

Computing the set of Cartesian pose of the end-effector from the set of actuated

joint coordinates is referred to as direct (or forward) kinematics. As opposed to the

serial manipulators, the inverse kinematics of parallel mechanisms are simple, while

their direct kinematics are very complex especially for 6-DOF parallel mechanisms.

Fortunately, the direct kinematics of different types of parallel manipulators is often

similar. In other words, the direct kinematics of a new parallel mechanism can be often

found to be equivalent to that of some existing mechanisms as we will discuss in Section

4.4 (Merlet 1992a; Nanua et al. 1990; Ebert-Uphoff and Gosselin 1998).

The workspace of a manipulator is defined as the set of Cartesian poses that the

end-effector of the manipulator can reach. The workspace determines the volume or

hyper-volume in which the manipulator can perform tasks. It is well known that par-

allel manipulators have a rather limited and complex workspace. As the complete

workspace of a 6-DOF parallel manipulator is a six-dimensional highly coupled entity

which is practically impossible to visualize, algorithms for various subsets of it have

been proposed. The most common subset is the constant-orientation workspace (Mer-

let, 1994) which is the set of permissible positions for a point of the moving platform

while the platform is kept at a constant orientation (Bonev, 2002a). Two kinds of ma-

jor approaches — discretization algorithms (Benea, 1996; Wang, 1998) and geometric

methods (Gosselin, 1990; Gosselin et al., 1992; Merlet, 1994; Bonev and Gosselin, 2002)

have been proposed for the determination of the workspace of different parallel mech-

anisms. The philosophy of discretization algorithm (or numerical algorithm) consists

roughly in discretizing the three-dimensional space, solving the inverse kinematic prob-

lem at each point, verifying the constraints that limit the workspace and searching for

the boundaries of the workspace. Although such discretization algorithms are very slow

and require large amounts of memory and disk space for storing the computed data,

they are used by most researchers and can be applied to any type of architecture. On

the contrary, the geometric methods based on the explicit expressions of all constraints

that limit the workspace are fast and accurate and very useful during the design stage.

However, it is very difficult or impossible to determine the workspace for some complex

parallel mechanisms using geometric methods (Bonev, 2002a).
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The kinematic singularity in a parallel mechanism is defined as configurations in

which the end-effector gains or loses one or more degrees of freedom instantaneously

and therefore the manipulator becomes uncontrollable. The singularity loci, which are

obtained as curves or surfaces in the Cartesian space, are of great interest in the context

of design since they can be used to verify whether or not the singularities will be avoided

later on for a given application.

Gosselin and Angeles (1990) have shown that singularities of closed-loop mechanisms

can be systematically classified in three main groups. The first type of singularity

corresponds to a configuration in which the end-effector loses one or more degrees

of freedom and lies at a deadpoint and on the boundaries of the workspace of the

manipulator. The second type of singularity corresponds to a configuration in which

the end-effector gains one or more degrees of freedom (i.e., the end-effector is movable

when all the input joints are locked) and lies at a deadpoint and inside the workspace.

The third type of singularity corresponds to configurations in which a finite motion of

the end-effector is possible even if the actuated joints are locked or where a finite motion

of the actuated joints produces no motion of the end-effector. This kind of singularity,

also called architecture singularity, can occur only when some special conditions on the

parameters of a manipulator are satisfied. This classification has been complemented

in Ma and Angeles (1991) and further refined in Zlatanov et al. (1994; 1995).

The singularity analysis of type I of a parallel mechanism is the same as that of

serial mechanisms. The singularity of type III could be avoided by proper choice of

the kinematic parameters. However, the singularity analysis of type II of a parallel

mechanism is usually very complex. It is difficult to analyze and has received much

attention from many researchers over the past two decades. Two main approaches have

been proposed for the singularity analysis of type II of parallel mechanism, namely, the

algebraic method based on the determinant of the Jacobian matrix from the velocity

equation of the manipulator and the method based on line geometry or screw theory.

Analytical expressions describing the singularity loci of planar and spherical parallel

manipulators and the Gough-Stewart platform have been obtained by the algebraic

method (Gosselin and Angeles, 1990; Gosselin and Sefrioui, 1992; Sefrioui and Gos-

selin, 1995; Collins and McCarthy, 1998; Mayer St-Onge and Gosselin, 2000). It is very

useful to obtain analytical expressions for the singularity loci to generate graphical

representations in the workspace in a context of analysis and design. However, such

expressions are very difficult or impossible to obtain for some parallel mechanisms with
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more than three degrees of freedom or with complex leg mechanisms since the corre-

sponding closed-form expressions of the determinant of the Jacobian matrices include

both Cartesian and joint coordinates. After substituting the active and passive joint

coordinates with Cartesian coordinates using the equations of the inverse kinematics

problem, the closed-form expression of the corresponding determinant is of very com-

plex form or does not exist. Then, the method based on line geometry or screw theory

— with similar principle for both methods — has been proposed for the singularity

analysis of complex spatial parallel mechanisms (Merlet, 1988; 1989; 1992b; Mouly and

Merlet, 1992; Collins and Long, 1994; Notash, 1998; Monsarrat and Gosselin, 2001).

Apparently, a numerical method — as used in the determination of the workspace —

can be used to determine the singularity locus on which the determinant of the Jacobian

matrix is zero for any kind of mechanisms.

1.3 Objectives of the Thesis Research

In order to meet the requirements of advanced robotic applications like space robotics or

telescope mechanisms, the development of reactionless spatial multi-degree-of-freedom

mechanisms or manipulators — having up to 6-DOF — has become an attractive re-

search subject in the field of parallel mechanisms. Hence, a systematic study of the

synthesis and analysis of reactionless spatial multi-degree-of-freedom parallel mecha-

nisms is performed in this thesis. Our research has three main goals.

The first goal of our research is to propose a simple but suitable spatial 3-DOF

mechanism which can be dynamically balanced and then use it as legs to synthesize

reactionless 6-DOF parallel mechanisms. A new 3-DOF parallel mechanism referred

to as a parallelepiped mechanism is presented. A general dynamic balancing approach

using counterweights and counter-rotations is used for dynamically balancing this new

kind of leg mechanism. Finding out the dynamic equivalence between point masses

and moving platform in space will enrich the strategy of using point masses to replace

a moving platform. This strategy greatly simplifies the dynamic balancing of spatial

multi-degree-of-freedom parallel mechanisms.

The second objective of this thesis is to obtain dynamically balanced four-bar link-

ages which can move spatially (out of the plane) as the extension of the reactionless
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four-bar linkages in the plane (Ricard and Gosselin, 2000) and then use these four-

bar linkages to synthesize reactionless spatial 3-DOF and 6-DOF mechanisms without

separate counter-rotations.

For novel manipulators, it is necessary to find the inherent characteristics of the

mechanisms in the context of design and control of the mechanisms. Thus, the kine-

matic analysis including inverse kinematics, determination of workspace and singularity

analysis of the 3-DOF leg mechanisms and 6-DOF parallel mechanisms are the third

aim of this thesis. The suitable approaches discussed in the preceding section for the

kinematic analysis will be used for the corresponding mechanisms proposed in this

thesis.

1.4 Organization of the Thesis

The present thesis consists of two main parts covering Chapters 2–6. The first part

(Chapters 2–4) starts with the geometric description of the presented mechanisms,

continues with the kinematic analysis, and ends with the dynamic balancing. The

second part (Chapters 5–6) takes a different order. Since the architecture and balancing

conditions of the spatial mechanisms are obtained through systematic extension by way

of stacking dynamically balanced units, this type synthesis approach is completed first.

Subsequently, the kinematic analysis of the resulting mechanisms is presented.

In Chapter 2, a novel 3-DOF parallel mechanism referred to as a parallelepiped

mechanism is proposed. Two types of actuation schemes of the mechanism are con-

sidered. The kinematic analysis including the inverse and direct kinematics as well as

the determination of singularity loci and workspace for the two actuation types of the

mechanism is solved. A geometrical algorithm and a discretization method are used

for the determination of the workspace of the mechanism.

In Chapter 3, the design and dynamic balancing of parallelepiped mechanisms are

addressed. At the beginning of this chapter, the dynamic balancing of general par-

allelepiped mechanisms is discussed. Then, practical implementations of the paral-

lelepiped mechanisms for both types of actuation schemes are presented. The balancing

equations are derived by imposing that the center of mass of the mechanism is fixed and
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that the total angular momentum is constant (zero) with respect to a fixed point. Opti-

mization is performed to determine the counterweights and counter-rotations based on

the balancing conditions. The dynamic simulation software ADAMS is used to simu-

late the motion of the 3-DOF parallelepiped mechanisms and to verify the reactionless

property of the dynamically balanced mechanisms.

In Chapter 4, the synthesis, kinematic analysis and dynamic balancing of 6-DOF

parallel mechanisms using parallelepiped mechanisms are dealt with. The Jacobian

matrices of the mechanisms associated with different actuation schemes are derived.

A geometrical algorithm and a discretization method are used for the determination

of the workspace for the mechanisms using two different cases of the leg mechanism

introduced in Chapter 2. The graphical representations that show the relationship

between the singularity loci and the constant-orientation workspace of the mechanisms

are given. Finally, the dynamic equivalence between a moving platform and three point

masses will be discussed and the dynamic balancing of the 6-DOF parallel mechanisms

are addressed.

In Chapter 5, the synthesis of novel reactionless spatial 3-DOF and 6-DOF mech-

anisms without separate counter-rotations, using four-bar linkages is presented. A

general planar four-bar linkage is first considered in order to obtain the conditions

for its spatial dynamic balancing. Based on the conditions of dynamic balancing of

a planar four-bar linkage, it is shown that the spatial problem is equivalent to ensur-

ing that the inertia tensor of planar reactionless four-bar linkages remains constant

while the linkages are undergoing spatial motion. Then, the reactionless conditions for

planar four-bar linkages moving spatially are derived and reactionless spatial 3-DOF

mechanisms using four-bar linkages without separate counter-rotations are synthesized.

Finally, the latter mechanisms are used to synthesize 6-DOF reactionless mechanisms

which do not involve separate counter-rotations.

In Chapter 6, the inverse kinematics and singularity analysis of the reactionless 6-

DOF parallel mechanism using four-bar linkages synthesized in Chapter 5 are presented.

Three types of actuation schemes of the mechanism are considered. The Jacobian

matrix of the mechanism is first derived. The Grassmann line geometry method is then

used to determine the conditions associated with the singular configurations. Finally,

the graphical representations that show the singularity loci and the constant-orientation

workspace of the mechanism using a geometrical algorithm and a discretization method
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are given.

Finally, a summary of the results obtained in this thesis and some discussion as well

as directions on future research work are given in Chapter 7.



Chapter 2

Kinematic Analysis of Spatial

3-DOF Parallelepiped Mechanisms

In this chapter, the mechanical architecture and kinematic analysis of a novel 3-DOF parallel
mechanism referred to as a parallelepiped mechanism are first presented. Two types of actua-
tion schemes of the mechanism are considered. The inverse and direct kinematic problems of
these two instances of the mechanism are solved. The expressions of the singularity loci and
their graphical representation are obtained. Finally, geometrical algorithms and discretization
methods are used for the determination of the workspace for the two cases of the mechanism.

17
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Figure 2.1: An octahedral truss (Hamlin and Sanderson, 1994).

2.1 Introduction

Parallel mechanisms or manipulators have received much attention over the last 30

years. Several kinds of 3-DOF parallel manipulators have been presented for different

applications in the literature (Clavel, 1988; Lee and Shah, 1988; Gosselin and Angeles,

1989; Di Gregorio and Parenti-Castelli, 1998; Siciliano, 1999; Tsai and Joshi, 2000).

Furthermore, in order to design light mechanisms with high stiffness, deformable trusses

have also been contemplated (Reinholtz and Gokhale, 1987; Arun et al., 1990; Salerno

and Reinholtz, 1994; Hertz and Hughes, 1994). Deformable trusses are akin to parallel

mechanisms. However, they are generally built by assembling deformable 1-dof modules

in series, thereby augmenting the complexity and degrading the stiffness. Hamlin and

Sanderson (1994) have addressed the synthesis of an octahedral truss (Figure 2.1) using

offset hinges as concentric multilink spherical joints at each vertex of the mechanism.

As we mentioned in Chapter 1, the major objective of this thesis is to develop re-

actionless multi-degree-of-freedom parallel mechanisms. We will first search for 3-DOF

mechanisms which can be dynamically balanced. Then, we will construct 6-DOF reac-

tionless manipulators or mechanisms using these 3-DOF dynamically balanced mech-

anisms as legs. Foucault and Gosselin (2002) have presented a planar 3-DOF reac-

tionless parallel mechanism using the legs of the planar five-bar parallelogram linkages
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Figure 2.2: 3-DOF parallelepiped mechanism.

(Figure 1.5). If we append additional segments that move out of the plane of the

parallelogram linkage, a novel spatial 3-DOF parallel mechanism referred to as a paral-

lelepiped mechanism is obtained, that is first presented in this chapter. After describing

the design techniques, the kinematic analysis including the inverse and direct kinemat-

ics as well as the determination of singularity loci and workspace of the mechanisms

will be solved. Simulation tools for demonstrating the characteristics of the 3-DOF

parallelepiped mechanisms will also be developed.

2.2 Geometric Description

A schematic representation of a 3-DOF parallelepiped mechanism is shown in Figure

2.2. Point P is the end-effector and is located on link BFP . The mechanism consists

of a parallelepiped with 6 faces. The parallelepiped can be deformed with the faces

remaining planar and with opposite faces remaining parallel, while providing three

degrees of freedom, and can therefore be used to position point P in space. The three

edges attached to the ground and denoted by V1, V2 and V3 respectively are actuated

using fixed revolute actuators. The following groups of links have equal length, namely:

OA = CB = GF = DE,OC = AB = EF = DG,OD = AE = BF = CG. All the

opposite links remain parallel throughout the motion, i.e., OA ‖ CB ‖ GF ‖ DE,OC ‖
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Figure 2.3: An offset planar hinge (Hamlin and Sanderson, 1994).

AB ‖ EF ‖ DG and OD ‖ AE ‖ BF ‖ CG.

This mechanism may be considered as a “truly parallel” deformable truss, i.e., a

multi-dof truss-type mechanism in which all actuators are mounted in parallel.

Several feasible designs of the parallelepiped mechanism have been investigated. A

simple implementation is to use an offset planar hinge (Hamlin and Sanderson, 1994)

at each corner of the 6 faces of the mechanism (or at any two of the three corners at

each vertex of the parallelepiped). The offset planar hinge (Figure 2.3) is a Watt I type

mechanism with two straight brackets (IK, NQ), two identical bent brackets (KLM ,

JLQ), and two leaves (IJ , MN). Each leaf can rotate around the corresponding link (or

pin) of the parallelepiped. Moreover, IJ = KL = LQ = MN , IK = JL = ML = NQ,

and the offsets of the leaf pivots relative to their leaf axes are the same. By suitable

design of the parameters of the hinge mechanism, the intersection point Oc of the two

leaf axes becomes the center of rotation for the links U and V while moving. Hence,

the three adjacent links can rotate about the vertex center point at each vertex of the

parallelepiped as a spherical joint while the faces of the parallelepiped remain planar.

Another feasible design of the parallelepiped mechanism is shown in Figure 2.4.

Each of the faces (e.g. face OAED) is a planar 4R parallelogram mechanism. The 6

parallelograms are attached to each other at the vertices of the parallelepiped. More

specifically, each pair of adjacent parallelograms is connected by a revolute joint with
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Figure 2.4: CAD model of a feasible design of the parallelepiped mechanism (courtesy

of Thierry Laliberté and Mathieu Myrand).

intersecting axes. Hence the parallelepiped can be deformed with the faces remaining

planar and with opposite faces remaining parallel. Notice that all the axes of the

revolute joints at a given vertex intersect at the vertex center point at all times.

The fixed coordinate frame is denoted as OXY Z and is attached to the base. Two

types of actuation schemes of the mechanism designated as Case I and Case II respec-

tively (Figure 2.5 and Figure 2.6) are considered in the present work. In Case I, V1 and

V2 rotate around the Z axis and V3 around the X axis, while in Case II, V1, V2 and V3

rotate around the Y , Z and X axes respectively.

2.3 Inverse Kinematics

In parallelepiped mechanisms (Figure 2.2), let the Cartesian coordinates of P be (x, y,

z) expressed in the fixed frame. Moreover, let l1, l2 and l3 be the lengths of the three

edges (V1, V2 and V3 respectively) of the parallelepiped mechanism and let le be the
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Figure 2.6: The second type of actuation of the parallelepiped mechanism (Case II).

length of the extended part of link BF attached to the end-effector. The definitions of

the actuated joint coordinates (θ1, θ2, θ3) are shown in Figures 2.5 and 2.6.

2.3.1 Case I

The position of the end-effector can be written as

p = l1e1 + l2e2 + (l3 + le)e3 (2.1)

where

e1 =


cos θ1

sin θ1

0

 , e2 =


cos θ2

sin θ2

0

 , e3 =


0

cos θ3

sin θ3

 (2.2)
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Hence,

p =


l1 cos θ1 + l2 cos θ2

l1 sin θ1 + l2sin θ2 + (l3 + le) cos θ3

(l3 + le) sin θ3

 =


x

y

z

 (2.3)

From the above equation, two solutions for θ3 — obtained from the z component —

and four solutions for θ1 and θ2 are obtained.

For the velocity analysis, the differentiation of eq. (2.3) with respect to time yields

ṗ = Jθ̇ (2.4)

where J is the Jacobian matrix, which can be written as follows

J =


−l1 sin θ1 −l2 sin θ2 0

l1 cos θ1 l2cos θ2 −(l3 + le) sin θ3

0 0 (l3 + le) cos θ3

 (2.5)

Hence the actuated joint velocities can be obtained by solving the linear system of

equations given in eq. (2.4).

An example is now given in order to illustrate the inverse kinematics and velocity

analysis of the mechanism. Let

l1 = 100, l2 = 100, l3 = 100, le = 50

where the lengths are in millimeters. Let the end-effector trace a planar circle with a

radius of 20 mm, centered at (0, 35, 0) and located in a plane parallel to the XZ plane,

i.e., the parametric equations of the trajectory can be written as, for 0 ≤ t ≤ 2π,

x = 20 cos t

z = 20 sin t

y = 35

The actuated joint coordinates and velocities for the first actuator are plotted in Fig-

ure 2.7.
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Figure 2.7: First set of actuated joint coordinates and velocities (Case I).
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2.3.2 Case II

For Case II, one has

e1 =


sin θ1

0

cos θ1

 , e2 =


cos θ2

sin θ2

0

 , e3 =


0

cos θ3

sin θ3

 (2.6)

and hence eq. (2.1) leads to

p =


l1 sin θ1 + l2 cos θ2

l2 sin θ2 + (l3 + le) cos θ3

l1 cos θ1 + (l3 + le) sin θ3

 =


x

y

z

 (2.7)

The Jacobian matrix is written as

J =


l1 cos θ1 −l2 sin θ2 0

0 l2cos θ2 −(l3 + le) sin θ3

−l1 sin θ1 0 (l3 + le) cos θ3

 (2.8)

From eq. (2.7), the actuated joint coordinates can be obtained by solving a univariate

8th-order polynomial equation. Consequently, the inverse kinematics leads to a max-

imum of eight real solutions in this case. This result is readily obtained by applying

elimination between the three equations. The actuated joint coordinates and velocities

for the first actuator of the same example as Case I are plotted in Figure 2.8. In this

example, only four of the solutions are real.

2.4 Direct Kinematics

For given actuated joint coordinates (θ1, θ2 and θ3), the Cartesian coordinates can be

calculated from eq.(2.3) and (2.7) for Case I and Case II respectively. The solution is

unique and straightforward.
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Figure 2.8: First set of actuated joint coordinates and velocities (Case II).
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Figure 2.9: Singularity surface for Case I (θ3 = ±π
2
)

2.5 Singularity Analysis

The singularity loci can be obtained using the expression of the determinant of the

Jacobian matrix, a quantity which is known to vanish in singular configurations, i.e.,

det(J) = 0 (2.9)

Hence, for Case I, substituting eq. (2.5) into eq. (2.9) leads to

cos θ3 sin(θ2 − θ1) = 0 (2.10)

i.e.,

cos θ3 = 0 (2.11)

or

sin(θ2 − θ1) = 0 (2.12)

From eq. (2.11), over the interval ]− π, π], one has

θ3 = ±π
2

(2.13)

From eq. (2.12), one has
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Figure 2.10: Singularity surface and its sections for Case I (θ2 = θ1)
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θ2 = θ1 (2.14)

or

θ2 = π + θ1 (2.15)

For simplicity and generality, the joint limits and mechanical interferences of the

mechanism are ignored for the determination of the singularity loci and workspace in

this thesis. A mechanism with the lengths of 100mm for l1 and 50mm for l2, l3 and le

respectively is taken as an example.

The condition (θ3 = ±π
2
) means that the first zones of singularity in Cartesian

space are two annular zones parallel to the xy plane — each of which is enclosed by

two concentric circles with the outer and inner radii of (l1 + l2) and (l1 − l2) (link OA

and OC are collinear but in the same and opposite direction) respectively.

The latter conditions (θ2 = θ1 and θ2 = π + θ1) express that link OA and OC are

collinear, the vertex B moves consequently on circles in the xy plane, centered at the

origin but with radii of (l1 + l2) and (l1 − l2) respectively. Hence, the corresponding

singularity surfaces are formed by a circle — parallel to the yz plane and with a radius

of (l3+le) — the center of which traces circles of radius (l1+l2) and (l1−l2) respectively.

The surface obtained by sweeping a circle C, while its center moves on the track circle K
and the plane of the circle C remains parallel to the plane F perpendicular to the plane

of C is a quartic surface and is referred to as a Bohemian dome (Weisstein, 2002; Bonev

and Gosselin, 2002). Both singularity surfaces corresponding to eqs. (2.14) and (2.15)

are Bohemian domes. In order to better demonstrate the singularity surfaces, different

sections are also obtained. The singularity surfaces and their sections associated with

the conditions θ2 = θ1 and θ2 = π + θ1 for the example mechanism are shown in

Figure 2.10 and Figure 2.11 respectively.

For Case II, substituting eq. (2.8) into eq. (2.9) leads to

cos θ1 cos θ2 cos θ3 − sin θ1 sin θ2 sin θ3 = 0 (2.16)

Equation (2.16) corresponds to a surface in joint space (Figure 2.12). From eq. (2.7) and

eq. (2.16), the singularity surface and its sections for different values of z in Cartesian

space can be also obtained as demonstrated in Figure 2.13.
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Figure 2.11: Singularity surface and its sections for Case I (θ2 = π + θ1)
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Figure 2.12: Singularity surface in joint space (Case II)

2.6 Workspace

For Case I, it is found by inspection that the three kinds of singularity surfaces corre-

sponding to the three conditions presented above define the top and bottom, outer and

inner boundaries of the workspace, respectively. Since the cross-section of the singu-

larity surface for a given z is defined by two circles (Figure 2.10), the cross-section of

the workspace on planes parallel to the xy plane can be obtained by the intersection of

regions bounded by circles. The resulting workspace and its boundaries for the example

mechanism are finally shown in Figure 2.14.

For Case II, it is very difficult to determine the workspace by a geometrical method.

A discretization algorithm is therefore used for this case (Bonev, 2002a). Finally, the

workspace and its boundary for the example mechanism are demonstrated in Figure 2.15

and 2.16. The workspace includes the space between the outer and inner boundaries

as well as two lines from point (0, 0, 14) to point (0, 0, 187) and from point (0, 0,−14)

to point (0, 0,−187) respectively.

Naturally, the workspace of the parallelepiped mechanism will decrease if the joint

limits and mechanical interferences of the mechanism are considered. However, a

workspace optimization with these constraints can be undertaken to meet the require-
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Figure 2.13: Singularity surface and its sections for different values of z in Cartesian

space (Case II).
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Figure 2.14: Workspace and its boundaries for different values of z (Case I).
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(a) Workspace
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Figure 2.15: Workspace (Case II).
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Figure 2.16: Boundary of the workspace for different values of z (Case II).
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Figure 2.17: Simulation tools for parallelepiped mechanisms.

ments of practical applications (Masory and Wang, 1992).

From the above kinematic analysis, we find that a 3-DOF parallelepiped mechanism

may be regarded as a three-link serial chain, in the sense that the kinematic analyses

of the two kinds of mechanisms are completely the same. At the same time, only

the parallelepiped mechanism may be considered as a multi-dof truss-type parallel

mechanism in which all actuators are mounted in parallel on the base. The mechanism

has then lower inertia and a higher stiffness as compared to the three-link serial chain

where two of the three actuators are mounted on the moving links.

2.7 Development of Simulation Tools for 3-DOF

Parallelepiped Mechanisms

In order to simulate the kinematics of 3-DOF parallelepiped mechanisms, simulation

tools have been developed using Matlab on the basis of the kinematic analysis mentioned

above. These tools allow the kinematic simulation of the mechanism for any given

trajectory and show the position of the mechanism and the actuated joint coordinates

for any interactively given set of Cartesian coordinates (see Figure 2.17).
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2.8 Conclusion

The mechanical architecture and kinematic analysis of a novel 3-DOF parallel mecha-

nism referred to as a parallelepiped mechanism are first presented in this chapter. Two

types of actuation schemes of the mechanism are considered. The inverse and direct

kinematic problems associated with the two cases of the mechanism have been solved.

The expressions of the singularity loci and their graphical representations have been

obtained. A geometrical algorithm and a discretization method are respectively used

for the determination of the workspace for the two cases of the mechanism. Simulation

tools for demonstrating the characteristics of the 3-DOF parallelepiped mechanisms

have also been developed. All the results will be provided as guides for the future

design of the mechanisms. Furthermore, the 3-DOF parallelepiped mechanisms will be

used as legs to synthesize 6-DOF dynamically balanced parallel mechanisms.



Chapter 3

Dynamic Balancing of Spatial

3-DOF Parallelepiped Mechanisms

In this chapter, the design and dynamic balancing of parallelepiped mechanisms are addressed.
Two types of actuation schemes of the mechanism are considered. The balancing equations
are derived by imposing that the center of mass of the mechanism is fixed and that the total
angular momentum is constant with respect to a fixed point. Optimization is performed
to determine the counterweights and counter-rotations based on the balancing conditions.
The dynamic simulation software ADAMS is used to simulate the motion of the 3-DOF
parallelepiped mechanisms and to verify that the mechanisms are reactionless at all times and
for arbitrary trajectories. At the beginning of this chapter, the dynamic balancing of general
parallelepiped mechanisms is discussed. Then, practical implementations of the parallelepiped
mechanisms for both types of actuation schemes are presented. Dynamic balancing conditions
for the practical mechanisms are derived and simulation using ADAMS is performed. Several
numerical examples of reactionless 3-DOF parallelepiped mechanisms are given. It is shown
that 3-DOF parallelepiped mechanisms can be completely balanced.

38
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3.1 Introduction

As discussed in Section 1.2, two constraints have to be satisfied for a mechanism to be

reactionless, namely, the center of mass of the mechanism should remain fixed and the

total angular momentum must remain constant (zero) with respect to a fixed point at

all times for arbitrary trajectories of the end-effector. Equations (1.3) and (1.4) are

necessary and sufficient conditions for a mechanism to be dynamically balanced, i. e.,

reactionless.

Since a reactionless 6-DOF parallel manipulator using parallelepiped mechanisms

will be constructed in the next chapter, a point mass is here considered at the end-

effector of the 3-DOF parallelepiped mechanism. Indeed, the 6-DOF manipulator will

be composed of three legs connecting the base to a common thin platform. Each of the

three legs will be a parallelepiped mechanism. The mass and inertia of the platform

will be distributed among the attachment points of the legs and replaced by three point

masses mp. In the next chapter, the dynamic equivalence between a platform and three

point masses will be discussed in detail.

In this chapter, in order to facilitate understanding the phenomenon of dynamic

balancing and some related issues, the dynamic balancing of elementary links is intro-

duced first. The dynamic balancing of a 3-DOF parallelepiped mechanism with a point

mass at the end-effector is then addressed.

3.2 Dynamic Balancing of Elementary Links

A single pivoted link with mass mb and center of mass at a distance rb from pivot O

is shown in Figure 3.1. Clearly, a shaking force for any motion, and a shaking moment

will act on the frame whenever the link accelerates or decelerates. The shaking force

can be eliminated by adding an appropriate counterweight mc at the extension part

of the link to make the linear momentum constant, i.e., the total center of mass is

made stationary at the pivot. The shaking moment can be eliminated by adding a

separate counter-rotation (e.g., a fixed-axis-geared inertia counterweight in Figure 3.1)

with inertia Ic (or effective inertia Icr with respect to pivot O, i.e., Icr = izIc where iz is
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the gear ratio) rotating in the opposite direction of the link to make the total angular

momentum constant (zero). Hence, from eqs. (1.3) and (1.4), two sufficient conditions

for dynamic balancing of the link can be written as follows:

mbrb = mcrc (3.1)

Icr = mb(k
2
b + r2

b ) +mcr
2
c (3.2)

where kb is the radius of gyration of the link with respect to its center of mass.

Under the above conditions, the system will be dynamically balanced, i.e., there is

no shaking force and shaking moment on the base. From eqs. (1.1) and (1.2), clearly,

the resulting external force and moment are zero. If we consider the whole balanced

system as a system isolated from the frame, the external forces and moment are the joint

forces (Fbx,Fby,Fcx,Fcy) and the actuator driving torque Td acting on the system (the

tooth force on counter-rotation which generates forces on joints is an internal force).

Although the directions of the forces and torque depend on which motion is applied, the

zero reaction force and moment on the base always come from: Fbx = Fcx, Fby = Fcy and

Td = dFcx (d is the distance between the two joints) and their opposite directions. In

other words, the reactions of the individual joint forces act on the frame and constitute

a moment to cancel the actuator reaction torque for any motion. Note that in a real

prototype the actuator inertia must be taken into account which in fact can be part

of the link inertia or the counter-rotation inertia depending on the mounting of the

actuator.

Stacking two such links can form a planar two-link open chain (Figure 3.2(a)). The

dynamic balancing can be obtained by adding two counterweights and two counter-

rotations. Moreover, using two of these chains as legs can synthesize a dynamically

balanced five-bar linkage with a special architecture of the parallelogram which allows

simplification: instead of four, now three counterweights are used by optimization,

and instead of four, only two counter-rotations are sufficient (equal angular velocity of

opposite links)(Figures 3.2(b) and 1.5). Two actuators and two counter-rotations can

be mounted on the base such that the moving mass and inertia of the system can be

reduced.

Finally, a 3-DOF parallelepiped mechanism emerges from appending the third seg-

ments that move out of the plane of the planar five-bar parallelogram linkage. Three

actuators and three counter-rotations are all mounted on the base.
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Figure 3.1: Dynamic balancing of a single link.
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Figure 3.2: Dynamic balancing of elementary links: (a) a planar two-link open chain,

(b) a five-bar linkage with parallelogram architecture.
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3.3 Conditions for the 3-DOF Parallelepiped

Mechanisms to be Reactionless

A schematic representation for the determination of the balancing conditions for par-

allelepiped mechanisms is shown in Figure 3.3 (three counter-rotations are not shown

on the figure). The center of mass of each edge of the parallelepiped mechanism is

assumed to be located on the axis of the corresponding edge. The fixed coordinate

frame OXY Z as well as the unit vectors e1, e2 and e3 are defined as in Section 2.2.

From Figure 3.3, the position vector of the global center of mass of the parallelepiped

mechanism, noted r, can be written as

Mr = m1r1e1 +m2r2e2 +m3(l1e1 + r3e2) +m4(l2e2 + r4e1) +m5(l3e3 + r5e1)+

m6(l3e3 + r6e2) +m7(l1e1 + l3e3 + r7e2) +m8(l3e3 + l2e2 + r8e1)+

m9r9e3 +m10(l1e1 + l2e2 + r10e3) +m11(l1e1 + r11e3)+

m12(l2e2 + r12e3) +mp(l1e1 + l2e2 + (l3 + le)e3) (3.3)

where ri is the distance from a vertex to the center of mass of link i, as indicated on

the figure, mp is the point mass located at point P and mi is the mass of the ith link

of the mechanism, as indicated in Figure 3.3, and vectors ei are as defined in eqs. (2.2)
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and (2.6). Moreover, M is the total mass of the mechanism, i. e.,

M =
12∑
i=1

mi +mp (3.4)

Collecting terms in eq. (3.3), one obtains

Mr = (m1r1 +m3l1 +m4r4 +m5r5 +m7l1 +m8r8 +m10l1 +m11l1 +mpl1)e1+

(m2r2 +m3r3 +m4l2 +m6r6 +m7r7 +m8l2 +m10l2 +m12l2 +mpl2)e2+

(m5l3 +m6l3 +m7l3 +m8l3 +m9r9 +m10r10 +m11r11 +m12r12 +mp(l3 + le))e3

(3.5)

From eqs. (1.3) and (3.5), a set of sufficient conditions for force balancing of the

mechanism can be written as follows:

m1r1 +m4r4 +m5r5 +m8r8 + (m3 +m7 +m10 +m11 +mp)l1 = 0 (3.6)

m2r2 +m3r3 +m6r6 +m7r7 + (m4 +m8 +m10 +m12 +mp)l2 = 0 (3.7)

(m5 +m6 +m7 +m8)l3 +m9r9 +m10r10 +m11r11 +m12r12 +mp(l3 + le) = 0 (3.8)

Moreover, for case I, the angular momentum of the mechanism can be written as

ho =
12∑
i=1

(hgi + rgi ×miṙgi) + rp ×mpṙp − Icr1θ̇1u1 − Icr2θ̇2u2 − Icr3θ̇3u9 (3.9)

where rp is the position vector of point P , Icri is the inertia of the counter-rotation

connected to the ith actuator — which is added to dynamically balance the mechanism

— and rgi is the position vector of the center of mass of the ith link. Vector hgi is the

angular momentum of the ith link with respect to its center of mass, i.e,

hgi = mik
2
i θ̇iui, i = 1, . . . , 12 (3.10)

where ki is the radius of gyration of the ith link with respect to its center of mass and,

for Case I,

θ̇i = θ̇1, ui = [ 0, 0, 1 ]T , i = 1, 4, 5, 8;

θ̇i = θ̇2, ui = [ 0, 0, 1 ]T , i = 2, 3, 6, 7;

θ̇i = θ̇3, ui = [ 1, 0, 0 ]T , i = 9, 10, 11, 12
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The components of ho can then be written as

hox = A(sin θ1 cos θ3θ̇3 − cos θ1 sin θ3θ̇1) +B(sin θ2 cos θ3θ̇3 − cos θ2 sin θ3θ̇2) + F θ̇3

(3.11)

hoy = −A(sin θ1 sin θ3θ̇1 + cos θ1 cos θ3θ̇3)−B(sin θ2 sin θ3θ̇2 + cos θ2 cos θ3θ̇3) (3.12)

hoz = A(sin θ1 cos θ3θ̇1 − cos θ1 sin θ3θ̇3) +B(sin θ2 cos θ3θ̇2 − cos θ2 sin θ3θ̇3) +

C cos (θ2 − θ1)(θ̇1 + θ̇2) +Dθ̇1 + Eθ̇2 (3.13)

where

A = m5l3r5 +m7l1l3 +m8l3r8 +m10l1r10 +m11l1r11 +mpl1(l3 + le) (3.14)

B = m6l3r6 +m7l3r7 +m8l2l3 +m10l2r10 +m12l2r12 +mpl2(l3 + le) (3.15)

C = m3l1r3 +m4l2r4 +m7l1r7 +m8l2r8 +m10l1l2 +mpl1l2 (3.16)

D = (m3 +m7 +m10 +m11 +mp)l
2
1 +m1(k

2
1 + r2

1) +m4(k
2
4 + r2

4) +

m5(k
2
5 + r2

5) +m8(k
2
8 + r2

8)− Icr1 (3.17)

E = (m4 +m8 +m10 +m12 +mp)l
2
2 +m2(k

2
2 + r2

2) +m3(k
2
3 + r2

3) +

m6(k
2
6 + r2

6) +m7(k
2
7 + r2

7)− Icr2 (3.18)

F = (m5 +m6 +m7 +m8)l
2
3 +mp(l3 + le)

2 +m9(k
2
9 + r2

9) +

m10(k
2
10 + r2

10) +m11(k
2
11 + r2

11) +m12(k
2
12 + r2

12)− Icr3 (3.19)

From eqs. (1.4) and (3.11–3.13), a set of sufficient conditions for moment balancing

of the mechanism can be written as A = B = C = D = E = F = 0, i. e.,

m5l3r5 +m7l1l3 +m8l3r8 +m10l1r10 +m11l1r11 +mpl1(l3 + le) = 0 (3.20)

m6l3r6 +m7l3r7 +m8l2l3 +m10l2r10 +m12l2r12 +mpl2(l3 + le) = 0 (3.21)

m3l1r3 +m4l2r4 +m7l1r7 +m8l2r8 +m10l1l2 +mpl1l2 = 0 (3.22)

(m3 +m7 +m10 +m11 +mp)l
2
1 +m1(k

2
1 + r2

1) +m4(k
2
4 + r2

4)+

m5(k
2
5 + r2

5) +m8(k
2
8 + r2

8)− Icr1 = 0 (3.23)

(m4 +m8 +m10 +m12 +mp)l
2
2 +m2(k

2
2 + r2

2) +m3(k
2
3 + r2

3)+

m6(k
2
6 + r2

6) +m7(k
2
7 + r2

7)− Icr2 = 0 (3.24)

(m5 +m6 +m7 +m8)l
2
3 +mp(l3 + le)

2 +m9(k
2
9 + r2

9)+
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Figure 3.4: Counterweight on the link.

m10(k
2
10 + r2

10) +m11(k
2
11 + r2

11) +m12(k
2
12 + r2

12)− Icr3 = 0 (3.25)

Hence, any mechanism of type I satisfying eqs. (3.6–3.8) as well as eqs. (3.20–3.25) will

be reactionless. Moreover, from eqs. (3.5) and (3.11–3.13), it is found that the global

center of mass of the mechanism will be fixed at the origin O of the coordinate frame

(i. e., r =0) and the angular momentum of the mechanism relative to the fixed point

O will be zero (i. e., ho = 0) under the above dynamic balancing conditions.

For case II, the same conditions of static and dynamic balancing are obtained fol-

lowing the same procedure as in Case I. This confirms that the balancing conditions

are not dependent on the actuation schemes.

3.4 Optimization

From the equations obtained above for the static and dynamic balancing of the mech-

anisms it is clear that there exist infinitely many solutions to the equations and that

a direct determination of the variables — the masses and positions of counterweights

and the magnitude of the counter-rotations — is not straightforward. In other words

there are infinitely many reactionless mechanisms available for a given geometry of the

parallelepiped mechanisms. Hence, optimization is used in order to obtain better solu-

tions for the counterweights and counter-rotations. The objective of the optimization

is to minimize the masses of the counterweights and to locate the center of mass of each

link as close as possible to the geometric center of the link. Two different types of ob-

jective functions have been used for the optimization of the parallelepiped mechanisms,
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namely

minF = η1

12∑
i=1

(ri − 0.5li)
2 + η2

12∑
i=1

mi (3.26)

or

minF =
12∑
i=1

mcir
2
i (3.27)

where η1 and η2 are weighting coefficients and mci is the mass of the counterweight

added on the ith link while mi is the mass of link i including the counterweight

(Fig. 3.4). The optimization is subject to the constraint conditions (3.6–3.8) and (3.20–

3.22). The masses mci and positions rci of counterweights are selected as the variables

of the optimization. The resulting mass mi, position of center of mass ri and radius of

gyration ki of the ith link can be calculated from the link parameters and the mass and

position of the added counterweight on the link (Fig. 3.4) on the assumption of uniform

link with a linear density ρl (namely, the mass of the origin link is equal to liρl). The

two objectives of the optimization are chosen to minimize the counterweight of a link

and to force the resulting center of mass of the link as close as possible to the joint

Oi no matter whether the counterweight is located on the original part or extension

part of the link, hence to minimize the momentum of the link with respect to the refer-

ence point O of the system, finally to minimize the required counter-rotations. This is

the optimization of a constrained nonlinear multivariable function. Hence, the function

constr of the mathematical software Matlab is used for this purpose. This function uses

the Sequential Quadratic Programming (SQP) in addition to checking the positivity

of the Hessian of the Lagrangian at each major iteration. Since constr may only give

local solutions, different initial values given randomly were used for the optimization

and the best solution was chosen as the optimization result. T he counter-rotations are

computed, a posteriori, upon convergence to a solution, by substituting the optimum

solution into eqs. (3.23–3.25) and solving for Icri.

An example of optimization is now given. The geometry of the mechanism has been

chosen such that

l1 = l2 = l3 = 200 mm, le = 100 mm, mp = 0.05 kg

ρl = 0.211272 kg/m

and an optimization has been performed using the objective function of eq. (3.27).

Since constr may only give local solutions, different initial values have been used for
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Table 3.1: A numerical example of reactionless spatial 3-DOF parallelepiped mecha-

nism.

Link i mi (kg) ri (mm) ki (mm)

1 1.2437 -92.3 40.3

2 1.0619 -91.0 43.2

3 0.0424 100.0 57.7

4 0.4499 -78.8 62.7

5 0.0424 100.0 57.7

6 0.5105 -81.3 59.4

7 0.0424 100.0 57.7

8 0.0424 100.0 57.7

9 1.2439 -92.3 40.3

10 0.0636 150.0 86.6

11 0.5105 -81.3 59.4

12 0.0424 100.0 57.7

Icr1 (kgmm2) Icr2 (kgmm2) Icr3 (kgmm2)

46700 43000 50300

the optimization and the best solution was chosen as the optimization result as shown

in Table 3.1.

The reactionless example mechanism is represented schematically in Figure 3.5.

The three counter-rotations are connected to the actuated bars by transmissions and

the magnitudes of the counter-rotations with respect to corresponding axes must be

Icr1, Icr2 and Icr3.

3.5 Verification of the Reactionless Property

The verification of the reactionless property is performed using the dynamic simulation

software ADAMS. For the above example mechanism, simulation models for Case I and

Case II respectively are built using ADAMS (Figure 3.6). In the simulation modeling,

the joints are defined using revolute joints or spherical joints. However, in order to sim-
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Figure 3.5: Schematic presentation of an example of dynamic balancing.
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(a) Case I

(b) Case II

Figure 3.6: Simulation of 3-DOF parallelepiped mechanisms using ADAMS.
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(a) Reaction forces and moments on the base.

(b) Joint forces and driving torques.

Figure 3.7: Verification of the reactionless property of 3-DOF parallelepiped mecha-

nisms (Case I).
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Figure 3.8: Verification of the property of fixed center of mass.

Figure 3.9: Verification of the property of constant angular momentum.
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Figure 3.10: Verification of the reactionless property of 3-DOF parallelepiped mecha-

nisms (Case II).

ulate the real motion of the mechanism, some constraints — parallelism between the

bars — are also imposed. It has been found that this does not affect the resulting reac-

tion forces and moments on the base in the simulation. The mass, center of mass and

moments of inertia of each link which actually include the properties of corresponding

counterweights are specified interactively. The three cylinders —with certain moments

of inertia and defined as counter-rotations — are fixed on the base and connected re-

spectively to the actuated links by gears. The effective inertia of the counter-rotations

with respect to corresponding axes must be equal to the required values.

Simulations have been performed for several arbitrary trajectories. The global re-

action forces and moments on the base as well as the forces on the joint connecting the

first link with the base and the driving torques of the three actuators for the Case I

are illustrated in Figure 3.7. The results clearly demonstrate that the resulting reac-

tion forces and moments on the base are very small compared to the joint forces and

driving torques (with a ratio of 10−4 to 10−5). Additionally, Figure 3.8 and 3.9 show

that the center of mass of the mechanism is fixed and the angular momentum of the

mechanism is constant (zero). Indeed, all the non-zero results obtained are most likely

due to small modeling errors arising from the limited number of digits used in ADAMS

for the parameters.
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For the example mechanism of Case II, similar results have been obtained. The

reaction forces and moments on the base are illustrated in Figure 3.10.

Hence, it is clearly shown that the 3-DOF parallelepiped mechanisms can be com-

pletely balanced. In other words, there are no reaction forces and moments on the base

at all times and for arbitrary trajectories.

3.6 A Practical Implementation of 3-DOF

Parallelepiped Mechanisms

3.6.1 Description of the Mechanisms

As mentioned before, several feasible designs can be proposed for the parallelepiped

mechanisms (Figure 2.2). Moreover, it is found that half of the parallelepiped mecha-

nism — with three instead of six faces — has the same function as the parallelepiped.

The CAD models and schematic representations of a practical implementation of the

parallelepiped mechanisms for Case I and Case II are shown in Figure 3.11 and Fig-

ure 3.12 respectively.

In Case I, the bottom face consists of a planar 5-bar linkage connected by revolute

joints. The offset in the linkage is designed for the mounting of the two actuators

which drive the edges V1 and V2 (Figure 2.2) respectively. The side face consists of

a 6-bar linkage connected by a spherical joint (D) and revolute joints (G, C, I, M

and O). Similar joint designs are used for the third face. Notice that all the axes

of the revolute joints at a vertex intersect at the vertex center point. Furthermore,

OA = CB = HF,OC = AB = DG,OD = CG,CH = BF (see Figure 3.11). The

three actuators are fixed to the base. Then, the mechanism can be deformed with the

faces remaining planar and can be used to position the end-effector.

In Case II, the bottom face consists of a spatial 8-bar linkage connected by spherical

joint (A) and revolute joints (N, J,R, I,M,W and V ). The side face consists of a 6-bar

linkage connected by a spherical joint (D) and revolute joints (G, C, I, M , W and U).

The third face also consists of a 6-bar linkage with a spherical joint (H) and revolute
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(b) Schematic representation.

Figure 3.11: CAD model and schematic representation of a practical implementation

of 3-DOF parallelepiped mechanisms (Case I).
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(a) CAD model.
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Figure 3.12: CAD model and schematic representation of a practical implementation

of 3-DOF parallelepiped mechanisms (Case II).



56

Z

Y

X

m

m

r

r

r6

m6

mP

m

r

m1r1

m3

m 4r4

r3

2

a

le

m8r
8

5

7

7

9

9

m2

r5

b

c

O

Figure 3.13: Schematic representation for the determination of the balancing conditions

for the practical parallelepiped mechanisms (Case I).

joints (F , B, J , R and C). All the axes of the revolute joints at a vertex intersect at the

vertex center point (e.g., the three actuated revolute joints (U, V,W ) intersect at point

O). Moreover, the equality of the length for the corresponding links are defined as in

Case I. Then, the mechanism realizes the mobility and kinematics of the parallelepiped

of Case II (Figure 2.2).

Clearly, the kinematics of practical parallelepiped mechanisms (Figure 3.11 and

3.12) is identical to that of parallelepiped mechanisms (Figure 2.2) for Case I and II

respectively. Hence, all the results of the kinematic analysis obtained in Chapter 2 can

be used for the practical parallelepiped mechanisms.
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3.6.2 Reactionless Conditions for the Practical 3-DOF

Parallelepiped Mechanisms

A schematic representation for the determination of the balancing conditions for the

practical parallelepiped mechanism of Case I (Figure 3.11) is shown in Figure 3.13

where a and (a+ b) are the offsets of the moving plane of two actuators relative to the

origin point O. The center of mass of each link is assumed to lie on the axis of the link.

All the terms are defined as in Section 3.2.

From Figure 3.13, the position vector of the global center of mass of the paral-

lelepiped mechanism, noted r, can be written as

Mr = m1(r1e1 − (a+ b)ez) +m2(l1e1 + r2e2 − bez)+

m3(l2e2 + r3e1 − bez) +m4(r4e2 − bez) +m5(l2e2 + r5e3)+

m6((l3 − c)e3 + r6e2) +m7r7e3 +m8(l2e2 + l3e3 + r8e1)+

m9(l1e1 + l2e2 + r9e3) +mp(l1e1 + l2e2 + (l3 + le)e3) (3.28)

where M is the total mass of the mechanism, i. e.,

M =
9∑

i=1

mi +mp (3.29)

and vectors ei are defined as follows:

e1 =


cos θ1

sin θ1

0

 , e2 =


cos θ2

sin θ2

0

 , e3 =


0

cos θ3

sin θ3

 , ez =


0

0

1

 (3.30)

Collecting terms in eq. (3.28), one obtains

Mr = (m1r1 +m2l1 +m3r3 +m8r8 +m9l1 +mpl1)e1+

(m2r2 +m3l2 +m4r4 +m5l2 +m6r6 +m8l2 +m9l2 +mpl2)e2+

(m5r5 +m6(l3 − c) +m7r7 +m8l3 +m9r9 +mp(l3 + le))e3−
(m1(a+ b) +m2b+m3b+m4b)ez (3.31)

From eqs. (1.3) and (3.31), a set of sufficient conditions for force balancing of the

mechanism can be written as follows:

m1r1 +m3r3 +m8r8 + (m2 +m9 +mp)l1 = 0 (3.32)

m2r2 +m4r4 +m6r6 + (m3 +m5 +m8 +m9 +mp)l2 = 0 (3.33)
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m5r5 +m6(l3 − c) +m7r7 +m8l3 +m9r9 +mp(l3 + le) = 0 (3.34)

Under the above force balancing conditions, the global center of mass is fixed at

r =
m1(a+ b) + (m2 +m3 +m4)b

M
ez (3.35)

Moreover, the angular momentum of the mechanism can be written as

ho =
9∑

i=1

(hgi + rgi ×miṙgi) + rp ×mpṙp − Icr1θ̇1u1 − Icr2θ̇2u4 − Icr3θ̇3u7 (3.36)

where

hgi = mik
2
i θ̇iui, i = 1, . . . , 9 (3.37)

θ̇i = θ̇1, ui = [ 0, 0, 1 ]T , i = 1, 3, 8;

θ̇i = θ̇2, ui = [ 0, 0, 1 ]T , i = 2, 4, 6;

θ̇i = θ̇3, ui = [ 1, 0, 0 ]T , i = 5, 7, 9

Hence, the angular momentum of the mechanism can be written in detail as follows:

ho = m1k
2
1 θ̇1u1 +m1(r1e1 − (a+ b)ez)× r1ė1 +

m2k
2
2 θ̇2u2 +m2(l1e1 + r2e2 − bez)× (l1ė1 + r2ė2) +

m3k
2
3 θ̇1u3 +m3(l2e2 + r3e1 − bez)× (l2ė2 + r3ė1) +

m4k
2
4 θ̇2u4 +m4(r4e2 − bez)× r4ė2 +

m5k
2
5 θ̇3u5 +m5(l2e2 + r5e3)× (l2ė2 + r5ė3) +

m6k
2
6 θ̇2u6 +m6((l3 − c)e3 + r6e2)× ((l3 − c)ė3 + r6ė2) +

m7k
2
7 θ̇3u7 +m7r7e3 × r7ė3 +

m8k
2
8 θ̇1u8 +m8(l2e2 + l3e3 + r8e1)× (l2ė2 + l3ė3 + r8ė1) +

m9k
2
9 θ̇3u9 +m9(l1e1 + l2e2 + r9e3)× (l1ė1 + l2ė2 + r9ė3) +

mp(l1e1 + l2e2 + (l3 + le)e3)× (l1ė1 + l2ė2 + (l3 + le)ė3)

−Icr1θ̇1u1 − Icr2θ̇2u4 − Icr3θ̇3u7 (3.38)

Furthermore, one has

e1 × ė1 = θ̇1


0

0

1

 , e2 × ė2 = θ̇2


0

0

1

 , e3 × ė3 = θ̇3


1

0

0

 ,
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e1 × ė2 = θ̇2


0

0

cos(θ2 − θ1)

 , e2 × ė1 = θ̇1


0

0

cos(θ2 − θ1)

 ,

e1 × ė3 = θ̇3


sin θ1 cos θ3

− cos θ1 cos θ3

− cos θ1 sin θ3

 , e3 × ė1 = θ̇1


− cos θ1 sin θ3

− sin θ1 sin θ3

sin θ1 cos θ3

 ,

e2 × ė3 = θ̇3


sin θ2 cos θ3

− cos θ2 cos θ3

− cos θ2 sin θ3

 , e3 × ė2 = θ̇2


− cos θ2 sin θ3

− sin θ2 sin θ3

sin θ2 cos θ3

 ,

ez × ė1 = θ̇1


− cos θ1

− sin θ1

0

 , ez × ė2 = θ̇2


− cos θ2

− sin θ2

0

 (3.39)

The components of ho can then be written as

hox = A(sin θ1 cos θ3θ̇3 − cos θ1 sin θ3θ̇1) +B(sin θ2 cos θ3θ̇3 −

cos θ2 sin θ3θ̇2) +D cos θ1θ̇1 + E cos θ2θ̇2 +Hθ̇3 (3.40)

hoy = −A(sin θ1 sin θ3θ̇1 + cos θ1 cos θ3θ̇3)−B(sin θ2 sin θ3θ̇2 +

cos θ2 cos θ3θ̇3) +D sin θ1θ̇1 + E sin θ2θ̇2 (3.41)

hoz = A(sin θ1 cos θ3θ̇1 − cos θ1 sin θ3θ̇3) +B(sin θ2 cos θ3θ̇2 −

cos θ2 sin θ3θ̇3) + C cos (θ2 − θ1)(θ̇1 + θ̇2) + F θ̇1 +Gθ̇2 (3.42)

where

A = m8l3r8 +m9l1r9 +mpl1(l3 + le) (3.43)

B = m5l2r5 +m6(l3 − c)r6 +m8l2l3 +m9l2r9 +mpl2(l3 + le) (3.44)

C = m2l1r2 +m3l2r3 +m8l2r8 +m9l1l2 +mpl1l2 (3.45)

D = m1r1(a+ b) +m2l1b+m3r3b (3.46)

E = m2r2 +m3l2 +m4r4 (3.47)

F = (m2 +m9 +mp)l
2
1 +m1(k

2
1 + r2

1) +m3(k
2
3 + r2

3) +

m8(k
2
8 + r2

8)− Icr1 (3.48)

G = (m3 +m5 +m8 +m9 +mp)l
2
2 +m2(k

2
2 + r2

2) +

m4(k
2
4 + r2

4) +m6(k
2
6 + r2

6)− Icr2 (3.49)

H = m6(l3 − c)2 +m8l
2
3 +mp(l3 + le)

2 +m5(k
2
5 + r2

5) +

m7(k
2
7 + r2

7) +m9(k
2
9 + r2

9)− Icr3 (3.50)
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From eqs. (1.4) and (3.40–3.42), a set of sufficient conditions for moment balancing of

the mechanism can be written as A = B = C = D = E = F = G = H = 0, i. e.,

m8l3r8 +m9l1r9 +mpl1(l3 + le) = 0 (3.51)

m5l2r5 +m6(l3 − c)r6 +m8l2l3 +m9l2r9 +mpl2(l3 + le) = 0 (3.52)

m2l1r2 +m3l2r3 +m8l2r8 +m9l1l2 +mpl1l2 = 0 (3.53)

m1r1(a+ b) +m2l1b+m3r3b = 0 (3.54)

m2r2 +m3l2 +m4r4 = 0 (3.55)

(m2 +m9 +mp)l
2
1 +m1(k

2
1 + r2

1) +m3(k
2
3 + r2

3) +m8(k
2
8 + r2

8)− Icr1 = 0 (3.56)

(m3 +m5 +m8 +m9 +mp)l
2
2 +m2(k

2
2 + r2

2) +m4(k
2
4 + r2

4)+

m6(k
2
6 + r2

6)− Icr2 = 0 (3.57)

m6(l3 − c)2 +m8l
2
3 +mp(l3 + le)

2 +m5(k
2
5 + r2

5) +m7(k
2
7 + r2

7)+

m9(k
2
9 + r2

9)− Icr3 = 0 (3.58)

Hence, any mechanism of type I (Figure 3.11) satisfying eqs. (3.32–3.34) as well as

eqs. (3.51–3.58) will be reactionless. The global center of mass will then be fixed as

presented in eq. (3.35) and the angular momentum of the mechanism with respect to

point O will be zero.

For the practical parallelepiped mechanism of Case II (Figure 3.12), a schematic

representation of the mechanisms for the determination of the balancing conditions is

shown in Figure 3.14. The center of mass of each link is also assumed to lie on the axis

of the link.

From Figure 3.14, the position vector of the global center of mass of the paral-

lelepiped mechanism, noted r, can be written as

Mr = m1r1e1 +m2(l1e1 + r2e2) +m3(l2e2 + r3e1) +m4r4e2+

m5(l2e2 + r5e3) +m6((l3 − c)e3 + r6e2) +m7r7e3 +m8(l2e2 + l3e3 + r8e1)+
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Figure 3.14: Schematic representation for the determination of the balancing conditions

for the practical parallelepiped mechanisms (Case II).

m9(l1e1 + l2e2 + r9e3) +mp(l1e1 + l2e2 + (l3 + le)e3) (3.59)

where vectors ei are defined as follows:

e1 =


sin θ1

0

cos θ1

 , e2 =


cos θ2

sin θ2

0

 , e3 =


0

cos θ3

sin θ3

 (3.60)

Collecting terms in eq. (3.59), one obtains

Mr = (m1r1 +m2l1 +m3r3 +m8r8 +m9l1 +mpl1)e1+

(m2r2 +m3l2 +m4r4 +m5l2 +m6r6 +m8l2 +m9l2 +mpl2)e2+

(m5r5 +m6(l3 − c) +m7r7 +m8l3 +m9r9 +mp(l3 + le))e3 (3.61)

From eqs. (1.3) and (3.61), a set of sufficient conditions for force balancing of the

mechanism can be written as follows:

m1r1 +m3r3 +m8r8 + (m2 +m9 +mp)l1 = 0 (3.62)

m2r2 +m4r4 +m6r6 + (m3 +m5 +m8 +m9 +mp)l2 = 0 (3.63)

m5r5 +m6(l3 − c) +m7r7 +m8l3 +m9r9 +mp(l3 + le) = 0 (3.64)
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Moreover, for case II, the angular momentum of the mechanism can be written as

ho =
9∑

i=1

(hgi + rgi ×miṙgi) + rp ×mpṙp − Icr1θ̇1u1 − Icr2θ̇2u4 − Icr3θ̇3u7 (3.65)

where the angular momentum hgi of the ith link with respect to its center of mass can

be written as

hgi = mik
2
i θ̇iui, i = 1, . . . , 9 (3.66)

where

θ̇i = θ̇1, ui = [ 0, 1, 0 ]T , i = 1, 3, 8;

θ̇i = θ̇2, ui = [ 0, 0, 1 ]T , i = 2, 4, 6;

θ̇i = θ̇3, ui = [ 1, 0, 0 ]T , i = 5, 7, 9

Hence, the angular momentum of the mechanism can be written in detail as follows:

ho = m1k
2
1 θ̇1u1 +m1r1e1 × r1ė1 +

m2k
2
2 θ̇2u2 +m2(l1e1 + r2e2)× (l1ė1 + r2ė2) +

m3k
2
3 θ̇1u3 +m3(l2e2 + r3e1)× (l2ė2 + r3ė1) +

m4k
2
4 θ̇2u4 +m4r4e2 × r4ė2 +

m5k
2
5 θ̇3u5 +m5(l2e2 + r5e3)× (l2ė2 + r5ė3) +

m6k
2
6 θ̇2u6 +m6((l3 − c)e3 + r6e2)× ((l3 − c)ė3 + r6ė2) +

m7k
2
7 θ̇3u7 +m7r7e3 × r7ė3 +

m8k
2
8 θ̇1u8 +m8(l2e2 + l3e3 + r8e1)× (l2ė2 + l3ė3 + r8ė1) +

m9k
2
9 θ̇3u9 +m9(l1e1 + l2e2 + r9e3)× (l1ė1 + l2ė2 + r9ė3) +

mp(l1e1 + l2e2 + (l3 + le)e3)× (l1ė1 + l2ė2 + (l3 + le)ė3)

−Icr1θ̇1u1 − Icr2θ̇2u4 − Icr3θ̇3u7 (3.67)

Furthermore, one has

e1 × ė1 = θ̇1


0

1

0

 , e2 × ė2 = θ̇2


0

0

1

 , e3 × ė3 = θ̇3


1

0

0

 ,

e1 × ė2 = θ̇2


− cos θ1 cos θ2

− cos θ1 sin θ2

sin θ1 cos θ2

 , e2 × ė1 = θ̇1


− sin θ1 sin θ2

sin θ1 cos θ2

− cos θ1 sin θ2

 ,
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e1 × ė3 = θ̇3


cos θ1 sin θ3

− sin θ1 cos θ3

− sin θ1 sin θ3

 , e3 × ė1 = θ̇1


− sin θ1 cos θ3

cos θ1 sin θ3

− cos θ1 cos θ3

 ,

e2 × ė3 = θ̇3


sin θ2 cos θ3

− cos θ2 cos θ3

− cos θ2 sin θ3

 , e3 × ė2 = θ̇2


− cos θ2 sin θ3

− sin θ2 sin θ3

sin θ2 cos θ3

 (3.68)

The components of ho can then be written as

hox = A(cos θ1 sin θ3θ̇3 − sin θ1 cos θ3θ̇1) +B(sin θ2 cos θ3θ̇3 −

cos θ2 sin θ3θ̇2)− C(sin θ1 sin θ2θ̇1 + cos θ1 cos θ2θ̇2) +Hθ̇3 (3.69)

hoy = A(cos θ1 sin θ3θ̇1 − sin θ1 cos θ3θ̇3)−B(sin θ2 sin θ3θ̇2 + cos θ2 cos θ3θ̇3) +

cos θ2 cos θ3θ̇3) + C(sin θ1 cos θ2θ̇1 − cos θ1 sin θ2θ̇2) + F θ̇1 (3.70)

hoz = −A(cos θ1 cos θ3θ̇1 + sin θ1 sin θ3θ̇3) +B(sin θ2 cos θ3θ̇2 −

cos θ2 sin θ3θ̇3) + C(sin θ1 cos θ2θ̇2 − cos θ1 sin θ2θ̇1) +Gθ̇2 (3.71)

where

A = m8l3r8 +m9l1r9 +mpl1(l3 + le) (3.72)

B = m5l2r5 +m6(l3 − c)r6 +m8l2l3 +m9l2r9 +mpl2(l3 + le) (3.73)

C = m2l1r2 +m3l2r3 +m8l2r8 +m9l1l2 +mpl1l2 (3.74)

F = (m2 +m9 +mp)l
2
1 +m1(k

2
1 + r2

1) +m3(k
2
3 + r2

3) +

m8(k
2
8 + r2

8)− Icr1 (3.75)

G = (m3 +m5 +m8 +m9 +mp)l
2
2 +m2(k

2
2 + r2

2) +

m4(k
2
4 + r2

4) +m6(k
2
6 + r2

6)− Icr2 (3.76)

H = m6(l3 − c)2 +m8l
2
3 +mp(l3 + le)

2 +m5(k
2
5 + r2

5) +

m7(k
2
7 + r2

7) +m9(k
2
9 + r2

9)− Icr3 (3.77)

From eq. (1.4) and (3.69–3.71), a set of sufficient conditions for moment balancing

of the mechanism can be written as A = B = C = F = G = H = 0, i. e.,

m8l3r8 +m9l1r9 +mpl1(l3 + le) = 0 (3.78)

m5l2r5 +m6(l3 − c)r6 +m8l2l3 +m9l2r9 +mpl2(l3 + le) = 0 (3.79)

m2l1r2 +m3l2r3 +m8l2r8 +m9l1l2 +mpl1l2 = 0 (3.80)



64

Table 3.2: A numerical example of reactionless practical 3-DOF parallelepiped mecha-

nisms (Case I).

Link i mi (kg) ri (mm) ki (mm)

1 0.056891 16.171 76.952

2 0.053846 167.085 115.601

3 0.133818 -78.690 95.906

4 2.0351 -14.284 13.976

5 0.054788 50.819 74.583

6 0.360865 -123.556 67.988

7 2.0425 -48.331 17.704

8 0.147928 -85.492 93.612

9 0.044532 105.0 60.622

Icr1 (kgmm2) Icr2 (kgmm2) Icr3 (kgmm2)

8127.2 19911.6 21629.4

(m2 +m9 +mp)l
2
1 +m1(k

2
1 + r2

1) +m3(k
2
3 + r2

3) +m8(k
2
8 + r2

8)− Icr1 = 0 (3.81)

(m3 +m5 +m8 +m9 +mp)l
2
2 +m2(k

2
2 + r2

2) +m4(k
2
4 + r2

4)+

m6(k
2
6 + r2

6)− Icr2 = 0 (3.82)

m6(l3 − c)2 +m8l
2
3 +mp(l3 + le)

2 +m5(k
2
5 + r2

5) +m7(k
2
7 + r2

7)+

m9(k
2
9 + r2

9)− Icr3 = 0 (3.83)

Hence, any mechanism of type II (Figure 3.12) satisfying eqs. (3.62–3.64) as well as

eqs. (3.78–3.83) will be reactionless. The global center of mass will then be fixed at

r = 0 and the angular momentum of the mechanism with respect to point O will be

zero.

By comparing the two sets of dynamic balancing conditions for the practical par-

allelepiped mechanisms of Case I and Case II respectively, it is found that the force

balancing conditions are identical for both cases while there are two more conditions

(eqs. 3.54 and 3.55) for the moment balancing of Case I than that of Case II. Actually,

the dynamic balancing conditions for Case II are a subset of those of Case I associated

with the special case for which a = b = 0. This confirms that dynamic balancing of a
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Table 3.3: A numerical example of reactionless practical 3-DOF parallelepiped mecha-

nism (Case II).

Link i mi (kg) ri (mm) ki (mm)

1 2.0076 -8.712 13.486

2 0.0904736 -43.315 98.642

3 0.0318086 75.0 43.301

4 2.0432 -51.575 18.085

5 0.3748467 -143.3 86.522

6 0.0636172 187.5 116.678

7 0.0318086 75.0 43.301

8 0.1479276 -85.492 93.612

9 0.0445321 105.0 60.622

Icr1 (kgmm2) Icr2 (kgmm2) Icr3 (kgmm2)

7296.2 24860.8 19830.4

mechanism is only dependent on the geometric and inertial parameters but not on the

actuation schemes and the motion of the mechanism.

3.6.3 Verification of the Reactionless Property

After dynamic balancing conditions have been obtained for each case, optimization

using the same algorithm and procedure as used in Section 3.3 will be performed in

order to obtain solutions for the counterweights and counter-rotations. The geometry

of the mechanisms has been chosen such that

l1 = 150 mm, l2 = 150 mm, l3 = 180 mm, le = 30 mm

a = 40 mm, b = 24 mm, c = 30 mm, mp = 0.05 kg

ρl = 0.211272 kg/m

and an optimization has been performed using the objective function of eq. (3.27)

and the constraints of corresponding dynamic balancing conditions. The optimization

results for Case I and Case II have been obtained as shown in Table 3.2 and Table 3.3
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respectively. Apparently, the parameters in Table 3.2 also satisfy the dynamic balancing

conditions of Case II (eqs. 3.62–3.64 and eqs. 3.78–3.83). In other words, the practical

parallelepiped mechanism of Case II with parameters in Table 3.2 will be dynamically

balanced.

For the above example mechanisms, simulation models for the mechanisms of Case

I and Case II respectively are built using ADAMS (Figure 3.15). The mass, center

of mass and moments of inertia of each link are specified interactively. The three

counter-rotations are fixed on the base and connected respectively to the actuated

links by gears. Simulations have been performed for several arbitrary trajectories. The

resulting reaction forces and moments on the base of one simulation are illustrated

in Figure 3.16. The results clearly demonstrate that the resulting reaction forces and

moments on the base are very small compared to the joint forces and driving torques

(with a ratio of 10−4 to 10−5).

Hence, it is clearly shown that the practical 3-DOF parallelepiped mechanisms can

be completely balanced.

Notice that all the above dynamically balanced parallelepiped mechanisms are ob-

tained on the assumption that the center of mass of each link of the mechanisms is

located on the axis of the corresponding link. Otherwise, we have found that the paral-

lelepiped mechanisms cannot be dynamically balanced unless all links whose center of

mass is not on the axis of the link undergo planar motion. Hence, in the future struc-

ture design of each link, we must ensure both of these requirements and the dynamic

balancing conditions as shown in the tables for the example mechanisms.

3.7 Discussion

By investigation of the parallelepiped mechanisms of both cases, it is found that the

mechanism of Case II has a larger workspace — without the consideration of joint lim-

itation and link interference — and more maximum real solutions of inverse kinematics

than the mechanism of Case I. Yet, the dynamic balancing of the mechanism of Case

II can be obtained only on the assumption that the center of mass of each link is lo-

cated on the corresponding link, while the dynamic balancing of Case I could obtained
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(a) Case I

(b) Case II

Figure 3.15: Simulation of practical 3-DOF parallelepiped mechanisms using ADAMS.
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(a) Case I.

(b) Case II.

Figure 3.16: Verification of the reactionless property of practical 3-DOF parallelepiped

mechanisms.



69

for a more general case. Which mechanism is better depends therefore on the design

requirements and limitations of the practical applications.

From the above example mechanisms, we find that the reactionless 3-DOF par-

allelepiped mechanisms were achieved at the expense of a substantial increase of the

masses of the moving links and the complexity of the mechanism. Let us take the

practical 3-DOF parallelepiped mechanism (Case II; Table 3.3) as an example. The

payload (point mass) is 0.05 kg, mi and ri, i = 1, . . . , 9 are respectively the resulting

mass and position of the center of mass of the combination of link i, the counterweight

and the extension part for mounting the counterweight if applicable. The masses of

the original links are 0.03817 kg for link 5, 0.044532 kg for link 9 and 0.0318086 kg for

other links. Actually, the counterweight and its position on link i are listed as follows:

mc1 = 1.9737, mc2 = 0.0277078, mc3 = 0, mc4 = 2.0, mc5 = 0.298506

mc6 = 0.0318086, mc7 = 0, mc8 = 0.0843104, mc9 = 0

rc1 = −10.0647, rc2 = −145.9847, rc3 = 0, rc4 = −53.7286, rc5 = −180

rc6 = 300.0, rc7 = 0, rc8 = −150.0, rc9 = 0

where masses are in kilograms and the lengths in millimeters. In order to balance the

original mechanism, a total 4.5304518 (4.8358144-0.30536256) kg of mass has been

added. Apparently, the total mass increases about 12.5 times (4.5304518/(0.05 +

0.30536256)). As mentioned before, a 3-DOF parallelepiped mechanism is kinemat-

ically equivalent to a spatial three-link serial chain (e.g., Figure 3.17). In order to

balance this serial chain, an ordinary method can be used, i.e., at the extension part

of each link a counterweight is added to locate the center of mass of the link at the

joint for all motions (e.g., A,B,O). This results in zero linear momentum for whole

mechanism, whereas adding a counter-rotation (or a combination of counterweight and

a counter-rotation; not shown on the figure) leads to zero angular momentum. It is

assumed that the three counterweights are mounted at the positions as: rc1 = 10.0647,

rc2 = 145.9847, rc9 = 50mm, for comparison with the example above. Regardless of the

mass of the extension part for simplicity, the three counterweight are finally determined

as: mc9 = (105mb9+210mp)/rc9 = 0.3035172,mA = mc9+mb9+mp = 0.3980492,mc2 =

(75mb2 + 150mA)/rc2 = 0.425339265,mB = mc2 + mb2 + mA = 0.855197065,mc1 =

(75mb1 + 150mB)/rc1 = 15.1158 kg, where mA and mB are total mass of link 9 and

link 2 respectively. Therefore, the total counterweight is 16.274516kg. The total mass

increases 16.274516/(mb1 +mb2 +mb9) = 150 times. The shorter the length of rc1, rc2
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Figure 3.17: A three-link serial chain

or rc9, the more the mass increase of the system. Clearly, for the dynamic balancing

of the two mechanisms with the same payload, the parallelepiped mechanism can have

much less mass increase of the system than that of the three-link serial chain. This

result further confirms that the parallelograms can transmit the rotation of the moving

mass to a link pivoted to the base, and results in adding less counterweight on this link

for balancing the moving mass (Herder and Gosselin, 2003). A similar conclusion has

been found for the three counter-rotations. All these results further demonstrate the

advantage of lower inertia of the parallel mechanisms as compared to serial mechanisms.

3.8 Conclusion

The design and dynamic balancing of the novel 3-DOF parallelepiped mechanisms

with general architecture and practical implementations have been addressed in this

chapter. Two modes of actuation of the mechanisms are considered. The balancing

equations have been derived by imposing that the center of mass of the mechanism is

fixed and that the total angular momentum is constant with respect to a fixed point.

A set of conditions on the link parameters for each case has thereby been obtained,

which constitutes the balancing conditions. Counterweights and counter-rotations are

used to dynamically balance the mechanism. Optimizations have been performed in

order to obtain solutions for the counterweights and counter-rotations, based on the

balancing conditions. The dynamic simulation software ADAMS has been used to

simulate the motion of the novel 3-DOF parallelepiped mechanisms and to verify that
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the mechanisms are reactionless at all times and for arbitrary trajectories. Several

numerical examples of reactionless 3-DOF parallelepiped mechanisms have been given

in this chapter and it has been shown that 3-DOF parallelepiped mechanisms can be

completely balanced.



Chapter 4

Kinematic Analysis and Dynamic

Balancing of 6-DOF Parallel

Mechanisms Using Parallelepiped

Mechanisms

This chapter deals with the synthesis, kinematic analysis and dynamic balancing of 6-DOF
parallel mechanisms using parallelepiped mechanisms. The kinematic analysis including the
inverse and direct kinematics as well as the determination of singularity loci and workspace
of the 6-DOF parallel mechanisms are presented. The Jacobian matrix of the mechanisms
associated with different actuation schemes are derived. A geometrical algorithm and a dis-
cretization method are respectively used for the determination of the workspace for both of
the two cases of the mechanism. Then, the graphical representations that show the relation-
ship between the singularity loci and the constant-orientation workspace of the mechanism
are given. Finally, the dynamic equivalence between a platform and three point masses and
the dynamic balancing of 6-DOF parallel mechanisms are addressed.
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4.1 Introduction

The spatial 3-DOF parallelepiped mechanisms introduced in the preceding chapters

can be used as legs to synthesize spatial multi-degree-of-freedom parallel mechanisms

or manipulators, having up to 6-DOF. The end-effector point of the 3-DOF mechanism

is attached to the mobile platform using either a spherical or a Hooke joint, depending

on the number of legs used and the desired number of degrees of freedom for the

mechanism. These factors also determine the number of joints to be actuated for each

leg. The mobility l of the synthesized mechanism can be determined by the application

of the general mobility criterion of Chebychev-Grbler-Kutzbach (Hunt, 1978), i.e.,

l = d(n− g − 1) +
g∑

i=1

fi (4.1)

where n is the number of links including the base, g is the number of joints, fi is the

degree of freedom of joint i, d is the dimension of the system under study (e.g., for a

planar system d = 3, while for a spatial system d = 6). A 6-DOF parallel manipulator

or mechanism can be obtained using only three legs and two actuators for each leg and

spherical joints to connect the legs to the mobile platform. As mentioned before, the

parallelepiped mechanism is kinematically equivalent to a spatial RRR serial chain.

Hence, for the proposed mechanism, we have d = 6, n = 11, g = 12, and Σfi = 18,

the mobility of the mechanism thus being equal to 6. In fact, for the synthesized

manipulator, each leg has 6 degrees of freedom and does not exert any constraint on

the platform.

For the dynamic balancing of a multi-degree-of-freedom parallel mechanism with

several legs, the derivation of the balancing conditions is very complicated or even

impossible to obtain using the approach used in the preceding chapters (eqs. (1.3) and

(1.4)) for the whole mechanism where the mass and inertia of the moving platform and

all the leg mechanisms need to be considered. One simple approach to this problem

is to replace the moving platform with equivalent point masses located at the points

of attachment of the legs to the platform. Ricard and Gosselin (2000) have used three

point masses to replace the moving platform for the development of reactionless planar

parallel manipulators.

In this chapter, after describing the synthesis of 6-DOF parallel mechanisms with

three legs of parallelepiped mechanisms, the kinematic analysis including the inverse
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Figure 4.1: CAD model of a 6-DOF parallel mechanism (Case I).

and direct kinematics as well as the determination of singularity loci and workspace

of the 6-DOF parallel mechanisms will be solved. The Jacobian matrix of the mecha-

nisms associated with different actuation schemes are derived. A geometrical algorithm

and a discretization method are used for the determination of the workspace for the

mechanisms using two different cases of the leg mechanism denoted as Case I and Case

II. The graphical representations that show the relationship between the singularity

loci and the constant-orientation workspace of the mechanism are given. Finally, the

dynamic equivalence between a platform and three point masses will be discussed and

the dynamic balancing of 6-DOF parallel mechanisms will be addressed.

4.2 Geometric Description

The 6-DOF parallel mechanisms represented in Figures 4.1 and 4.2 are composed of

a fixed base and a moving platform connected by three identical legs. The legs are

symmetrically arranged and attached to the platform with spherical joints. Each of the

three legs is a spatial 3-DOF parallelepiped mechanism. A schematic representation of
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Figure 4.2: CAD model of a 6-DOF parallel mechanism (Case II).

one leg of the spatial 6-DOF parallel mechanism is shown in Figure 4.3. A fixed reference

frame O – xyz is attached to the base of the mechanism and a moving coordinate frame

O′ – x′y′z′ is attached to the mobile platform. Moreover, a local coordinate frame ξηζ

is attached to the base at point Bi and its ξ-axis and η-axis coincide with the x-axis

and y-axis of the parallelepiped mechanism (Figures 2.2, 3.11 and 3.12). Any two

of the three links denoted by V1, V2 and V3 respectively attached to the fixed base

are actuated using fixed revolute actuators for each leg (Figure 4.3). Hence, totally 6

revolute actuators are used for the whole 6-DOF mechanism.

4.3 Inverse Kinematics

In Figure 4.3, the points of attachment of the three legs to the base are noted Bi, i =

1, 2, 3 and the points of attachment of all legs to the platform are noted Pi, i = 1, 2, 3.

The mounting angle of the leg mechanism noted αi is the angle of the ξ-axis of the
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Figure 4.3: Schematic representation of one leg of the spatial 6-DOF parallel mecha-

nism.
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local frame with respect to the x-axis of the global frame. One can then write

pi = p + Qbi (4.2)

where pi and p are respectively the position vectors of point Pi and the centroid of

the platform O′ expressed in the fixed coordinate frame and bi is the position vector

of point Pi in the moving coordinate frame, i.e.,

p =


x

y

z

 , pi =


xi

yi

zi

 , bi =


x′i

y′i

z′i

 , i = 1, 2, 3 (4.3)

Furthermore, Q is the rotation matrix corresponding to the orientation of the platform

of the mechanism with respect to the base coordinate frame — usually written as a

function of the three Euler angles representing the three degrees of freedom in rotation

of the platform that are defined by first rotating the mobile frame about the base z-

axis by angle φ, then about the mobile new x-axis by an angle θ, and finally about the

mobile new y-axis by an angle ψ, i.e.,

Q = Qz(φ)Qx(θ)Qy(ψ)

=


cosφ cosψ − sinφ sin θ sinψ − sinφ cos θ cosφ sinψ + sinφ sin θ cosψ

sinφ cosψ + cosφ sin θ sinψ cosφ cos θ sinφ sinψ − cosφ sin θ cosψ)

− cos θ sinψ sin θ cos θ cosψ


(4.4)

The computation of the joint coordinates of each leg is fully independent from the

computation of the rest of the joint coordinates. For example, we take the ith leg into

account. For a given position and orientation of the platform, the Cartesian coordinates

of Pi in the fixed frame can be calculated from eq. (4.2). Then, the vector si from the

base attachment point Bi (with position vector p0i) to the platform attachment point

Pi in the global frame for each leg can be written as follows:

For Case I,

si = pi − p0i

=


l1 cos(θ1i + αi) + l2 cos(θ2i + αi)− (l3 + le) cos θ3i sinαi

l1 sin(θ1i + αi) + l2 sin(θ2i + αi) + (l3 + le) cos θ3i cosαi

(l3 + le) sin θ3i

 (4.5)

while for Case II,

si = pi − p0i
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=


l1 cosαi sin θ1i + l2 cos(θ2i + αi)− (l3 + le) cos θ3i sinαi

l1 sinαi sin θ1i + l2 sin(θ2i + αi) + (l3 + le) cos θ3i cosαi

l1 cos θ1i + (l3 + le) sin θ3i

 (4.6)

where the first index of the subscript of joint coordinates (θ1i, θ2i and θ3i) stands for

ordered joint coordinate — as defined in Figures 2.5 and 2.6 — while the second index

i represents the number of the leg. Then, the joint coordinates of the 3-DOF paral-

lelepiped mechanisms, namely, the actuated joint coordinates of the 6-DOF parallel

mechanism can be derived from eqs. (4.5) and (4.6) for Case I and Case II respectively.

Another solution to the inverse kinematic problem of the leg mechanisms is to

substitute the components of vector si with respect to the local frame Bi – ξηζ to the

components (x, y and z) of vector p in eqs. (2.3) and (2.7) respectively for Case I and

Case II. Then, the solutions to eqs. (2.3) and (2.7) can be directly used for the inverse

kinematics of the leg mechanisms.

4.4 Direct Kinematics

The direct kinematic problem of the 6-DOF parallel mechanisms using parallelepiped

mechanisms can be shown to be equivalent to direct kinematics of the existing parallel

mechanisms or manipulators — e.g., a mechanism with three prismatic legs (RRPS

chains) and the TSSM mechanism — for which the solution has been shown to be

reducible to a 16th-order polynomial equation (Merlet 1992a; Nanua et al. 1990; Ebert-

Uphoff and Gosselin 1998).

4.5 Constant-Orientation Workspace

As we mentioned in Chapter 1, the constant-orientation workspace is the most com-

mon subset of the complete workspace for parallel mechanisms. In this section, both

numerical and geometrical algorithms are used for the determination of the constant-

orientation workspace of the 6-DOF parallel mechanisms.

Gosselin (1990) presented a geometrical algorithm for determining the constant-
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orientation workspace of 6-DOF parallel manipulators. For Stewart platform manip-

ulators, the workspace was obtained from the intersection of 6 regions, each of which

being the difference between two concentric spheres. Similarly, if mechanical interfer-

ences are neglected for the 6-DOF parallel mechanism of this chapter, the workspace

can be obtained from the intersection of three spatial regions. Each of these regions is

the workspace of a parallelepiped leg as shown in Figures 2.14 and 2.15 for Case I and

Case II, respectively, with respect to the local frame Bi – ξηζ and with its center of

the workspace at the point with coordinates (p0i −Qbi) relative to the global frame.

Numerical algorithms (or discretization methods) are common and applicable to all

parallel mechanisms, especially to some spatial complex ones. The constant-orientation

workspace is the set of permissible positions — i.e., corresponding to real solutions of the

inverse kinematic problem — for the center of the mobile platform while the platform is

kept at a constant orientation if mechanical interferences are neglected. However, there

are several real solutions to the inverse kinematics of the mechanism and only one real

solution is used for the actuation of the practical mechanism. Therefore, we will also

determine the constant-orientation workspace of the practical mechanism associated

with the working mode (Chablat and Wenger, 1998) —the real solution of the inverse

kinematics for the actuation of the joints.

Now, an example of the 6-DOF parallel mechanism is given, the geometry of the

three leg mechanisms has been chosen such that

l1 = 100 mm, l2 = 50 mm, l3 = 50 mm, le = 50 mm

and moreover, the radii — from the centroid to the attachment points — denoted by

r and R of the mobile platform and the base are 60 mm and 171.8 mm, respectively,

and the mounting angles of the leg mechanisms are chosen as

α1 =
5π

6
− arctan(

1

2
), α2 = α1 +

2π

3
, α3 = α1 +

4π

3

Then

b1 =


r cos π

6

−r sin π
6

0

 , b2 =


0

r

0

 , b3 =


−r cos π

6

−r sin π
6

0

 (4.7)

p01 =


R cos π

6

−R sin π
6

0

 , p02 =


0

R

0

 , p03 =


−R cos π

6

−R sin π
6

0

 (4.8)
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Figure 4.4: Constant-orientation workspace, (φ, θ, ψ) = (0, 0, 0) (Case I).

Finally, a constant-orientation workspace of the example mechanism (Case I) asso-

ciated with the Euler angles (φ, θ, ψ) = (0, 0, 0) is obtained using a numerical method

and is shown in Figure 4.4, while workspaces of the mechanism with orientation of

(φ, θ, ψ) = (0, 0, 0) and (φ, θ, ψ) = (5◦, 20◦, 10◦) of the platform associated with a spe-

cific working mode are shown in Figure 4.5. In order to show the difference between

these two kinds of workspace, only one section (e.g., z = 30mm) of the workspaces is

considered. The boundaries of the two kinds of workspace associated with this section

are shown in Figure 4.6 where the outer thin curve represents the boundary of the

constant-orientation workspace, while the inner thick curve stands for the workspace

associated with the chosen working mode. The difference between the two boundaries

is only apparent near the corners.

In order to better demonstrate the workspace of the example mechanism (Fig-

ure 4.4), different sections of the workspace are obtained and are shown in the left

column of Figure 4.7 and 4.8.

Moreover, the workspace of the 3-DOF parallelepiped mechanism of Case I has

been obtained using a geometrical method in Chapter 2 as shown in Figure 2.14. We

can determine the workspace of the 6-DOF parallel mechanism (Case I) just from the

intersection of these three workspaces of the leg mechanisms — each of which being

with an orientation of the mounting angle αi and with center at point of coordinates
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(a) (φ, θ, ψ)=(0, 0, 0) (b) (φ, θ, ψ) = (5◦, 20◦, 10◦)

Figure 4.5: Constant-orientation workspaces associated with a specific working mode

(Case I).
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Figure 4.6: Comparison of constant-orientation workspaces associated with a specific

working mode and all working modes respectively, (φ, θ, ψ) = (0, 0, 0) (Case I).
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Figure 4.7: Boundary of the workspace for different values of z, (φ, θ, ψ) = (0, 0, 0)

(Case I).
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Figure 4.8: Boundary of the workspace for different values of z, (φ, θ, ψ) = (0, 0, 0)

(Case I)(Cont.).
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Figure 4.9: Constant-orientation workspace, (φ, θ, ψ) = (0, 0, 0) (Case II).

(p0i − Qbi) relative to the global frame. Therefore, we can obtain the boundaries of

the workspace of the 6-DOF parallel mechanism for a given section (i.e., a given value

of z) from the corresponding boundaries of the workspace of the 3-DOF parallelepiped

mechanism (Figure 2.14). Namely, after drawing the boundaries of the workspace of

each leg mechanism in the global frame, by rotating the corresponding boundaries

(Figure 2.14) with an angle αi and putting the center at a point with the same x

and y coordinates as the point (p0i − Qbi), the boundaries of the workspace of the

6-DOF parallel mechanism are obtained for the given section. The intersection (thick

curves) of the three sets of boundaries just drawn are finally obtained as shown in the

right column of Figures 4.7 and 4.8. By comparing the two columns in the figures, we

can conclude that the constant-orientation workspaces determined respectively by the

numerical algorithm and the geometrical method are completely coincident.

However, it is very difficult to determine the workspace of the 3-DOF parallelepiped

mechanism of Case II by a geometrical method. Hence, a numerical algorithm is used

for the determination of the constant-orientation workspace of the example 6-DOF

parallel mechanism (Case II) with working mode. Figures 4.9 and 4.10 demonstrate

respectively the workspace and its boundaries associated with different values of z.
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Figure 4.10: Boundary of the workspace for different values of z (Case II).
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4.6 Singularity Analysis

For Case I, differentiating eq. (4.5) with respect to time leads to

ṡi = Jiθ̇i, i = 1, 2, 3 (4.9)

where θ̇i = [θ̇1i θ̇2i θ̇3i]
T and Ji is the Jacobian matrix of leg i, which can then be

written as follows:

Ji =


−l1 sin(θ1i + αi) −l2 sin(θ2i + αi) (l3 + le) sinαi sin θ3i

l1 cos(θ1i + αi) l2 cos(θ2i + αi) −(l3 + le) cosαi sin θ3i

0 0 (l3 + le) cos θ3i


The joint velocities θ̇i can be obtained from the following inverse Jacobian matrix:

Ji
−1 =


− cos(θ2i+αi)
l1 sin(θ1i−θ2i)

− sin(θ2i+αi)
l1 sin(θ1i−θ2i)

− sin θ2i sin θ3i

l1 sin(θ1i−θ2i) cos θ3i
cos(θ1i+αi)

l2 sin(θ1i−θ2i)
sin(θ1i+αi)

l2 sin(θ1i−θ2i)
sin θ1i sin θ3i

l2 sin(θ1i−θ2i) cos θ3i

0 0 1
(l3+le) cos θ3i

 (4.10)

The Jacobian matrix J of the whole mechanism describes the relationship between

the velocities of the actuated joints and the platform velocity in the form.

θ̇ = J

[
ṗ

ω

]
(4.11)

where θ̇ contains the velocities of all actuated joints, ṗ is the velocity of the centroid of

the platform and ω is the angular velocity vector corresponding to the skew-symmetric

matrix Q̇QT , i. e.,

ω = Q̇QT (4.12)

The relationship between individual joint velocities θ̇ji and the vector ṡi can also be

written as follows (Ebert-Uphoff and Gosselin 1998):

θ̇ji = vT
jiṡi (4.13)

where vector vT
ji is actually one row of the leg inverse matrix in eq. (4.10). Moreover,

one can write

si = p + Qbi − p0i (4.14)

Differentiating eq. (4.14) with respect to time yields

ṡi = ṗ + ω × (Qbi) (4.15)
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Substituting eq. (4.15) into eq. (4.13) leads to

θ̇ji = [vT
ji ((Qbi)× vji)

T ]

[
ṗ

ω

]
(4.16)

The above equation means that each actuated angle θji generates one row in the Jaco-

bian matrix J of the whole mechanism, i.e.,

J =


j1

:

j6

 (4.17)

with

jk = [vT
ji ((Qbi)× vji)

T ]1×6 (4.18)

where i is the leg in which the actuated joint associated with the kth row of the Jacobian

is located and j is the actuated joint associated with this row.

It is now assumed that the revolute joints connected to the links V1 and V2 respec-

tively are actuated for each leg. From eqs. (4.10), (4.11) and (4.18), one can then write

the velocity equation in the form proposed in (Gosselin and Angeles, 1990), i. e.,

Aẋ = Bθ̇ (4.19)

where

ẋ = [ṗT ωT ]
T

(4.20)

θ̇ = [ θ̇11θ̇12θ̇13θ̇21θ̇22θ̇23 ] (4.21)

A =



n11
T ((Qb1)× n11)

T

n12
T ((Qb2)× n12)

T

n13
T ((Qb3)× n13)

T

n21
T ((Qb1)× n21)

T

n22
T ((Qb2)× n22)

T

n23
T ((Qb3)× n23)

T


(4.22)

B = diag(g11, g12, g13, g21, g22, g23) (4.23)

n1i =


− cos(θ2i + αi) cos θ3i

− sin(θ2i + αi) cos θ3i

− sin θ2i sin θ3i

 (4.24)

n2i =


cos(θ1i + αi) cos θ3i

sin(θ1i + αi) cos θ3i

sin θ1i sin θ3i

 (4.25)
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g1i = l1 sin(θ1i − θ2i) cos θ3i (4.26)

g2i = l2 sin(θ1i − θ2i) cos θ3i (4.27)

g3i = (l3 + le) cos θ3i (4.28)

According to the definition given by Gosselin and Angeles (1990), the singularities of

Type I occur when

det(B) = 0 (4.29)

i.e.,

3∏
i=1

l1 sin(θ1i − θ2i) cos θ3i

3∏
i=1

l2 sin(θ1i − θ2i) cos θ3i = 0 (4.30)

This equation leads to singular conditions which define the boundary of the constant-

orientation workspace of the 6-DOF parallel mechanism as follows:

θ1i − θ2i = nπ, n ∈ Z (4.31)

θ3i = nπ +
π

2
, n ∈ Z (4.32)

where Z = 0,±1,±2, .... Actually, these conditions are the singular conditions of the

parallelepiped mechanism of each leg as shown in Section 2.5.

The singularities of Type II occur when

det(A) = 0 (4.33)

As mentioned before, however, the closed-form expression of the determinant of A

depends both on the Cartesian and the joint coordinates and it is impossible to find the

roots of such an expression analytically. Moreover, each row of matrix A associated

with the actuated joint is a six-dimensional Plcker vector associated with a line in

Cartesian space (Merlet, 1989; Monsarrat and Gosselin, 2001). Hence, totally six lines

l1i, l2i, i = 1, 2, 3 can be obtained from vectors n1i,n2i. However, these lines are very

complicated and cannot easily be represented in space. It will be very difficult to obtain

singularity conditions using Grassmann line geometry. Here, a discretization method

is also used to determine the singularity loci inside the constant-orientation workspace.

Finally, the singularity locus and boundary of the workspace for different values of z for

the example mechanism (Case I) are obtained as demonstrated in Figure 4.11, where

the outer thick curve represents the boundary of the workspace while the inner thin

curves stand for the singularity loci.
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Figure 4.11: Singularity locus and boundary of the workspace for different values of z,

(φ, θ, ψ) = (0, 0, 0) (Case I).
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Figure 4.12: Singularity locus and boundary of the workspace for different values of z,

(φ, θ, ψ) = (0, 0, 0) (Case II).

For other types of actuation of the example mechanisms (Case I), the Jacobian

matrices A and B can be obtained using vector n3i = [0 0 1]T and g3i, i = 1, 2, 3 to

replace the corresponding components in eqs. (4.23) and (4.24). For instance, if the

revolute joints connected to the links V1 and V3 respectively are actuated for each leg,

using vector n3i and g3i to replace n2i and g2i results in the Jacobian matrices A and

B associated with this actuation. The singularity loci can then be obtained using the

discretization method.

For the mechanisms of Case II, the Jacobian matrix of the leg parallelepiped mech-
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anism is derived as follows:

Ji =


l1 cosαi cos θ1i −l2 sin(θ2i + αi) (l3 + le) sinαi sin θ3i

l1 sinαi cos θ1i l2 cos(θ2i + αi) −(l3 + le) cosαi sin θ3i

−l1 sin θ1i 0 (l3 + le) cos θ3i


then, the inverse Jacobian matrix is written as

Ji
−1 =


cos(θ2i+αi) cos θ3i

l1δi

sin(θ2i+αi) cos θ3i

l1δi

sin θ2i sin θ3i

l1δi

cos αi sin θ1i sin θ3i−sin αi cos θ1i cos θ3i

l2δi

cos αi cos θ1i cos θ3i+sin αi sin θ1i sin θ3i

l2δi

cos θ1i sin θ3i

l2δi
sin θ1i cos(θ2i+αi)

(l3+le)δi

sin θ1i sin(θ2i+αi)
(l3+le)δi

cos θ1i cos θ2i

(l3+le)δi


(4.34)

where

δi = cos θ1i cos θ2i cos θ3i − sin θ1i sin θ2i sin θ3i (4.35)

For this case, it is assumed that the revolute joints connected to the links V1 and

V3 respectively are actuated for each leg. The Jacobian matrices A and B can then be

written as follows:

A =



n11
T ((Qb1)× n11)

T

n12
T ((Qb2)× n12)

T

n13
T ((Qb3)× n13)

T

n31
T ((Qb1)× n31)

T

n32
T ((Qb2)× n32)

T

n33
T ((Qb3)× n33)

T


(4.36)

B = diag(g11, g12, g13, g31, g32, g33) (4.37)

n1i =


cos(θ2i + αi) cos θ3i

sin(θ2i + αi) cos θ3i

sin θ2i sin θ3i

 (4.38)

n3i =


cos(θ2i + αi) sin θ1i

sin(θ2i + αi) sin θ1i

cos θ1i cos θ2i

 (4.39)

g1i = l1δi (4.40)

g3i = (l3 + le)δi (4.41)

The singularities of Type I occur when

cos θ1i cos θ2i cos θ3i − sin θ1i sin θ2i sin θ3i = 0 (4.42)
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Figure 4.13: Determination of the three point masses.

This equation leads to singular conditions which define the boundary of the constant-

orientation workspace of the mechanism.

Using a numerical method, the singularity locus (inner thin curves) of Type II and

the boundary (outer thick curve) of the workspace for different values of z for the

example mechanism (Case II) are demonstrated in Figure 4.12.

4.7 Dynamic Balancing of the 6-DOF Parallel

Mechanisms

In order to simplify the dynamic balancing of multi-degree-of-freedom parallel mech-

anisms with several legs, the dynamic balancing for each detached leg mechanism is

considered independently, if the mobile platform is replaced by point masses located

at the points of attachment of the legs to the platform (see Appendix A). To ensure

that the point masses are dynamically equivalent to the solid platform, three conditions

must be satisfied (Ricard and Gosselin, 2000), namely: i) the sum of the masses of the

point masses must be equal to the mass of the platform, ii) the center of mass of the

point masses must be located at the center of mass of the platform and iii) the inertia

tensor (or radius of gyration for planar motion) of the point masses must be the same as

that of the platform with respect to any coordinate frame. For a platform undergoing

planar motion, the radius of gyration should be equal to the distance between each of
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the attachment points and the center of mass of the platform.

For the spatial 6-DOF parallel mechanism of this chapter, the mass and inertia of

the platform are distributed among the attachment points of the legs to the platform

and replaced by three identical point masses mpm symmetrically arranged on a plane

(Figure 4.13).

Clearly, the center of mass of the point masses is located at the center of mass

of the platform if the latter is uniform. The conditions for dynamic equivalence can

therefore be satisfied if the moments of inertia of the point masses and the platform

are equal. These moments of inertia are given in the frame with the z′ axis orthogonal

to the plane and with the origin at the geometric center of the equilateral triangle —

using the three points as its vertices — or the centroid of the platform. The moments

of inertia of the three point masses relative to the frame can be written as follows:

Ixx =
3

2
mpmr

2
pm (4.43)

Iyy = Ixx (4.44)

Izz = 3mpmr
2
pm (4.45)

where rpm is the distance between any point mass and the centroid of the platform.

Since mpm is equal to one third of the mass of platform mpl, rpm is equal to the radius

of gyration of the platform with respect to the z′ axis.

From eqs. (4.43) – (4.45), it can be found that any symmetric thin homogeneous

platform (circular, square, equilaterally triangular, etc.) can satisfy the above condi-

tions, which lead to Ixx = Iyy = 1
2
Izz. Hence the platform can be replaced by three

point masses. However, if the platform has a nonzero thickness or is not symmetric,

the above conditions cannot be satisfied (Bedford and Fowler, 1996). In this case, the

platform could be replaced by four non-coplanar point masses. Consequently, four legs

could be used and the attachment points of the legs on the platform must not lie on

one plane in order to obtain a reactionless 6-DOF parallel mechanism.

Once the equivalent point masses have been determined, each of the point masses

is included in the corresponding 3-DOF leg and is considered in the balancing. By

dynamically balancing each of the three legs individually — including the point mass —

and attaching the legs — without the point masses — to a common platform satisfying

the above conditions, a reactionless 6-DOF parallel mechanism will be obtained. This
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result is correct because the redistribution of the internal forces due to the kinematic

constraints induced by the platform do not affect the dynamic balancing. Indeed, the

individual balancing of the legs is justified by the fact that dynamic balancing is a

property associated with the moving masses and inertia. In other words, although the

reaction forces and moments on the base of each leg may not be zero in the real system

with the solid platform — because of the distribution of the internal forces — the net

reactions on the base will be equal to zero.

For example, if the moving platform of the 6-DOF parallel mechanisms can be

replaced by three point masses (mpm = 0.05 kg), numerical examples of the reactionless

3-DOF leg parallelepiped mechanisms associated with Case I and II can be given in

Table 3.2 and Table 3.3 respectively and reactionless spatial 6-DOF parallel mechanisms

can finally be obtained.

The verification of the reactionless property of the 6-DOF parallel mechanism has

also been performed using ADAMS. Simulation models have been built using ADAMS

(Figure 4.14). Simulations have been performed for several arbitrary trajectories. The

resulting reaction forces and moments on the base are illustrated in Figure 4.15. The

results clearly demonstrate that the resulting reaction forces and moments on the base

are very small with respect to the joint forces and driving torques (with a ratio of

10−5 to 10−6) due to small modeling errors. Hence, it is clearly demonstrated that the

synthesized 6-DOF mechanisms are reactionless. These numerical simulation results

support the approach of using point masses to replace a platform introduced in this

chapter.

However, it is clear that replacing the platform by equivalent point masses may well

yield balancing conditions that are more restrictive than those that would be obtained

if the mechanism was balanced globally. Taking the 6-DOF parallel mechanism with 3

legs as an example, dynamic balancing of each 3-DOF leg mechanism independently is

equivalent to dynamically balancing a system with in total 9 degrees of freedom (i.e., 9

counter-rotations have to be added), while dynamic balancing of the 6-DOF mechanism

globally may be achieved using only 6 counter-rotations due to the constraints of the

moving platform.



95

(a) Case I

(b) Case II

Figure 4.14: Simulation of the 6-DOF parallel mechanisms using ADAMS.
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(a) Case I.

(b) Case II.

Figure 4.15: Verification of the reactionless property of the 6-DOF parallel mechanisms.
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4.8 Conclusion

This chapter presented the kinematic analysis and dynamic balancing of 6-DOF parallel

mechanisms using parallelepiped mechanisms. After describing the synthesis of 6-DOF

parallel mechanisms with three legs composed of parallelepiped mechanisms, the kine-

matic analysis including the inverse and direct kinematics as well as the determination

of singularity loci and workspace of the 6-DOF parallel mechanisms have been solved.

The Jacobian matrix of the mechanisms associated with different actuation schemes

have been derived. A geometrical algorithm and a discretization method have been

used for the determination of the workspace and singularity loci for the two cases of

the mechanism. The graphical representations that show the relationship between the

singularity loci and the constant-orientation workspace of the mechanisms have been

given. Finally, the dynamic equivalence between a platform and three point masses has

been discussed and the dynamic balancing of 6-DOF parallel mechanisms has also been

addressed. Numerical examples of reactionless 6-DOF mechanisms have been given

and, with the help of the dynamic simulation software ADAMS, it has been shown that

the mechanisms are reactionless for arbitrary trajectories.



Chapter 5

Synthesis of Reactionless Spatial

3-DOF and 6-DOF Mechanisms

Using Planar Four-bar Linkages

This chapter presents the synthesis of novel reactionless spatial 3-DOF and 6-DOF mech-
anisms without any separate counter-rotation, using four-bar linkages. Based on the con-
ditions of dynamic balancing of a single planar four-bar linkage developed elsewhere, the
spatial problem is shown to be equivalent to ensuring that the inertia tensor of reactionless
four-bar linkages remains constant when the planar mechanism(s) is(are) moving. The re-
actionless conditions for planar four-bar linkages undergoing spatial motion are first given.
Then, reactionless spatial 3-DOF mechanisms using four-bar linkages are synthesized. A nu-
merical example of the reactionless spatial 3-DOF mechanism is given and, with the help
of the dynamic simulation software ADAMS, it is shown that the mechanism is reactionless
for arbitrary trajectories. Finally, this mechanism is used to synthesize 6-DOF reactionless
parallel mechanisms.

98
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5.1 Introduction

In the preceding two chapters, the dynamic balancing of spatial 3-DOF parallelepiped

mechanisms and 6-DOF parallel mechanisms synthesized with parallelepiped mecha-

nisms have been achieved using counterweights and counter-rotations with fixed axis

and inertia. Actually, in order to obtain dynamically balanced mechanisms, most of the

authors in the literature on dynamic balancing have used additional counter-rotations.

However, adding counter-rotations to a mechanism increases its complexity and brings

some side effects, and then reduces its practicality significantly, especially in multi-

degree-of-freedom systems. Ricard and Gosselin (2000) have focused on the planar

four-bar linkage and obtained the complete balancing of the linkage in the plane as a

set of constraints on the geometric and inertial parameters of the links but without

separate counter-rotations. These dynamically balanced four-bar linkages have been

stacked up to synthesize reactionless planar 3-DOF parallel mechanisms (Ricard and

Gosselin 2000) and reactionless spatial 3-DOF parallel mechanisms (Vollmer and Gos-

selin, 2000; Gosselin et al., 2002). However, since the reactionless four-bar linkages

are balanced only in the plane, the stacked reactionless 2-DOF mechanisms — used as

legs to synthesize planar or spatial 3-DOF mechanisms — can only move in the plane.

Hence, these reactionless four-bar linkages cannot be directly used to synthesize reac-

tionless spatial 6-DOF mechanisms. Obtaining dynamically balanced four-bar linkages

which can move spatially (out of the plane) is a more challenging problem and is nec-

essary for the development of spatial reactionless multi-degree-of-freedom mechanisms

or manipulators having up to 6-DOF using four-bar mechanisms.

In this chapter, a general planar four-bar linkage is first considered in order to obtain

the conditions for its spatial dynamic balancing. Based on the conditions for dynamic

balancing of a planar four-bar linkage, it is shown that the spatial problem is equivalent

to ensuring that the inertia tensor of planar reactionless four-bar linkages remains

constant while the linkages are undergoing motion. Then, the reactionless conditions

for planar four-bar linkages moving spatially are derived and reactionless spatial 3-

DOF mechanisms using four-bar linkages without any separate counter-rotation are

synthesized. Finally, the latter mechanisms are used to synthesize 6-DOF reactionless

mechanisms which do not involve any separate counter-rotation.
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Figure 5.1: Planar four-bar linkage.

5.2 Reactionless Planar Four-Bar Linkages

Without Separate Counter-rotations

A general planar four-bar linkage with fixed base is shown in Figure 5.1. As indicated

in the figure, mi and li are the mass and length, respectively, of the ith bar, and d

is the distance between the two joints on the fixed base. The position of the center

of mass of bar i is described by parameters ri and ψi. Moreover, θi is the angular

position of bar i with respect to the X axis. By imposing that the center of mass of

the mechanism is fixed and that the total angular momentum is constant with respect

to a fixed point — in order to obtain a dynamically balanced mechanism — Ricard

and Gosselin (2000) have derived the dynamic balancing conditions for planar four-bar

linkages and have identified three families (designated here as Case I, Case II and Case

III respectively) of reactionless four-bar mechanisms. The mechanisms are represented

schematically in Figure 5.2. In each case, there are no separate counter-rotations, and

only counterweights are required for complete balancing.

For Case I, the balancing conditions are written as

ε = ±1, ψ1 = 0, ψ2 = 0, ψ3 = π, d = l1, l2 = l3,
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Figure 5.2: Three families of reactionless four-bar linkages.
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r2 = l2(1 +
m1r1
m2l1

), k2 =

√
m2r2(l2 − r2)− Ic1

m2

,

r3 =
m2r2l3
m3l2

, k3 =

√
−m3r3(l3 + r3)− Ic1

m3

(5.1)

for Case II,

ε = −1, ψ1 = π, ψ2 = 0, ψ3 = π, d = l2, l3 = l1,

r2 = l2(1−
m1r1
m2l1

), k2 =

√
m2r2(l2 − r2)− Ic1

m2

,

r3 =
m2r2l3
m3l2

, k3 =

√
−m3r3(l3 + r3) + Ic1

m3

(5.2)

and, for Case III,

ε = 1, ψ1 = π, ψ2 = π, ψ3 = 0, d = l3, l2 = l1,

r2 = −l1 +
m1r1
m2

, k2 =

√
Ic1 −m2r2(l2 + r2)

m2

,

r3 =
m2r2l3
m3l2

, k3 =

√
m3r3(l3 − r3)− Ic1

m3

(5.3)

where ε(= ±1) is the branch index (assembly mode of the four-bar linkage), i.e., the

sign used in the quadratic equation in the determination of θ2 and θ3 for a given θ1

(Appendix B), ki is the radius of gyration of the ith bar with respect to its center of

mass and Ic1 = m1k
2
1 +m1(r

2
1 − r1l1 cosψ1). It is pointed out that the above balancing

conditions impose strict constraints on the dimensional parameters of the linkage (and

on the assembly mode for Cases II and III). These dimensional constraints make all

three types of linkages “foldable”, i.e., all the bars can be aligned on the base. Therefore,

these mechanisms are generally not suitable for machinery where the input link must be

driven through full rotations. However, for multi-degree-of-freedom applications (e.g.

robotic applications), the above linkages can be considered as one-dof components

providing sufficient range of motion for many practical purposes.

By inspection of the three families of reactionless four-bar linkages in Figure 5.2, it

can be found that Case I and III are, structurally speaking, completely the same. They

are classified as two separate cases due to the difference in the mounting mode as well

as the actuation (i.e., the first link as input link). Nevertheless, for Case II, any of the

other two links except for the base link and the second link can be considered as input

link in eq. (5.2).
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Figure 5.4: Reactionless property of a dynamically balanced four-bar linkage.

Since the center of mass remains fixed for any configuration in a reactionless mech-

anism, the position of the center of mass of any mechanism in Figure 5.2 can be deter-

mined by considering a flat configuration (one in which all bars are aligned as shown

in Figure 5.3). Therefore, the center of mass lies on the base line OD at a distance r

from joint O. This distance can be obtained for each of the three cases as follows:

for Case I,

r =
m2l1 +m1r1 +m3l1

mt

(5.4)

while for Cases II and III,

r =
d(m2l1 −m1r1 +m3l1)

l1mt

(5.5)

where mt = m1 + m2 + m3. The radius of gyration kt for the whole mechanism with

respect to its center of mass can be written as follows:

kt =

√
Ig + Id −mtr2

mt

(5.6)

where

Ig = m1k
2
1 +m2k

2
2 +m3k

2
3

Id = m1r
2
1 +m2(l1 + r2)

2 +m3(d− r3)
2 (5.7)

Any planar four-bar mechanism satisfying one of the three sets of conditions given

above (eq. (5.1), (5.2) or (5.3)) will be reactionless and will behave, globally, as a rigid
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body in the plane — fixed center of mass and constant radius of gyration — when

undergoing planar motion. In other words, any motion of the linkage will induce zero

reaction force and moment on the base when the latter is fixed. Conversely, it is not

possible to induce internal motion of the mechanism by imparting linear and/or angular

accelerations to the base. Taking a dynamically balanced mechanism of Case II as an

example, there is no shaking force and shaking moment on the base due to its fixed

center of mass and zero angular momentum. Clearly, the resulting external force and

moment of the mechanism are zero. If we consider the balanced four-bar linkage as

a system isolated from the base (Figure 5.4), the external forces and moment are the

joint forces (Fox,Foy,Fdx,Fdy) and the actuator driving torque T acting on the system

(gravity is excluded and friction is neglected). Although the direction and magnitude

of the forces and torque depend on which motion is applied, the zero reaction force and

moment on the base always come from: Fox = Fdx, Foy = Fdy and T = dFdy and their

opposite directions. In other words, the reactions of the individual joint forces act on

the base and generate a couple to cancel the actuator reaction torque for any motion.

If the frictional torques are considered on the joints, the actuator driving torque and

the joint forces will be changed. But the resulting reaction moment on the base is still

T −Mf − dFdy = 0 (where Mf is the sum of frictional torques on joints O and D).

Namely, friction does not affect the results of dynamic balancing. Note that in a real

prototype the actuator inertia must be considered as part of the inertia of the input

link.

Notice that the above dynamic balancing conditions were derived on the assump-

tion that each link of the planar four-bar linkage is symmetric about the motion plane,

i.e., the products of inertia Ixz, Iyz of each link relative to its center of mass are zero.

Moreover, any mechanism behaving as a rigid body in the plane (i.e., fixed center of

mass and constant Izz) and having zero products of inertia (Ixz, Iyz) can be mounted

on the moving link (the first or third link) of the planar four-bar linkage to synthe-

size a reactionless mechanism with more degrees of freedom as long as the resulting

parameters of the moving link meet the corresponding dynamic balancing conditions

(eq. (5.1), (5.2) or (5.3)).

By inspection of eqs. (5.1–5.3), it is clear that infinitely many solutions exist and

hence each of the three families includes infinitely many linkages. However, the pa-

rameters cannot be chosen arbitrarily since the expressions appearing under the square

roots in the balancing conditions must be positive. Vollmer and Gosselin (2000) have
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Figure 5.5: Prototype of a reactionless four-bar linkage (Courtesy of Gabriel Côté).

investigated the feasibility domain in the design space and found that Case II pro-

vides the widest range of feasible values of design parameters and better compactness

properties. Hence, Case II is chosen for the design of reactionless four-bar linkages (Fig-

ure 5.5) and the synthesis of reactionless multi-degree-of-freedom parallel mechanisms

in Vollmer and Gosselin (2000) and in this chapter.

The manipulation of a reactionless four-bar linkage of Case II shown in Figure 5.5

also provides a convincing demonstration of the reactionless property. When holding

the base of the mechanism in one’s hand, it is not possible to induce motion of the four-

bar mechanism by imparting linear or angular accelerations to the base. By removing

some of the metal cylinders and hence creating some unbalance, this property is lost

and the result is clearly observable. Also, when holding the base in one hand and using

the other hand to push the mechanism to one of its limits, it is clearly felt that there

is no resulting reaction on the base when the mechanism hits its physical limit. Again,

comparing with the unbalanced mechanism, the illustration is convincing.
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5.3 Synthesis of Reactionless Planar and Spatial

3-DOF Parallel Mechanisms with Planar

Motion of Legs

Since a reactionless four-bar linkage behaves as a rigid body moving in a plane, it can

be mounted on the moving links of another planar four-bar linkage to synthesize a 2-

DOF reactionless planar mechanism. In this case, the “distal” four-bar linkage is first

balanced and then, its mass and inertia are added to the link on which it is attached to

perform the balancing of the “proximal” four-bar linkage. By repeating this procedure,

a multi-degree-of-freedom planar mechanism can be obtained simply by stacking the

four-bar linkages on each other.

An example of a planar 2-DOF mechanism obtained with this approach is shown

schematically in Figure 5.6 where the first index of the subscript stands for the number

of the link, while the second index stands for the number of the mechanism. Fig-

ure 5.6(a) shows the first dynamically balanced four-bar linkage (a point mass has been

considered at the end-effector if applicable but is not shown on the figure). The base

link of the first mechanism and the third link of the second four-bar mechanism are the

same link (the so-called common link). The global mass mm, center of mass (position

A) and radius of gyration of the first mechanism excluding the common link can be

calculated from eqs. (5.5) and(5.6). Figure 5.6(b) shows the second four-bar linkage

to be dynamically balanced. The center of mass of the common link with “naked”

mass m3wm, namely, without the first mechanism attached on it is located at position

B. Figure 5.6(c) shows the synthesized mechanism. The mass and inertia of the first

mechanism should be added to the common link. Hence, if the resulting mass m3,

center of mass r3 (position C) and radius of gyration with respect to C of the common

link and the attached first mechanism satisfy the balancing conditions of eqs. (5.2),

the second four-bar linkage will be dynamically balanced, i.e., the synthesized 2-DOF

mechanism will be reactionless. Note that all the centers of mass (i.e., A, B and C)

should be on the axis of the common link. The 2-DOF reactionless mechanism can be

used to synthesize reactionless 3-DOF parallel mechanisms. This can be achieved by

using the 2-DOF mechanism as a leg for the 3-DOF mechanism. By connecting three

such legs to a common platform, a 3-DOF reactionless mechanism can be obtained as

shown in Figure 5.7 (Vollmer and Gosselin, 2000).
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Figure 5.6: Sketch of the synthesis of a reactionless planar 2-DOF mechanism.
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(a) Planar 3-DOF mechanism

(b) Spatial 3-DOF mechanism.

Figure 5.7: Prototypes of reactionless 3-DOF parallel mechanisms (from Vollmer and

Gosselin, 2000).
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5.4 Reactionless Conditions for Planar Four-Bar

Linkages Undergoing Spatial Motion

A reactionless mechanism behaves, globally, as a single rigid body. Hence, a fixed center

of mass and a time-invariant inertia tensor are necessary conditions for the dynamic

balancing of a mechanism undergoing general spatial motion.

Moreover, since a reactionless planar four-bar linkage behaves as a rigid body mov-

ing in the plane, it can be mounted on the third (or first) link of another four-bar

linkage to synthesize a reactionless planar 2-DOF mechanism. By repeating this proce-

dure, a reactionless planar multi-degree-of-freedom mechanism can be obtained simply

by stacking the four-bar linkages on each other. However, the stacked reactionless

mechanisms can only move in the plane. In order to obtain a 2-DOF mechanism using

two four-bar linkages which undergoes spatial motion for further synthesis of spatial

multi-degree-of-freedom mechanisms, the attached four-bar linkage must be mounted

on the third link of the base four-bar linkage in such a way that the motion plane of

the former mechanism is not coplanar to that of the latter mechanism. Therefore, if

the attached mechanism behaves as a rigid body in space and the above synthesis and

balancing conditions are satisfied, the synthesized spatial mechanism will be reaction-

less. Yet, there is no guarantee that a reactionless planar four-bar linkage (Figure 5.2)

undergoing spatial motion will continue to behave as a rigid body in space. In order to

address the balancing for spatial motion, the inertia tensor of a general planar four-bar

linkage is now studied.

5.4.1 Determination of the Inertia Tensor of a Planar

Four-Bar Linkage

From Figure 5.1, the inertia tensors Ibi of the three mobile bars (i = 1, 2, 3) of a planar

four-bar linkage with respect to the local frames with origin at O — parallel to their

corresponding local frame X, Y — are written as follows:

Ib1 =


Ixx1 −Ixy1 0

−Ixy1 Iyy1 +m1r
2
1 0

0 0 Izz1 +m1r
2
1

 (5.8)
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Ib2 =


Ixxb2 −Ixyb2 0

−Ixyb2 Iyyb2 0

0 0 Izzb2

 (5.9)

Ib3 =


Ixxb3 −Ixyb3 0

−Ixyb3 Iyyb3 0

0 0 Izzb3

 (5.10)

with

Ixxb2 = Ixx2 +m2l
2
1 sin2 θa

Ixyb2 = Ixy2 +m2l1 sin θa(r2 + l1 cos θa)

Iyyb2 = Iyy2 +m2(r2 + l1 cos θa)
2

Izzb2 = Izz2 +m2(l
2
1 + r2

2 + 2l1r2 cos θa)

Ixxb3 = Ixx3 +m3d
2 sin2 θb

Ixyb3 = Ixy3 −m3d(r3 + d cos θb) sin θb

Iyyb3 = Iyy3 +m3(r3 + d cos θb)
2

Izzb3 = Izz3 +m3(d
2 + r2

3 + 2dr3 cos θb)

θa = θ1 − θ2 − ψ2

θb = θ3 + ψ3

where Ixxi, Iyyi, Izzi and Ixyi, i = 1, 2, 3 are the moments and product of inertia of the

ith bar relative to the local frame X, Y with origin at the center of mass of the bar.

Moreover, Izzi = mik
2
i . Since a planar four-bar linkage is symmetric about the plane of

motion, the products of inertia (Ixzi, Iyzi) of the ith bar are assumed to be zero.

The rotation matrix Qi giving the orientation of the local frame X, Y relative to

the global frame X, Y can be given by

Qi =


cos(θi + ψi) − sin(θi + ψi) 0

sin(θi + ψi) cos(θi + ψi) 0

0 0 1

 , i = 1, 2, 3 (5.11)

Then, the total inertia tensor I of the four-bar linkage relative to the global frame is

written as

I =
3∑

i=1

QiIbiQ
T
i
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=


Ixx −Ixy −Ixz

−Ixy Iyy −Iyz

−Ixz −Iyz Izz

 (5.12)

where all the components of the inertia tensor are functions of the parameters of the

four-bar linkage and will be discussed in the following sections.

5.4.2 Conditions for Obtaining a Planar Four-Bar Linkage

with a Constant Moment of Inertia Izz

In this subsection, the component of the inertia tensor associated with the moment of

inertia in a direction orthogonal to the plane of motion is first investigated.

In eq. (5.12), the total moment of inertia relative to the Z axis is found as

Izz = Ic + 2m2l1r2 cos(θ1 − θ2 − ψ2) + 2m3dr3 cos(θ3 + ψ3) (5.13)

with

Ic = Izz1 + Izz2 + Izz3 +m1r
2
1 +m2l

2
1 +m2r

2
2 +m3d

2 +m3r
2
3 (5.14)

Substituting the cosine and sine of θ2 and θ3 expressed in terms of θ1 (Appendix B)

into eq. (5.13) gives

Izz = Ic + A cosψ2 +B sinψ2 + C cosψ3 +D sinψ3 (5.15)

where

A =
m2r2(2l

2
1d

2 cos2 θ1 − (3l21 + l223 + d2)l1d cos θ1 + l21(l
2
1 + l223 + d2)− ε∆d4)

(2l1d cos θ1 − l21 − d2)l2
(5.16)

B =
m2r2d(−2l21d cos3 θ1 − (l21 + l223 + d2)l1 sin2 θ1 + (2l21 + ε∆d2)d cos θ1 − ε∆l1d

2)

(2l1d cos θ1 − l21 − d2)l2 sin θ1

(5.17)

C =
m3r3(2l

2
1d

2 cos2 θ1 − (l21 − l223 + 3d2)l1d cos θ1 + d2(l21 − l223 + d2)− ε∆d4)

(2l1d cos θ1 − l21 − d2)l3
(5.18)
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D =
m3r3d(2l

3
1d cos3 θ1 + (l21 − l223 + d2)l21 sin2 θ1 − (2l21 + ε∆d2)l1d cos θ1 + ε∆d4)

(2l1d cos θ1 − l21 − d2)l1l3 sin θ1

(5.19)

l223 = l22 − l23 (5.20)

where ε and ∆ are defined in Appendix B.

Clearly, it is impossible for coefficients A,B,C and D to be all zero for any value of

θ1. By inspection of eqs. (5.15), (5.17) and (5.19), it is found that sinψ2 and sinψ3 must

be zero in order to obtain a constant value (zero) of the fraction B sinψ2 +D sinψ3 due

to the existence of the cosine and sine of θ1 in both the numerator and denominator of

the fraction.

Letting T = A cosψ2 + C cosψ3, then one has

T =
B2 cos2 θ1 +B1 cos θ1 +B0

(2l1d cos θ1 − l21 − d2)l2l3
(5.21)

where Bi is a function of the constant parameters of the four-bar linkage, calculated

from eqs. (5.16) and (5.18).

Suppose that eq. (5.21) can be decomposed as follows

T = (A2 cos θ1 + A1) +
A0

(2l1d cos θ1 − l21 − d2)
(5.22)

By comparing the coefficients of the polynomials in cos θ1 in eqs. (5.21) and (5.22), one

has the following linear system of equations.
1 −(l21 + d2) 0

0 2l1d −(l21 + d2)

0 0 2l1d



A0

A1

A2

 =
1

l2l3


B0

B1

B2

 (5.23)

Then, [A0 A1 A2 ]T can be obtained as follows:

A0 =
(m2r2l3 cosψ2 +m3r3l2 cosψ3)(l

2
1l

2
2 − l21l

2
3 + l23d

2 − l22d
2 − 2ε∆d4)

2l2l3
(5.24)

A1 =
m2r2l3 cosψ2(l

2
3 − 2l21 − l22) +m3r3l2 cosψ3(l

2
2 − 2d2 − l23)

2l2l3
(5.25)
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A2 =
l1d(m2r2l3 cosψ2 +m3r3l2 cosψ3)

l2l3
(5.26)

From eq. (5.22), it can be found that only if A0 = A2 = 0 then T (and hence Izz) will

be constant, namely,

m2r2l3 cosψ2 +m3r3l2 cosψ3 = 0 (5.27)

Since sinψ2 and sinψ3 must be zero, as found previously, the values of cosψ2 and cosψ3

in eq. (5.27) must be opposite due to the positive geometric parameters. Hence, over

the interval [0, 2π[, one can finally obtain

ψ2 = 0, ψ3 = π (5.28)

or

ψ2 = π, ψ3 = 0 (5.29)

and

r3 =
m2r2l3
m3l2

(5.30)

Then

Izz = Ic ±
m2r2(l

2
3 − l21 − l22 + d2)

l2
(5.31)

Hence, eqs. (5.28) (for Case I and Case II of Figure 5.2) or (5.29) (for Case III) and

(5.30) are the conditions for a planar four-bar linkage to have a constant moment of

inertia relative to the Z axis.

By comparing the two sets of conditions with eqs. (5.1–5.3), it is found that the

conditions for constant moment of inertia (Izz) are a subset of the dynamic balancing

conditions in the plane, as it should be.

5.4.3 Conditions for Constant Moments of Inertia (Ixx, Iyy) of

a Planar Four-Bar Linkage

In this section the possibility of obtaining constant moments of inertia relative to the

X and Y axes (Ixx, Iyy) for a single planar four-bar linkage with constant Izz will be

investigated.
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The moment of inertia Ixx is first studied. Suppose that all the bars are symmetric,

namely, the inertia products are zero, i.e., Ixyi = Ixzi = Iyzi = 0. Also, from eqs. (5.1–

5.3), we know that ψ1 = 0 (for Case I) or ψ1 = π (for Case II). Substituting eqs. (5.28)

and (5.30) into eq. (5.12), one can finally obtain

Ixx =
B4 cos4 θ1 +B3 cos3 θ1 +B2 cos2 θ1 +B1 cos θ1 +B0

(2l1d cos θ1 − l21 − d2)2
(5.32)

where Bi is a function of the constant parameters of the four-bar linkage (Appendix

C).

Suppose that eq. (5.32) can be decomposed as follows

Ixx = (A4 cos2 θ1 + A3 cos θ1 + A2) +
A1

(2l1d cos θ1 − l21 − d2)
+

A0

(2l1l2 cos θ1 − l21 − d2)2
(5.33)

By comparing the coefficients of the polynomials in cos θ1 in eqs. (5.32) and (5.33), one

has the following linear system of equations.

1 −V V 2 0 0

0 2U −4UV V 2 0

0 0 4U2 −4UV V 2

0 0 0 4U2 −4UV

0 0 0 0 4U2





A0

A1

A2

A3

A4


=



B0

B1

B2

B3

B4


(5.34)

where U = l1d, V = l21 + d2.

Then, [A0 A1 A2 A3 A4 ]T can be obtained (Appendix C). From eq. (5.33), it

is clear that only if A0 = A1 = A3 = A4 = 0 then Ixx could be constant, i.e., Ixx = A2.

Finally, the conditions for constant Ixx — the three independent solutions of A0 =

A1 = A3 = A4 = 0 — are derived as

Ixx1 − Iyy1 =
m1r

2
1l2 +m2l

2
1l2 −m2r2l

2
1

l2
(5.35)

Ixx2 − Iyy2 = m2r
2
2 −m2r2l2 (5.36)

Ixx3 − Iyy3 =
m2

2r
2
2l

2
3 +m2m3r2l2l

2
3

m3l22
(5.37)

Furthermore, substituting eqs. (5.35–5.37) into (5.12) leads to a constant and prin-

cipal inertia tensor. In other words, the three principal moments of inertia are all

constant and all the products of inertia are zero.
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Similarly, for Case III, suppose that Ixyi = Ixzi = Iyzi = 0 and ψ1 = π, substituting

eqs. (5.29) and (5.30) into eq. (5.12) and using the same procedure as above leads to

the following set of conditions for constant Ixx and Iyy for this case.

Ixx1 − Iyy1 = m1r
2
1 +m1r1l1 (5.38)

Ixx2 − Iyy2 =
m2

1r
2
1 −m1m2r1l1

m2

(5.39)

Ixx3 − Iyy3 = m3r
2
3 −m3r3l3 (5.40)

Given the above results, it may seem possible for a single planar four-bar linkage

to have a constant spatial inertia tensor while moving. However, from the balancing

conditions (5.2) for Case II where r2 < l2 and eq. (5.36), one can write

|Ixx2 − Iyy2| − Izz2 = Ic1 = Izz1 +m1(r
2
1 + r1l1) > 0 (5.41)

i.e.,

|Ixx2 − Iyy2| > Izz2 (5.42)

Clearly, this is impossible since the difference between any two components must

be smaller than or equal to the third one for the three principal moments of inertia of

any rigid body (Appendix D).

It has also been proved, with the help of the corresponding balancing conditions of

the discussed case — as in Case II — that condition (5.35) of Case I and condition

(5.40) of Case III cannot be satisfied. This means that it is impossible for a single

planar dynamically balanced four-bar linkage without separate counter-rotation to have

constant moments of inertia Ixx and Iyy while moving. In other words, a single planar

four-bar linkage can only behave as a rigid body in the plane but not for a spatial

motion. Hence, it cannot be dynamically balanced for spatial motion.

5.4.4 Synthesis of a Constant Inertia Tensor Mechanism

Using a Pair of Planar Four-bar Linkages

Since it is impossible for a single planar dynamically balanced four-bar linkage to main-

tain a constant inertia tensor when undergoing spatial motion, the possibility for a
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mechanism composed of a pair of planar dynamically balanced four-bar linkages is in-

vestigated in this section. Figure 5.8 is a schematic representation of this composition.

The two dynamically balanced four-bar linkages are arranged perpendicularly. The base

links and the input links of the two mechanisms are fixed perpendicularly respectively.

Hence, the two mechanisms move simultaneously (namely with same values of θ1, θ2

and θ3) if the lengths of the corresponding bars of the two mechanisms are equal or

have the same ratio. This composite mechanism has one degree of freedom. The idea

of using such a mechanism arose from the observation that the sum of the moments

of inertia Ixx and Iyy of a single dynamically balanced four-bar linkage is constant for

any value of θ1. Hence, the composite mechanism emerges from the conjecture that

by placing the mechanisms orthogonally, the components of the inertia tensor will be

functions that may remain constant. This conjecture will now be verified. In the no-

tation of Figure 5.8, the first index of the subscript is used for the number of the link,

while the second index represents the number of the mechanism. Moreover, subscript

b stands for base links. The pair of four-bar mechanisms used here are of type II.

However, mechanisms of type I or III could also be used. Indeed, it has been proved

that the planar dynamically balanced four-bar linkages of the other two cases (Case

I and III) can also be synthesized as constant inertia tensor mechanisms for spatial

motion. However, it has been found that there are more possibilities of interference

in the synthesis for the latter two cases. Furthermore, there is much more freedom in

the choice of the design parameters in Case II than in the other two cases (Gosselin

et al. 2002). Therefore, the four-bar linkages of Case II are taken as components to

synthesize reactionless multi-degree-of-freedom mechanisms in the present work.

First, assume that the base links of the two four-bar linkages are fixed and u and

v represent respectively the ratios of the lengths and masses of the corresponding bars

of the two mechanisms, i.e.,

li2 = uli1 (5.43)

mi2 = vmi1 (5.44)

After obtaining each inertia tensor Ii of the four-bar linkages, the total inertia tensor

Itwb — where the subscript t means total while wb means without base links — of the

composite mechanism with respect to the global frame X, Y can be written as

Itwb = I1 + Q4I2Q
T
4 (5.45)
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where

Q4 =


0 1 0

−1 0 0

0 0 1

 (5.46)

Finally from eq. (5.45) it is found that to obtain a composite mechanism with

constant inertia tensor the relationship between u and v should be as follows:

v =
1

u2
(5.47)

This result implies that the principal moments of inertia of the corresponding bars

of the two mechanisms relative to their centers of mass should be equal.

After substituting eq. (5.47) into (5.45), the following constant and principal inertia

tensor can be obtained.

Itwb =


Ixxtwb 0 0

0 Iyytwb 0

0 0 Izztwb

 (5.48)

where

Ixxtwb = Iyytwb = [(m21 +m31)m
2
21l

4
11 − 2m11m

2
21l

3
11r11 +m21m31l

2
11(Ixx11 +

Iyy11 + Ixx21 + Iyy21 + Ixx31 + Iyy31 +m11r
2
11 +m21l

2
21 +m31l

2
21) +

m2
11m21l

2
11r

2
11 − 2m11m21m31l11l

2
21r11 +m2

11m31l
2
21r

2
11]/(m21m31l

2
11) (5.49)

Izztwb = 2Izz (5.50)

Then, assume that the base links are mobile and symmetric with masses mb1 and

mb2, hence the total mass M and center of mass — described by a distance rt and an

angle β in Figure 5.8 — of the composite mechanism can be written as

M = mt1 +mt2 (5.51)

rt =

√
(mt1xg1)2 + (mt2yg2)2

M
(5.52)

tan β =
mt2yg2

mt1xg1

(5.53)



119

X

m

m

m

m

m

m

m

21

3112

22

32

b1

β

θ1

r
11

t

Mmb2

X

Y

O1

θ1

O

Y

Figure 5.8: Synthesis of a constant inertia tensor mechanism.

with

mt1 = m11 +m21 +m31 +mb1 (5.54)

mt2 = m12 +m22 +m32 +mb2 (5.55)

xg1 =
l21(m21l11 −m11r11 +m31l11) +mb1l11rb1

mt1l11

(5.56)

yg2 =
l22(m22l12 −m12r12 +m32l12) +mb2l12rb2

mt2l12

(5.57)

where rbi is the distance from joint O to the center of mass of the ith base link while

xg1 and yg2 are the coordinates of the corresponding center of mass of the individual

four-bar linkages including base links. It is apparent that the center of mass of a four-

bar linkage including the base link is situated on its base line, namely on the axis of

the frame. The total inertia tensor of the two base links relative to global frame X, Y

is written as

Itb =


Ixxtb 0 0

0 Iyytb 0

0 0 Izztb

 (5.58)

with

Ixxtb = Ixxb1 + Iyyb2 +mb2r
2
b2 (5.59)
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Iyytb = Iyyb1 + Ixxb2 +mb1r
2
b1 (5.60)

Izztb = Izzb1 + Izzb2 +mb1r
2
b1 +mb2r

2
b2 (5.61)

where Ixxbi, Iyybi and Izzbi are moments of inertia of the base link of the ith four-bar

linkage relative to the center of mass of the base link.

Finally, the inertia tensor of the composite mechanism relative to the local frame

X, Y — with origin O1 at the center of mass of the total mechanism and the X axis

passing through joint O and the center of mass — can be obtained as

Itg = Q5(Itwb + Itb)Q
T
5 −R

=


Ixxtg −Ixytg 0

−Ixytg Iyytg 0

0 0 Izztg

 (5.62)

where

Q5 =


cos β − sin β 0

sin β cos β 0

0 0 1

 (5.63)

R =


0 0 0

0 Mr2
t 0

0 0 Mr2
t

 (5.64)

Ixxtg = Iyytwb + Ixxtb cos2 β + Iyytb sin2 β (5.65)

Iyytg = Ixxtwb + Ixxtb sin2 β + Iyytb cos2 β −Mr2
t (5.66)

Izztg = Izztwb + Izztb −Mr2
t (5.67)

Ixytg = sin β cos β(Iyytb − Ixxtb) (5.68)

From eqs. (5.59), (5.60), (5.62) and (5.68), it is clear that a principal inertia tensor

Itg can be obtained only if Ixytg is equal to zero, i.e.,

Iyytb = Ixxtb (5.69)

or

Iyyb2 = Iyyb1 − Ixxb1 + Ixxb2 +mb1r
2
b1 −mb2r

2
b2 (5.70)

This condition can be satisfied by properly choosing the mass and inertia of the

base links of the two four-bar linkages.
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Figure 5.9: Synthesis of reactionless multi-degree-of-freedom mechanisms.

5.4.5 Synthesis of Reactionless Multi-degree-of-freedom

Mechanisms

A planar dynamically balanced four-bar linkage can be considered as a rigid body

when moving in the plane while the composite mechanism discussed in the preceding

subsection can be regarded as a rigid body when moving spatially. Therefore, they

can be attached on the third bar of another four-bar linkage to synthesize reactionless

2-DOF mechanisms.

A schematic representation of the synthesis principle is shown in Figure 5.9. A

mechanism of mass mm, behaving as a rigid body as mentioned above is attached on

the third bar with mass m3wm of a planar four-bar linkage with a fixed base. The center

of mass of the attached mechanism is located on the axis of the third bar. A global

frame X, Y, Z with origin at the fixed point O and a local frame X, Y , Z with origin

at the center of mass of the attached mechanism and with X direction along the axis

of the third bar are shown in the figure. The subscript wm stands for without attached

mechanism while m stands for the attached mechanism.
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The resulting parameters of the third bar and the attached mechanism which include

the resulting mass m3, center of mass r3 and radius of gyration k3 relative to the

resulting center of mass can be written as

m3 = m3wm +mm (5.71)

r3 =
mmrm −m3wmr3wm

m3

(5.72)

Izz3 = m3k
2
3 = Izz3wm +m3wm(r3wm + r3)

2 + Izzm +mm(rm − r3)
2. (5.73)

If the attached mechanism is a planar four-bar linkage — mounted in the motion

plane of the base mechanism — clearly Ixzm and Iyzm are zero. Whereas if the attached

mechanism is the composite mechanism which is mounted on a plane orthogonal to the

motion plane of the base mechanism and with the same X direction as in Figure 5.8

(i.e., the Z direction is identical to the Y direction in Figure 5.8) — then Ixzm and

Iyzm are zero since the inertia tensor of the composite mechanism relative to its local

frame (Figure 5.8) is principal under the condition of eq. (5.69) or (5.70). Clearly, if

the resulting parameters (eq. (5.71–5.73)) and other parameters of the base mechanism

meet the balancing conditions in eq. (5.2), the synthesized mechanism will then be

reactionless. This result will be confirmed by the calculation of the linear momentum

and angular momentum of the synthesized mechanism.

Apparently, the synthesized mechanism has a fixed center of mass (see eq. (5.5)),

i.e., zero linear momentum. Moreover, the angular momentum with respect to the fixed

point O and the global frame of the synthesized mechanism can be written as

ho =
2∑

i=1

(hgi + rgi ×miṙgi) + hg3wm + rg3wm ×m3wmṙg3wm +

Q6IgmQT
6 θ̇m + rgm ×mmṙgm (5.74)

with

rg1 =


r1 cos(θ1 + π)

r1 sin(θ1 + π)

0

 , rg2 =


l1 cos θ1 + r2 cos θ2

l1 sin θ1 + r2 sin θ2

0



rg3wm =


d+ r3wm cos θ3

r3wm sin θ3

0

 , rgm =


d+ rm cos(θ3 − π)

rm sin(θ3 − π)

0



hgi =


0

0

Izziθ̇i

 , hg3wm =


0

0

Izz3wmθ̇3

 , θ̇m =


0

0

θ̇3


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Q6 =


cos(θ3 − π) − sin(θ3 − π) 0

sin(θ3 − π) cos(θ3 − π) 0

0 0 1



Igm =


Ixxm −Ixym −Ixzm

−Ixym Iyym −Iyzm

−Ixzm −Iyzm Izzm


where Igm is the inertia tensor of the attached mechanism relative to the local frame

(Ixym = 0 if the attached is a composite mechanism) while Q6 is the rotation matrix of

the local frame with respect to the global frame.

Substituting all the above parameters into eq. (3.9), one has

ho =


0

0

hoz

 , (5.75)

where

hoz = [Izz1 +m1r
2
1 +m2(r2l1 cos(θ2 − θ1) + l21)]θ̇1 +

[Izz2 +m2(r2l1 cos(θ2 − θ1) + r2
2)]θ̇2 +

[Izz3wm + Izzm +m3wmr3wm(d cos θ3 + r3wm)−

mmrm(d cos θ3 − rm)]θ̇3 (5.76)

Substituting eqs. (5.2), (5.71–5.73) and (B.3–B.4) into (5.76) leads to hoz = 0. i.e.,

ho = 0. Hence, the synthesized mechanism has a fixed center of mass and zero angular

momentum, namely, the mechanism is dynamically balanced.

Since the synthesized mechanism is reactionless, it still behaves as a rigid body

moving in the plane of the base four-bar linkage. Hence, the synthesized mechanism can

be attached on the third bar of another planar dynamically balanced four-bar linkage

in order to obtain spatial reactionless mechanisms with more degrees of freedom.

5.5 Synthesis of Reactionless Spatial 3-DOF

Mechanisms

Now that two basic mechanisms — a single planar dynamically balanced four-bar link-

age and a planar composite mechanism with a pair of four-bar linkages — have been
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Figure 5.10: Conceptual CAD model of a reactionless spatial 3-DOF mechanism.

obtained, reactionless multi-degree-of-freedom mechanisms can be synthesized accord-

ing to the synthesis principles and constraint conditions discussed in the above sections.

Figure 5.10 schematically shows the synthesis of a reactionless spatial 3-DOF mecha-

nism composed of these two basic mechanisms (counterweights are not shown on the

figure). Two planar four-bar linkages are stacked in the horizontal plane, while a com-

posite mechanism is rigidly attached on the third bar of the second planar four-bar

linkage in the vertical plane. The numbering of the four-bar mechanisms starts from

that with a fixed base link. Since a reactionless 6-DOF parallel manipulator using

four-bar linkages will be constructed in the next section, a point mass is considered

here at the end-effector. Indeed, the 6-DOF manipulator will be composed of three legs

connecting the base to a common thin platform. Each of the three legs will consist of

the reactionless 3-DOF mechanism shown in Figure 5.10. The mass and inertia of the

platform are distributed among the attachment points of the legs and replaced by three

point masses mp. Hence, starting from this point mass, all the parameters of the bars

of the four-bar mechanisms are chosen or calculated using the reactionless conditions.

Finally a numerical example of this reactionless 3-DOF mechanism is given in Table 5.1

(point mass mp = 0.1143kg). Note that if a point mass, a four-bar linkage or a com-

bination of mechanisms is attached on one element of another four-bar linkage, the

parameters of the latter element in the table are actually the resulting parameters of

the element and the attached mechanisms. For example, the parameters (m32, r32, k32)

in the table are resulting quantities of the third bar of the second four-bar linkage and

the composite mechanism.
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Table 5.1: A numerical example of the reactionless spatial 3-DOF mechanism.

Parameters 1st Four-bar 2nd Four-bar
Composite Mechanism

3rd Four-bar 4th Four-bar

m1j (kg) 16.386 5 0.7 2.8

m2j (kg) 30.178 5 0.5 2.0

m3j (kg) 21.475 10.875 0.775 3.1

mbj (kg) 0.4 0.2

l1j (mm) 1608 812 500 250

l2j (mm) 5000 2500 1000 500

l3j (mm) 1608 812 500 250

lbj (mm) 1000 500

r1j (mm) 804 285 174.46 87.23

r2j (mm) 3642.55 1622.54 511.5 255.75

r3j (mm) 1646.19 242.3 165 82.5

rbj (mm) 500 250

k1j (mm) 2673.709 636.766 197.312 98.656

k2j (mm) 100 840 175 87.5

k3j (mm) 1255.93 273.337 178.106 89.053

Furthermore, from eqs. (5.2), (5.49–5.70), it is found that besides the parameters

given in the table, some additional parameters of the composite mechanism (i.e., the

third and fourth four-bar mechanisms) have an influence on the dynamic balancing.

These parameters are as follows, namely, Iyyb3 = 3.3 × 104kg · mm2, Ixx1j = Ixx2j =

Ixx3j = Ixxbj = 6kg ·mm2, Iyy1j = Izz1j = m1jk
2
1j, Iyy2j = Izz2j = m2jk

2
2j, Iyy3j = Izz3j =

m3jk
2
3j, j = 3, 4.

The verification of the reactionless property is performed using ADAMS. For the

above example mechanism, a simulation model is built using ADAMS. Simulations

have been performed for several arbitrary trajectories. The resulting reaction forces and

moments on the base are illustrated in Figure 5.11. The results clearly demonstrate that

the resulting reaction forces and moments on the base are very small with respect to

the joint forces and driving torques (with a ratio of 10−5 to 10−6). Indeed, the reaction

forces and moments obtained are most likely due to small modeling errors. Hence, it

is clearly shown that the synthesized spatial 3-DOF mechanisms can be completely
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Figure 5.11: Verification of the reactionless property of the 3-DOF mechanism.

balanced. In other words, there are no reaction forces and moments on the base at all

times, for arbitrary trajectories.

Note that the parameters of the example reactionless mechanism (Table 5.1) were

not determined by optimization due to the complexity of the optimization for whole

system. As was the case with other dynamically balanced mechanisms, this reactionless

3-DOF mechanism was achieved at the expense of a substantial mass increase of the

system and complexity of the mechanism. The total masses of the composite mecha-

nism, the second and the first mechanisms are 9.875, 20.875 and 68.039 kg respectively.

We can approximately express this mass relationship with 1:2:7. Kinematically, this

mechanism can be regarded as a spatial three-link serial chain. The mass variation of

the distal link produces great influence for the balancing of the successive links. Hence,

if we can decrease the mass of the composite mechanism, the total system mass will

decrease greatly. For instance, if we choose the same link lengths for both four-bar

linkages in the composite mechanism (i.e., u = 1), the same link masses can then be

determined for both four-bar linkages (i.e., v=1). Therefore, if the total mass of the

composite mechanism is decreased from 9.875 to 3.95, then, the total mass of the system



127

will be about 27.65 kg by multiplying 3.95 with 7 according to the above mass relation-

ship. Moreover, there are some other possibilities to further decrease the system mass

and shrink the reactionless 3-DOF mechanism. For example, changing the position of

the attachment point of two four-bar linkages (e.g., from point P to P ′ in Figure 5.12)

leads to the decrease of r3 and k3, then m1, m2 as well as the lengths of all links of the

fixed four-bar linkage. Similarly, decreasing the length of the extension part of the link

connected to the end-effector (or platform) can also lead to the similar results for the

successive four-bar mechanisms. Moreover, an optimization for the whole mechanism

with the considerations of the above factors and detailed parameters using dimensional

variables specifically tailored to the link geometry will definitely decrease the system

mass and shrink the whole reactionless 3-DOF mechanism.

Compared with a three-link serial chain dynamically balanced using the conven-

tional method (Section 3.7), the reactionless 3-DOF mechanism with four-bar linkages

has more moving links and larger system size for the same payload. However, this

does not necesarily imply greater system mass because neither system has been opti-

mized yet. Moreover, three separate counter-rotations have to be used for dynamically

balancing the three-link serial chain. The design of separate counter-rotations is nor-

mally complicated (Figure 1.5) relative to the initial mechanism. Furthermore, using

counter-rotations like gear inertia counterweights under cyclic torque variation may

generate noise rattling (Esat and Bahai, 1999). Additionally, adding an actuator, a

counterweight and a counter-rotation in each pivot of the serial chain is a difficult de-

sign. Therefore, the most important advantage of the reactionless 3-DOF mechanism

presented in this chapter is that the use of additional separate counter-rotations and

their side effects are avoided. Moreover, it is easy to design and manufacture a practical

dynamically balanced system with only counterweights and revolute joints.

5.6 Synthesis of Reactionless Spatial 6-DOF

Parallel Mechanisms

The spatial 3-DOF mechanism mentioned above can be used as a leg to synthesize

spatial multi-degree-of-freedom — having up to 6-DOF — parallel mechanisms or ma-

nipulators. As discussed in Chapter 4, a 6-DOF parallel mechanism can be obtained
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Figure 5.12: Attachment point of two four-bar linkages.

using only three such legs and two actuators for each leg and spherical joints to con-

nect legs to the mobile platform. The spatial 6-DOF parallel mechanism schematically

represented in Figure 5.13 (counterweights are not shown on the figure) is composed of

three identical legs symmetrically connecting the fixed base to a common thin platform.

Each of the three legs is a spatial 3-DOF mechanism (Figure 5.10).

In order to simplify the dynamic balancing for spatial multi-degree-of-freedom par-

allel mechanisms with several legs, as addressed in Chapter 4, the dynamic balancing

for each detached leg mechanism is considered independently, if the mobile platform is

replaced by point masses located at the points of attachment of the legs to the platform.

For the spatial 6-DOF parallel mechanism of this chapter, the mass and inertia of the

thin platform can be replaced by three identical point masses mpm on the attachment

points symmetrically arranged on a plane.

When the equivalent point masses have been determined according to eqs. (4.43–

4.45), each of the point masses is included in the corresponding 3-DOF leg mechanism

and is considered in the balancing. By dynamically balancing each of the three legs

individually — including the point mass — and attaching the legs, without the point

masses, to a common platform satisfying the above conditions, a reactionless 6-DOF

parallel mechanism will be obtained. Hence starting from this point mass, all the

parameters of the bars of the four-bar mechanisms are chosen or calculated under

the reactionless conditions. For example, if a mobile platform can be replaced by

three point masses (mpm = 0.1143kg) a numerical example of the reactionless 3-DOF
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Figure 5.13: Conceptual CAD model of a reactionless spatial 6-DOF parallel mecha-

nism.

leg mechanism can be given in Table 5.1 and a reactionless spatial 6-DOF parallel

mechanism can finally be obtained.

The verification of the reactionless property of the spatial 6-DOF parallel mechanism

is also performed using ADAMS. For the above example mechanism, a simulation model

is built using ADAMS (Figure 5.14). Simulations have been performed for several

arbitrary trajectories. The resulting reaction forces and moments on the base are

illustrated in Figure 5.15. The results clearly demonstrate that the resulting reaction

forces and moments on the base are very small with respect to the joint forces and

driving torques (with a ratio of 10−5 to 10−6) due to small modeling errors. Hence, it is

clearly demonstrated that the synthesized spatial 6-DOF mechanisms are reactionless.

These numerical simulation results support the formal mathematical proof and the

algorithm using point masses to replace a platform used in this thesis.
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Figure 5.14: Modeling of reactionless 6-DOF mechanisms using ADAMS.

Figure 5.15: Verification of the reactionless property of the 6-DOF mechanisms.
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5.7 Conclusion

The reactionless conditions for planar four-bar linkages moving spatially and the synthe-

sis of novel reactionless spatial 3-DOF and 6-DOF mechanisms using four-bar linkages

without additional counter-rotations have been addressed in this chapter. Based on

the conditions of dynamic balancing of a single planar four-bar linkage moving in the

plane, the spatial problem has been addressed. It has been shown that a single planar

four-bar linkage cannot be dynamically balanced when moving spatially. However, it

has been found that a mechanism composed of a pair of connected planar reactionless

four-bar linkages has the property of a rigid body — a fixed center of mass and a con-

stant inertia tensor — and can be dynamically balanced in space by being attached

on another four-bar linkage undergoing planar motion in a plane perpendicular to the

composite pair of four-bar linkages under the condition of the principal inertia tensor

of the composite mechanism and the balancing conditions for a planar four-bar linkage.

Then, reactionless spatial 3-DOF mechanisms using four-bar linkages have been synthe-

sized. A numerical example of a reactionless spatial 3-DOF mechanism has been given

and, with the help of the dynamic simulation software ADAMS, it has been shown that

the mechanism is reactionless for arbitrary trajectories. Finally, a 6-DOF reaction-

less parallel mechanism has been synthesized. It is remarkable that such reactionless

mechanisms can be synthesized without introducing any separate counter-rotation.



Chapter 6

Kinematic Analysis of a

Reactionless Spatial 6-DOF Parallel

Mechanism Using Planar Four-bar

Linkages

In this chapter, the inverse kinematics and singularity analysis of a novel reactionless 6-DOF
parallel mechanism using four-bar linkages are presented. Three types of actuation schemes
of the mechanism are considered. The Jacobian matrix of the mechanism is first derived and
the six lines defined by the Plücker vectors associated with the six actuated joints of the
architecture are given. The linear dependencies between the corresponding lines are studied
using Grassmann line geometry, and the singular configurations are presented using simple
geometric rules. The expressions describing all the corresponding singularities are obtained
and the graphical representations that show the relationship between the singularity loci and
the constant-orientation workspace of the mechanism are given.

132
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6.1 Introduction

For a novel 6-DOF parallel mechanism, kinematic analysis is a critical issue in the

context of design and control. For the singularity analysis, as we mentioned in the

Introduction, an efficient approach is based on the roots of the determinant of the

Jacobian matrix (Gosselin and Angeles, 1990; Mayer St-Onge and Gosselin, 2000).

However, in some cases the closed-form expression of the determinant depends on the

Cartesian and the joint coordinates and is then of a very complex form. It is impossible

to find the roots of such an expression analytically. Another useful approach is based

on Grassmann line geometry (Merlet, 1989; Mouly and Merlet, 1992; Monsarrat and

Gosselin, 2001). The procedure leads to an exhaustive list of geometric conditions that

correspond to singularities.

In this chapter, the inverse kinematics of the reactionless 6-DOF parallel mechanism

synthesized in Chapter 5 will be solved. The Jacobian matrices of the mechanism

associated with different actuation schemes are derived and the corresponding lines

defined by the Plücker vectors will be given. The line geometry method is used here

to determine the conditions associated with the singular configurations. Finally, the

graphical representations that show the relationship between the singularity loci and

the constant-orientation workspace of the mechanism are given.

6.2 Geometric Description

The reactionless 6-DOF parallel mechanism schematically represented in Figure 5.13 is

composed of a fixed base and a very thin moving platform connected by three identical

legs. The legs are symmetrically arranged and are attached to the platform with spher-

ical joints. Each of the three legs is a spatial 3-DOF mechanism in which two planar

dynamically balanced four-bar linkages are stacked in the horizontal plane, while a pla-

nar composite mechanism — a pair of planar dynamically balanced four-bar linkages

arranged perpendicularly with one-degree-of-freedom— is rigidly attached on the third

bar of the second planar four-bar linkage in the vertical plane. A reactionless spatial

6-DOF parallel mechanism without separate counter-rotations is achieved under cer-

tain conditions as discussed in the preceding chapter. A schematic representation of
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Figure 6.1: Kinematic chain of one leg.
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the kinematic chain of one leg of the mechanism is shown in Figure 6.1. Any two of

the three revolute joints between the first bar and the base link of each four-bar linkage

can be actuated for each leg. Globally, six revolute joints are actuated for the whole

6-DOF mechanism. Three types of actuation schemes of the mechanism designated as

Case I, II and III respectively are considered in this thesis. In Case I, the first and

second four-bar linkages (numbered from the base to the end-effector in Figure 6.1a)

in the horizontal plane are actuated, while the first and third four-bar linkages as well

as the second and third one are actuated in Case II and III respectively. In order to

obtain a workspace as large as possible, for each leg, the attachment point on the base

Bi, the projection point P ′
i of point Pi on the base and point O are collinear in the

initial configuration of the mechanism.

A fixed reference frame O – xyz is attached to the base platform of the mechanism

and a moving coordinate frame O′ – x′y′z′ is attached to the moving platform. The

nomenclature of Chapter 4 is used here, namely, vectors p0i,pi,bi,Q and si are used.

The mounting angle of the leg mechanism noted ψi is defined as the angle made by the

base link of the first four-bar linkage of the leg with respect to the x-axis of the global

frame.

6.3 Inverse Kinematics

As mentioned in Chapter 4, for a given position and orientation of the moving platform,

the position vectors of attachment point Pi, i=1, 2, 3 expressed in the fixed coordinate

frame can be obtained from eq. (4.2).

Considering the ith leg mechanism, one can then write from the kinematic chain of

the leg

si = pi − p0i = d1i + d2i + lei + d3i + rpi (6.1)

with

p0i =


x0i

y0i

z0i

 , d1i =


d1 cosψi

d1 sinψi

0

 , d2i =


−d2 cosα1i

−d2 sinα1i

0


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lei =


le cosα2i

le sinα2i

0

 , d3i =


d3 cos β cosα2i

d3 cos β sinα2i

d3 sin β



rpi =


−rp cosα3i cosα2i

−rp cosα3i sinα2i

−rp sinα3i

 (6.2)

where

α1i = θ31i + ψi (6.3)

α2i = θ31i + θ32i + ψi (6.4)

α3i = θ33i + β (6.5)

where β is the angular position of the center of mass of the composite mechanism shown

in Figure 5.8, namely, the angle between the base link of the third four-bar linkage and

the base plane in the 6-DOF mechanism (Figure 6.1). The first index of the subscript

of a variable with three subscripts (e.g., θ11i) stands for the number of the bar, the

second index for the number of the four-bar linkage and the third one for the number

of the leg. Moreover, all variables (e.g., θ11i, d1i) are defined as in Chapter 5, simply

by adding one index i for the leg (i. e., θ11, d1 become θ11i, d1i).

Substituting all the vectors in eq. (6.2) and eqs. (6.3) – (6.5) into eq. (6.1) leads to
d1 cosψi − d2 cosα1i + Ai cosα2i

d1 sinψi − d2 sinα1i + Ai sinα2i

d3 sin β − rp sinα3i

 =


xi − x0i

yi − y0i

zi − z0i

 (6.6)

where

Ai = le + d3 cos β − rp cosα3i (6.7)

From eq. (6.6), two solutions for α3i, i.e., θ33i — obtained from the z component —

and four solutions for α1i and α2i respectively, i.e., θ31i and θ32i are obtained.

Moreover, from Figure 5.1 and Appendix A, the relationship between the input

joint angle θ1 and output joint angle θ3 for a four-bar mechanism of Type II (ε = −1

in Appendix A) can be written as follows

cos θ1 =
(l21 + l22) cos θ3 + 2l1l2
l21 + 2l1l2 cos θ3 + l22

(6.8)

sin θ1 =
(l21 − l22) sin θ3

l21 + 2l1l2 cos θ3 + l22
(6.9)
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Hence, four solutions for θ11i and θ12i and two solutions for θ13i — the joint coordinates

of the first bars of the three four-bar linkages in the ith leg — are finally obtained.

6.4 Direct Kinematics

The direct kinematic problem of the 6-DOF parallel mechanism using planar four-bar

linkages can also be shown to be equivalent to the direct kinematics of existing parallel

mechanisms or manipulators for which the solution has been shown to be reducible to

a 16th-order polynomial equation (Merlet 1992a; Nanua et al. 1990; Ebert-Uphoff and

Gosselin 1998).

6.5 Singularity Analysis

6.5.1 Jacobian Matrix

Differentiating eq. (6.1) with respect to time leads to

ṡi = Jiθ̇i (6.10)

where θ̇i = (θ̇11i, θ̇12i, θ̇13i)
T and Ji is the Jacobian matrix of leg i, which can be written

as follows

Ji =


B1i(d2 sinα1i − Ai sinα2i) −AiB2i sinα2i rpB3i cosα2i sinα3i

B1i(−d2 cosα1i + Ai cosα2i) AiB2i cosα2i rpB3i sinα2i sinα3i

0 0 −rpB3i cosα3i

 (6.11)

and

Bji =
sin(θ1ji − θ2ji)

sin(θ3ji − θ2ji)
, j = 1, 2, 3 (6.12)

The joint velocities θ̇i can be obtained from the following inverse Jacobian matrix.
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Ji
−1 =


− cos α2i cos α3i

g1i

− sin α2i cos α3i

g1i

− sin α3i

g1i

Ai cos α2i−d2 cos α1i

g2i

Ai sin α2i−d2 sin α1i

g2i

(Ai−d2cθ32i) tan α3i

g2i

0 0 −1
g3i

 (6.13)

where

g1i = B1id2 sin θ32i cosα3i (6.14)

g2i = AiB2id2 sin θ32i (6.15)

g3i = B3irp cosα3i (6.16)

The Jacobian matrix J of the whole mechanism, which describes the relationship be-

tween the velocities of the actuated joints and the platform velocity can be derived in

the same form and following the same procedure as in Chapter 4. One can write

J =


j1

:

j6

 (6.17)

with

jk = [vT
ji ((Qbi)× vji)

T ]1×6, k = 1, ..., 6 (6.18)

where vector vT
ji is actually the corresponding row of the leg inverse matrix in eq. (6.13).

For example, for the first type of actuation (Case I) — the first and second four-bar

linkages are actuated for each leg — the first and second rows of the matrix in eq. (6.13)

are taken as vji, j = 1, 2 to constitute the global Jacobian matrix J (eqs. (6.17) and

(6.18)). One can finally write the the following velocity equation:

Aẋ = Bθ̇ (6.19)

where

ẋ = [ṗT ωT ]
T

(6.20)

θ̇ = [ θ̇111θ̇112θ̇113θ̇121θ̇122θ̇123 ] (6.21)

A =



n11
T ((Qb1)× n11)

T

n12
T ((Qb2)× n12)

T

n13
T ((Qb3)× n13)

T

n21
T ((Qb1)× n21)

T

n22
T ((Qb2)× n22)

T

n23
T ((Qb3)× n23)

T


(6.22)
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B = diag(−g11,−g12,−g13, g21, g22, g23) (6.23)

n1i =


cosα3i cosα2i

cosα3i sinα2i

sinα3i

 (6.24)

n2i =


Ai cosα2i − d2 cosα1i

Ai sinα2i − d2 sinα1i

(Ai − d2 cos θ32i) tanα3i

 (6.25)

The singularities of Type I occur when det(B) = 0, i. e.,

3∏
i=1

B1id2 sin θ32i cosα3i

3∏
i=1

AiB2id2 sin θ32i = 0 (6.26)

This equation leads to singular conditions as follows

θ1ji − θ2ji = nπ, n ∈ Z, j = 1, 2 (6.27)

θ32i = nπ, n ∈ Z (6.28)

α3i = nπ +
π

2
, n ∈ Z (6.29)

α3i = 2nπ ± arccos(
le + d3 cos β

rp

), n ∈ Z (6.30)

Furthermore, the singularity of the ith leg mechanism can be obtained from the Jaco-

bian matrix Ji (eq. (6.11)) of the leg, namely,

det(Ji) = 0 (6.31)

then,

rpd2AiB1iB2iB3iθ32i cosα3i = 0 (6.32)

This equation leads to singular conditions which define the boundary of the constant-

orientation workspace of the 6-DOF parallel mechanism as shown in eq. (6.27–6.30)

plus an additional singular condition, i. e.,

θ13i − θ23i = nπ, n ∈ Z (6.33)

As shown by Zlatanov, Fenton and Benhabib (1995), the existence of invertible 6 × 6

Jacobian matrices A and B is not a sufficient condition for nonsingularity unless the

velocity equations between the active and passive joint velocities are defined. The 6-

DOF parallel mechanism of this chapter is an example of this situation. In other words,
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Figure 6.2: Constant-orientation workspace (Case I).

although the Jacobian matrices A and B are invertible, the singular configuration

occurs when the additional condition (eq. (6.33)) is satisfied.

For other types of actuations (Case II and III), the Jacobian matrices A and B

can be obtained by using vector n3i = [0 0 1]T and g3i to replace the corresponding

components. The singularities of Type I as well as the additional singular conditions

associated with Case II and III can also be obtained.

For the singularities of Type II, the closed-form expression of the determinant of

A is of a very complex form and it is impossible to find the the roots of such an

expression analytically. Hence, a discretization method is first used to determine the

singularity loci and the constant-orientation workspace. An example of the 6-DOF

parallel mechanism is given, the geometry of the three leg mechanisms has been chosen

in Section 5.5 and the mounting angles (3◦, 123◦ and 243◦) of the leg mechanisms as

well as two sets of radii (r, R) — (800, 6200) mm and (200, 5600) mm — of the mobile

platform and the base respectively are chosen. The position vectors p0i and bi can be

calculated from eqs. (4.7–4.8).

Figure 6.2 demonstrates the constant-orientation workspace of the example mech-

anism (Case I). Due to the limitation of workspace of the legs, the obtainable orienta-

tions for the example mechanism with larger platform is very limited. By contrast, the

orientation workspace for the mechanism with smaller platform is considerable. The
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Figure 6.3: Singularity locus and boundary of the workspace for different values of z

(Case I), (φ, θ, ψ) = (5◦, 0, 0), (r, R)=(800, 6200) mm.

singularity locus (inner thin curve) of Type II and the boundary (outer thick curve) of

the constant-orientation workspace for different values of z are shown in Figure 6.3.

6.5.2 Linear Dependencies of the Set of Lines for Case I

A geometric approach will now be used for the determination of the singularities of

Type II in the following sections. As we mentioned before, a line can be defined by its

Plücker vector (Merlet, 1989). Let two points on the line λ be M1 and M2. For any

reference frame, let a be the vector from point M1 to point M2, and let b be the vector

from the origin of the frame to point M1. The corresponding six-dimensional Plücker

vector Pλ is then defined by

Pλ = [aT (b× a)T ]
T

(6.34)

Actually, each row of matrix A associated with the actuated angle is a Plücker vector

associated with a line. Hence, three lines λ1i, λ2i, λ3i for each leg can be obtained from

vectors n1i,n2i,n3i as shown in Figure 6.1. All the lines pass through the attachment

point Pi. Line λ1i is along the third bar of the third four-bar linkage, line λ3i is parallel

to the z axis of the fixed frame, while line λ2i passes through Pi and a point which lies

on the vertical line through point Pj1i and with a distance hvi over the horizontal plane

through point Pi. The distance hvi can be calculated in the plane of the composite

mechanism. For the case of actuation study, only two of the three lines for each leg and
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Figure 6.4: Singularity locus and boundary of the workspace for different orientations

(Case I), (r, R)=(200, 5600) mm and z=900 mm.

globally 6 lines for the whole mechanism will be considered for the singularity analysis

of Type II.

The 6-DOF parallel mechanism is in a singular configuration of Type II if and only

if one of the Plücker vectors associated with a line is linearly dependent on the other

Plücker vectors in the Jacobian matrix A, namely, there is a subset spanned by n of its

lines having a rank less than n. For Case I, the first and second four-bar linkages are

actuated. Then, the corresponding lines λ1i and λ2i which define a plane 4i, i = 1, 2, 3

are considered. The methodology and the notation used here are the same as those used

in (Merlet, 1989). The detailed classification of the linear varieties by rank is shown

in Figure 6.5 where a little black ball stands for the intersection of two lines, while a

parallelogram for a plane. To study the singularities of the 6-DOF parallel mechanism

with six lines, we have to consider the linear varieties of rank 1 to 5.

6.5.2.1 Subset of Two Lines

Condition 1. When two lines λji(i = 1, 2, 3; j = 1, 2) are collinear, a singular configu-

ration is obtained. For the mechanism under study, the set of two lines can be of two

types.

1. The two lines are associated with the same leg i. A singularity occurs when the

two lines of the ith leg are aligned. The closed-form expression of the singularity locus
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for this case is the same as the one of Type I.

2. The two lines belong to different planes 4i. Singular configurations occur only

if two corresponding planes are coincident.

6.5.2.2 Subset of Three Lines

Condition 2. The lines belong to a flat pencil of lines: the three lines are coplanar and

all intersect at a same point. Singularities arise in the following two sub-cases.

1. Two of the three lines belong to the same plane 4i and the other line in leg j

passes through Pi and lies on the plane 4i.

2. One line of each leg intersects at a common point lying on the plane of the mobile

platform.
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6.5.2.3 Subset of Four Lines

Condition 3b. The lines belong to two flat pencils having a common line but lying in

two distinct planes and with distinct centers. We consider two sub-cases.

1. Two pairs of lines have a common point each at Pi (e.g., P1, P2) and the common

line of the two flat pencils passes through the points P1 and P2.

2. Only one pair of the four lines has a common point (e.g., λ11, λ21, λi2 and λi3).

The two lines λi2 and λi3 must be coplanar. Let P23 be the intersection point. The

common line between the two flat pencils is the line going through P1 and P23.

Condition 3c. All the four lines pass through the same point but are not coplanar. In

this case, only one pair of the four lines (e.g., λ11, λ21, λi2 and λi3) has a common point

(P1) and the lines λi2 and λi3 pass through the common point.

Condition 3d. The four lines are coplanar but do not belong to a flat pencil of lines.

Two sub-cases are to be considered.

1. Two pairs of lines have a common point each at Pi (e.g., λ11, λ21, λ12 and λ22).

Such a case is obtained when the two planes are coincident.

2. Only one pair of the four lines has a common point. In that case, all the lines

must be coplanar with the moving platform.

6.5.2.4 Subset of Five Lines

Condition 4b. The five lines intersect two skew lines. Without loss of generality, let us

consider the lines λ11, λ21, λ12, λ22, and λi3, i = 1 or 2. We first define a set of two skew

lines s1 and s2 that intersect four lines in two different ways.

1. s1 ∈ 41 and crosses P2, and s2 ∈ 42 and crosses P1. A singular configuration

occurs if line λi3 intersects the two skew lines s1 and s2 but does not lie in the mobile

plane and the planes 41 and 42.

2. s1 ∈ 41 ∩ 42 and s2 is the line that passes through P1 and P2. A singular
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configuration occurs if line λi3 intersects s1 and s2.

Condition 4c. The five lines define three flat pencils having one line in common but lying

in distinct planes and with distinct centers. We consider the five lines λ11, λ21, λ12, λ22,

and λi3, i = 1 or 2. The former four lines belong to two flat pencils having the line

d ∈ 41 ∩ 42 in common with centers at P1 and P2. The singularity of condition

4c is obtained if and only if the line λi3 intersects the line d, i.e., the three planes

4i, i = 1, 2, 3 all intersect the line d.

Condition 4d. All the five lines belong to the same plane or pass through a unique

point in that plane. There are three possible sub-cases.

1. Lines λ11, λ21, λ12 belong to the same plane, λ22 and λ13 pass through the same

point.

2. Lines λ11, λ21, λ13 belong to the same plane as the platform, λ21 and λ22 pass

through the same point.

3. Lines λ11, λ21 belong to the same plane and the other lines pass through the same

point.

6.5.2.5 Subset of Six Lines

Condition 5a. The variety spanned by the six lines is a general linear complex. All

coplanar lines of the complex intersect a common point. This can occur if the three lines

belonging respectively to the three flat pencils defined by lines (λ1i and λ2i, i = 1, 2, 3)

and lying on the moving platform plane intersect at the same point.

Condition 5b. All the six lines intersect the same line. There are two sub-cases for this

singularity.

1. The common line passes through Pi and Pj. This singularity occurs if the plane

4k and the platform plane are coincident.

2. The common line is the line of intersection between planes 4i and 4j. This

singularity occurs when vertex Pk lies on the intersection line.
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Figure 6.6: Singularity loci and boundary of the constant-orientation workspace (Case

III).

Now, all the singular configurations have been presented using geometric rules.

The expressions describing the corresponding singularities can then be obtained. For

example, only the expressions for the first sub-case of Condition 3b are derived and

given here.

According to the condition and geometric rules one can write

(n11 × n21) · p12 = 0 (6.35)

(n12 × n22) · p12 = 0 (6.36)

where p12 is the vector connecting P1 to P2.

Finally, one can deduce two equations representing the singularity loci of this sub-

case with the following form:

f1(α11, α21, x, y, z, φ, θ, ψ) = 0 (6.37)

f2(α12, α22, x, y, z, φ, θ, ψ) = 0 (6.38)
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6.5.3 Expressions of the Singularity Loci for Cases II and III

For Cases II and III the six lines are λ1i and λ3i and λ2i and λ3i respectively. Moreover,

the planes 4i, i = 1, 2, 3 defined by the lines λ1i and λ3i (or λ2i and λ3i) are always

perpendicular to the base plane of the mechanism. Following the same procedure as

in Case I, it is found that all the singular configurations of the mechanism can be

reduced to the generation of a general linear complex except for the first sub-case

of 3b (θ = ±π
2

is a singular condition) (Monsarrat and Gosselin, 2001). In singular

configurations, the three planes 4i are normal to the plane of the base and intersect

one common line being perpendicular to that plane. Hence, for a given orientation of

the moving platform, the cross section of the singularity surface is the same for any z

coordinate. Let di, i = 1, 2, 3 be the three intersection lines between the planes 4i and

the plane of base. In the plane, the three lines intersect the same point. We define

the point Pi
′
as the projection of point Pi on the base plane, i.e., pi

′
= [ pix piy 0 ]T .

Then, we determine the equations of the three lines di that pass through the points

Pj1i and Pi
′
for Case III, i.e.,

(pj1iy − piy)u+ (pix − pj1ix)v + pδi = 0, i = 1, 2, 3 (6.39)

where pδi = pj1ixpiy − pj1iypix.

All the three lines intersect a common point only if the following determinant van-

ishes, i.e., ∣∣∣∣∣∣∣∣
pj11y − p1y pj12y − p2y pj13y − p3y

p1x − pj11x p2x − pj12x p3x − pj13x

pδ1 pδ2 pδ3

∣∣∣∣∣∣∣∣ = 0 (6.40)

Substituting the components of vector pj1i and pi leads to

C1x
2 + C2y

2 + C3xy + C4x+ C5y + C6 = 0 (6.41)

where the coefficients Ci, i = 1, ..., 6 are the function of the geometric parameters of the

mechanism and the orientation Q of the mobile platform. Furthermore, the nature of

the above curve depends on the following quantity:

δ = C1C2 −
C2

3

4
(6.42)

The curve will be a circle (δ = 1), an ellipse (δ > 0), a parabola (δ = 0) or a hyperbola

(δ < 0). Figure (6.6) demonstrates the section of the constant-orientation workspace
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Figure 6.7: Singularity locus and boundary of the workspace (Case II).

and the singularity surface for a given coordinate z. It is found that there is no sin-

gularity inside the workspace for the mechanisms of Case III. This result is confirmed

using the discretization method.

For Case II, we should replace the coordinates of point Pj1i with those of point

Pj2i in eq. (6.40). However, the coefficients Ci include the joint coordinates of the

first four-bar linkages. This implies that we cannot obtain a fixed singularity locus

for a given orientation of the platform as shown for Case III. Figure 6.7 illustrates

the singularity locus (inner thin curves) and the boundary (outer thick curve) of the

constant-orientation workspace for the example mechanism which is obtained using a

discretization method.

6.6 Conclusions

The inverse kinematics and singularity analysis of a novel reactionless 6-DOF parallel

mechanism have been addressed in this chapter. Three types of actuation schemes of the

mechanism were considered. The Jacobian matrix of the mechanism was first derived

and the six lines defined by the Plücker vectors associated with the six input angles of

the architecture have been given. The linear dependencies between the corresponding

lines were studied using Grassmann line geometry, and the singular configurations were
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presented using simple geometric rules. The expressions describing the corresponding

singularities have been obtained and the graphical representations that show the re-

lationship between the singularity loci and the constant-orientation workspace of the

mechanism have been given.

All the results presented in this chapter will be of great help during the design

process and for the control of the new type of parallel mechanism introduced in Chapter

5.



Chapter 7

Conclusions and Future Work

In order to eliminate the excitation of the base in high speed machinery and in large-

scale precision devices or the disturbance of the free-floating base in space robotics

and telescope mechanisms, thereby to significantly improve the general performance,

the development of reactionless mechanisms and manipulators (including spatial ones

having up to 6-DOF) has become an increasingly challenging and promising research

subject in the field of parallel mechanisms and motivates researchers to study it. A

systematic study of the synthesis and kinematic analysis of reactionless spatial multi-

degree-of-freedom parallel mechanisms has been performed in this thesis. This study

includes the conceptual design of 3-DOF leg mechanisms, the synthesis of 6-DOF paral-

lel mechanisms, the geometric description and kinematic analysis of these mechanisms

as well as their dynamic balancing. Some results of this study have been presented

in international conferences or will appear in journal papers (Wu and Gosselin, 2002a,

2002b, 2002c, 2003a, 2003b; Gosselin and Wu, 2002). In this chapter, a number of

150
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conclusions are highlighted, some results are discussed, and research issues for further

studies are given.

7.1 Summary

This thesis set out to investigate the dynamic balancing of elementary linkages. The

balancing equations are derived by imposing that the center of mass of the mechanism

is fixed and that the total angular momentum is constant with respect to a fixed

point. Counterweights and counter-rotations were added for dynamic balancing. A

1-DOF link was extended to a dynamically balanced 2-DOF serial chain. Two of

these were used to synthesize a planar 2-DOF parallel mechanism. This allowed the

simplification of the dynamic balancer. By adding another link that can move out of

the plane of the 2-DOF mechanism, a new kind of 3-DOF parallel mechanism referred

to as a parallelepiped mechanism has been presented and a practical design has been

implemented in this thesis. The 3-DOF parallelepiped mechanism may be regarded as

a three-link serial chain since the kinematic analyses of the two kinds of mechanisms are

completely the same. On the other hand, the parallelepiped mechanism may be also

considered as a “truly parallel” deformable truss, i.e., a multi-dof truss-type mechanism

in which all actuators are mounted in parallel on the base. The mechanism has lower

inertia and a higher stiffness compared to the three-link serial chain where two of

three actuators are mounted on the moving links so that the mass and inertia of the

actuators must be considered in the balancing. Optimizations were used to determine

the counterweights and counter-rotations, based on the balancing conditions. The

dynamic simulation software ADAMS has been used to simulate the motion of the

3-DOF parallelepiped mechanisms and to verify that the mechanisms are reactionless

at all times and for arbitrary trajectories. Furthermore, compared to the dynamic

balancing for the three-link serial chain by adding a counterweight at the extension of

each link, it has been found that reactionless 3-DOF parallelepiped mechanism can be

obtained at a lower expense of the addition of counterweights due to the parallelograms

which can transmit the rotation of the moving mass to a link pivoted to the base and

result in adding less counterweights on this link. Finding simple mechanisms which can

be dynamically balanced and then serve as legs to construct multi-degree-of-freedom

parallel mechanisms is crucial for the synthesis of reactionless parallel mechanisms of

the desired degrees of freedom.
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The reactionless conditions for planar four-bar linkages moving spatially and the

synthesis of novel reactionless spatial 3-DOF using four-bar linkages without addi-

tional counter-rotations have been addressed in this thesis. Based on the conditions of

dynamic balancing of a single planar four-bar linkage moving in the plane, the spatial

problem has been addressed. It has been shown that a single planar four-bar linkage

cannot be dynamically balanced when moving spatially. However, it has been found

that a mechanism composed of a pair of orthogonally connected planar reactionless

four-bar linkages has the property of a rigid body, i. e., the composite mechanism has a

fixed center of mass and a constant inertia tensor. Therefore, it can be attached to any

other mechanism provided its mass and inertia comply with the balancing conditions

of this other mechanism. In this thesis, such a composite mechanism was attached

to a serial chain of dynamically balanced four-bar linkages undergoing planar motion

in a plane perpendicular to the composite mechanism, in such a way that the inertia

tensor of the composite mechanism is constant and that the balancing conditions of the

planar serial chain are satisfied. Thus, reactionless spatial 3-DOF mechanisms using

four-bar linkages have been synthesized. The reactionless property of this 3-DOF mech-

anism has been verified by a numerical example using ADAMS. The most important

advantage of the kind of reactionless mechanism is that the use of additional separate

counter-rotations and their side effects are avoided. Moreover, it is easy to design and

manufacture a practical dynamically balanced system with only counterweights and

revolute joints.

Reactionless spatial 6-DOF parallel mechanisms using parallelepiped mechanisms

and a reactionless spatial 6-DOF parallel mechanism using four-bar linkages have been

synthesized in this thesis. These are the first completely balanced spatial 6-DOF paral-

lel mechanisms we have seen in the literature. An algorithm using point masses located

at the points of attachment of the legs to the platform to replace a moving platform

has been derived in this thesis in order to simplify the dynamic balancing for planar

and spatial multi-degree-of-freedom parallel mechanisms with several legs. It has been

shown that a reactionless spatial parallel mechanism can be obtained by dynamically

balancing each detached leg mechanism independently instead of dynamically balancing

the whole mechanism. It has been found that for planar parallel mechanisms a uniform

platform with any thickness while for spatial parallel mechanisms only symmetric thin

homogeneous platforms can meet the requirement of dynamic equivalence derived in

this thesis. Although there is still some skepticism about this algorithm, numerical

examples and their simulations using ADAMS have verified the reactionless properties
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of the balanced mechanisms as well as the correctness and efficiency of this algorithm.

The approach of dynamically balancing each leg independently can be applied to the

dynamic balancing of any multi-degree-of-freedom parallel mechanisms if the moving

platform can be replaced by corresponding point masses.

The kinematic analyses including the inverse and direct kinematics as well as the

determination of singularity loci and workspace of both the 3-DOF leg mechanisms and

the 6-DOF parallel mechanisms have been solved in this thesis. For novel manipulators,

it is necessary to find out the inherent characteristics of the mechanisms in the context

of design and control of the mechanisms. The Jacobian matrices of the mechanisms

associated with different actuation schemes have been derived. Geometrical algorithms

and discretization methods are used for the determination of the workspace for the

corresponding mechanisms. Also, analytic methods based on the determinant of the

Jacobian matrix and discretization methods have been utilized for the singularity anal-

ysis. Especially, a geometrical algorithm based on Grassmann line geometry has been

used for the singularity analysis of such a complex mechanism as the reactionless 6-

DOF parallel mechanism using four-bar linkages. Finally, the graphical representations

that show the relationship between the singularity loci and the constant-orientation

workspace of the mechanisms were given. Each approach has its own advantages and

is suitable to different applications. In addition, some important results of kinematic

analysis have been obtained. For instance, by suitable design of the parameters of

the 6-DOF parallel mechanism using four-bar linkages (Case III), singularities can be

avoided inside its workspace.

A general procedure for the synthesis of reactionless multi-degree-of-freedom par-

allel mechanism has been developed in this thesis. Essentially, this procedure is based

on stationary global center of mass and constant angular momentum. This classic ap-

proach was extended by the notion that dynamically balanced mechanisms, globally

behaving as rigid bodies, can be attached to a rigid link in any other dynamically

balanced mechanism. Thereby, the number of degrees of freedom can be expanded

(Figure 5.8). This was proved to be a useful tool in the design of multi-dof dynami-

cally balanced mechanisms. The procedure includes the design of a simple mechanism,

derivation of balancing conditions of the mechanism, optimization for determination of

counterweights and/or counter-rotations, synthesis of multi-degree-of-freedom parallel

mechanism, dynamically balancing each leg mechanism independently, simulation us-

ing ADAMS with numerical examples, verification of reactionless property, kinematic
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analysis with suitable algorithm, characteristics verification of the mechanism with the

design criteria. This procedure is very helpful in both the conceptual design and de-

tailed design stages.

Reactionless spatial multi-degree-of-freedom mechanisms have great potential ap-

plications such as space robots, telescope mirror mechanisms and some industrial high

speed devices. All the results of kinematic analysis will be of great help during the

design process and for the control of the mechanisms presented in this thesis.

7.2 Discussion and Future Work

Many dynamic balancing approaches and balanced mechanisms have been proposed in

the literature. However, the practical application of the proposed balancing techniques

is questionable. The price paid for balancing includes extra additional masses, com-

plex balancing devices, increase of joint forces and driving torques and even unrealistic

configurations. Most of the mentioned problems are common to many balancing tech-

niques and undesirable but unavoidable, just as an ancient Chinese proverb says “one

cannot get something without paying anything in return”.

As we have discussed in the respective chapters in this thesis, the development of

reactionless multi-degree-of-freedom robotic systems was achieved also at the expense

of a substantial increase of the masses of the moving links and the complexity of the

mechanism. However, we have shown the advantage of the two kinds of reactionless

3-DOF mechanisms proposed in this thesis as compared to three-link serial chains. The

reactionless 3-DOF mechanism using four-bar linkages has 11 moving links, 2 more than

that (9) of the reactionless 3-DOF parallelepiped mechanism, and hence may have a

greater mass increase of the system for the same payload. Apparently, the former

mechanism looks larger and more complicated than the latter mechanism. However,

three counter-rotations have to be used for the latter mechanism. Moreover, the design

of separate counter-rotations is normally complicated relative to the initial mechanism

especially for the design near a pivot on the base with counterweights and counter-

rotations as well as actuators, a challenging issue for future work. Furthermore, using

counter-rotations like gear inertia counterweights may generate noise and vibrations.

Hence, the disadvantages of the complexity and larger mass of the reactionless 3-DOF
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mechanism using four-bar linkages may be overcome by its merit of avoiding separate

counter-rotations in high speed applications. For a completely new design of reac-

tionless 3-DOF mechanism or 6-DOF parallel mechanism, the two kinds of syntheses

using parallelepiped mechanism or using four-bar linkages respectively are both good

candidates. Which one is better depends on the design requirements and limitations.

Another challenge in the future is the simplification of the designs proposed in this

thesis in order to decrease the total system mass and render them more suitable for

practical application as the launch cost is a crucial consideration for space robots. As

mentioned before, for instance, there are some possibilities to shrink the reactionless 3-

DOF mechanism using four-bar linkages such as changing the position of the attachment

point of two four-bar linkages (point P in Figure 5.6), decreasing the length rp (eq. 6.2)

of the extension part of the link connected to the platform, using the same size for the

two four-bar linkages of the composite mechanism and so on. Many solutions are no

more than proof-of-principle. For instance, optimization has been used to find a solution

from infinitely many, but selecting different object functions or boundaries of optimum

variables may well yield much better performance. An optimization for the whole

mechanism with the considerations of the above factors and detailed parameters using

dimensional variables specifically tailored to the link geometry will definitely decrease

the mass of the mechanism. Following the general procedure and using the kinematic

analysis algorithm as well as the corresponding codes developed in this thesis, finally, a

more practical design of the reactionless mechanism can be obtained. Future work also

includes the applications of the approaches presented in this thesis to other mechanisms

as well as the design and fabrication of balanced prototypes of the reactionless spatial

3-DOF mechanisms and spatial 6-DOF reactionless parallel manipulators.

Some of the procedures used in this thesis may be generalized. For example, in the

parallelepiped mechanism of Case I, the assumption that the center of mass of each

link is located on the link axis may be generalized.

To find out the dynamic equivalence between a moving platform and four point

masses is an imperative research issue for future work. We have shown that a very thin

uniform moving platform can be dynamically replaced by three point masses. However,

if the platform has a nonzero thickness or is not symmetric, the dynamic equivalence

conditions cannot be satisfied. In this case, the platform could be replaced by four non

coplanar point masses. Subsequently, four legs could be used and the attachment points
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of the legs on the platform do not lie on one plane in order to obtain a reactionless

6-DOF parallel mechanism. It is worth while to derive these conditions such that the

approach of dynamically balancing each leg mechanism independently for the dynamic

balancing of whole mechanism can be applied to more parallel mechanisms.

The dynamic balancing of mechanisms has received considerable attention for sev-

eral decades and many dynamic balancing approaches and balanced mechanisms have

been proposed. However, so far, very few have been put into practical applications due

to the high cost for the balancing. The potential applications have attracted researchers

to continue working on this subject and new approaches and solutions are constantly

being reported. To develop a perfect reactionless parallel mechanism which will finally

be used in space robots or telescopes is our dream, but there is still a long way to go.
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Appendix A

Dynamic Balancing of a Spatial

Parallel Mechanism with Multiple

Legs

Figure A.1 shows a spatial multi-degree-of-freedom parallel mechanism with k legs.

Assume that each leg has n links. A fixed and a moving coordinate frame and some

nomenclatures are defined as in Section 4.2 and 4.3. The angular momentum of the k

point masses with respect to the fixed point O and the fixed frame can be written as

follows:

hkp =
k∑

i=1

pi ×mpiṗi

=
k∑

i=1

(p + Qbi)×mpi(ṗ + Q̇bi)
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Figure A.1: A spatial parallel mechanism with multiple legs.

= p× (
k∑

i=1

mpi)ṗ + p× Q̇(
k∑

i=1

mpibi) + Q(
k∑

i=1

mpibi)× ṗ +

k∑
i=1

Qbi ×mpi(ω ×Qbi), (A.1)

where ω is the angular velocity of the moving platform.

If the center of mass of the point masses coincides with that of the platform (i.e.,

O′), then Σmpibi = 0 and eq. (A.1) becomes

hkp = p× (
k∑

i=1

mpi)ṗ +
k∑

i=1

Qbi ×mpi(ω ×Qbi). (A.2)

Moreover, the second term in eq. (A.2) stands for the angular momentum of the point

masses relative to their center of mass O′. We express the angular velocity of the

platform ω and the position of the point masses relative to their center of mass O′ in

the fixed frame (i.e., Qbi) as

ω =


ωx

ωy

ωz

 , Qbi =


xbi

ybi

zbi

 , (A.3)

then the angular momentum of the point masses relative to their center of mass O′ can
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be obtained as

ho′ =


Σmpi(y

2
bi + z2

bi)ωx − Σmpixbiybiωy − Σmpixbizbiωz

−Σmpiybixbiωx + Σmpi(x
2
bi + z2

bi)ωy − Σmpiybizbiωz

−Σmpizbixbiωx − Σmpizbiybiωy + Σmpi(x
2
bi + y2

bi)ωz

 . (A.4)

Using the definition of the moments and products of inertia (Bedford and Fowler 1996),

eq. (A.4) leads to

ho′ =


Ixx −Ixy −Ixz

−Iyx Iyy −Iyz

−Izx −Izy Izz



ωx

ωy

ωz

 = Ikpω, (A.5)

then

hkp = p× (
k∑

i=1

mpi)ṗ + Ikpω. (A.6)

From eq. (A.6), it is found that if the k point masses are dynamically equivalent

to the platform — namely with the same mass (mpl = Σmpi), the same center of mass

(O′) and the same inertia tensor (Ipl = Ikp) — the angular momentum of the point

masses is identical to that of the platform. Therefore, by using the point masses to

replace the platform, the angular momentum of the complete mechanism relative to

the fixed point O and expressed in the fixed frame can be written as

ho =
k∑

i=1

(hg1i + (r1i + ai)×m1iṙ1i + . . .+ hgni + (rni + ai)×mniṙni +

(rpi + ai)×mpiṙpi)

=
k∑

i=1

(hg1i + r1i ×m1iṙ1i + . . .+ hgni + rni ×mniṙni + rpi ×mpiṙpi) +

k∑
i=1

ai × (m1iṙ1i + . . .+mniṙni +mpiṙpi), (A.7)

where hgji, j = 1 . . . n is the angular momentum of the corresponding link relative to

its center of mass. If each leg mechanism including the point mass is dynamically

balanced, then the center of mass of the leg is fixed and the angular momentum of the

leg with respect to the fixed point Bi is zero, namely, the sums in both parentheses

in eq. (A.7) are zero respectively. Hence, ho = 0 and the global center of mass of the

complete mechanism is fixed, i.e., the whole system is reactionless. Furthermore, from

eq. (A.7) the same conclusion can be obtained even if the leg mechanisms of the system

are not identical, namely with different number of links.



Appendix B

Determination of the Dependent

Variables in Planar Four-bar

Linkages

The kinematic constraint equations can be written from Figure 5.1 as

l1cos θ1 + l2cos θ2 = d+ l3cos θ3 (B.1)

l1sin θ1 + l2sin θ2 = l3sin θ3 (B.2)

Differentiating eqs. (B.1) and (B.2) with respect to time, θ̇2 and θ̇3 can be found as:

θ̇2 =
l1 sin(θ1 − θ3)

l2 sin(θ3 − θ2)
θ̇1 (B.3)

θ̇3 =
l1 sin(θ1 − θ2)

l3 sin(θ3 − θ2)
θ̇1 (B.4)
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Also, from eqs. (B.1) and (B.2), cos θ3 and sin θ3 can be written as

cos θ3 = (l1 cos θ1 + l2 cos θ2 − d)/l3 (B.5)

sin θ3 = (l1 sin θ1 + l2 sin θ2)/l3 (B.6)

Substituting eqs. (B.5) and (B.6) into the trigonometric identity cos θ2
i +sin θ2

i = 1, one

has

sin θ2 =
(d− l1 cos θ1)l2 cos θ2 −H

l1l2 sin θ1

(B.7)

and

cos θ2 =
−A1 + Y1

2A2

(B.8)

with

Y1 = ε
√
A2

1 − 4A2A0 = ε∆

H =
1

2
(l21 + l22 − l23 + d2)− dl1 cos θ1

A0 = H2 − l21l
2
2 sin2 θ1

A1 = −2l2H(d− l1 cos θ1)

A2 = l21l
2
2 + d2l22 − 2dl1 cos θ1

ε = ±1

Then, θ2, θ3 and their derivatives can be obtained using the above formulae for

given θ1 and θ̇1.



Appendix C

Coefficients Bi and Ai of the

Polynomials in cos θ1 in eqs. (5.32)

and (5.33)

C.1 Coefficients Bi in cos θ1 in eq. (5.32)
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C.2 Coefficients Ai of the Polynomials in cos θ1 in

eq. (5.33)
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Appendix D

Relationship between Ixx, Iyy and

Izz

The moments of inertia relative to any three coordinate axes for any rigid body can be

written as (Bedford and Fowler, 1996)

Ixx =
∫

(y2 + z2) dm

Iyy =
∫

(x2 + z2) dm

Izz =
∫

(x2 + y2) dm

where x, y and z are the coordinates of a differential mass dm of the body in the

three-dimensional frame.

Clearly, the difference between any two moments of inertia must be smaller than or

equal to the third one.
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