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Résumé

Les mécanismes parallèles entraînés par câbles permettent d’obtenir de grands espaces de travail
puisque les plages de mouvement des câbles enroulés sur des treuils sont beaucoup plus grandes
que celles des mécanismes à barres. De plus, les mécanismes entraînés par câbles possèdent un rap-
port charge utile sur poids propre avantageux et ils sont capables de produire de grandes vitesses.
Toutefois, dans les mécanismes parallèles entraînés par câbles d’architecture classique, les câbles
sont enroulés sur des treuils actionnés. Cette approche conduit à des imprécisions puisque le
rapport entre la rotation du treuil et l’extension du câble n’est généralement pas constant. Par
ailleurs, les mécanismes parallèles entraînés par des câbles sont habituellement actionnés de façon
redondante en raison de l’unilatéralité de la force transmise par un câble. Cela conduit à une
infinité de solutions au problème statique (ou dynamique) inverse et rend la commande du mé-
canisme plus compliquée. L’objectif de cette thèse est d’explorer de nouvelles architectures de
mécanismes parallèles entraînés par câbles construites à l’aide de boucles de câbles afin d’obtenir
une meilleure précision et/ou éviter la redondance.

Tout d’abord, des mécanismes plans à actionnement redondant utilisant des boucles de câbles
sont proposés. Dans ces architectures, les câbles forment des boucles fermées fixées à l’effecteur, et
dont le mouvement est produit par des actionneurs prismatiques. Un mécanisme plan à deux de-
grés de liberté est proposé. En remplaçant le système câble-treuil par des boucles de câbles fermées,
les difficultés de mesure de l’extension des câbles sont atténuées. Le problème géométrique inverse,
les matrices jacobiennes et les équations d’équilibre statique de ces mécanismes sont présentés. En
utilisant les matrices jacobiennes, les singularités des mécanismes sont aussi analysées. À partir
de l’équation d’équilibre statique, l’ensemble des torseurs applicables à l’effecteur est déterminé.
Il est montré que la trajectoire d’un point d’attache d’une boucle de câble sur l’effecteur est une
portion d’ellipse. L’intersection des ellipses fournit les modes d’assemblage. Il peut y avoir plus
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d’un point d’intersection des ellipses pour une position donnée des actionneurs. Cette caractéris-
tique géométrique est aussi analysée.

Afin d’éliminer la redondance d’actionnement, des ressorts sont introduits dans les mécanismes
entraînés par boucles de câbles. Grâce à un arrangement géométrique approprié des ressorts dans
les boucles, le mécanisme ne requiert que n actionneurs pour le guidage de n degrés de liberté,
éliminant ainsi la redondance d’actionnement. Les mécanismes proposés peuvent être actionnés
soit à l’aide d’actionneurs prismatiques ou à l’aide d’actionneurs rotoïdes entraînant une courroie.
Le design conceptuel de quelques architectures de mécanismes de ce type est proposé. Une ar-
chitecture non-symétrique, dans laquelle le ressort est attaché à un seul des côtés des boucles de
câbles, est d’abord analysée. Ensuite, une architecture symétrique dans laquelle les deux côtés des
boucles de câbles sont atttachés au ressort, est proposée. Une comparaison des architectures est
établie pour des mécanismes plans. Puis, l’architecture symétrique est appliquée aux mécanismes
spatiaux. Les analyses cinématiques et statiques sont présentées pour ces mécanismes.

À l’aide des équations statiques, l’ensemble des forces disponibles à l’effecteur des mécanismes
parallèles entraînés par boucles de câbles incluant des ressorts est déterminé. Pour fins de com-
paraison, l’ensemble des forces disponibles à l’effecteur de mécanismes plans et spatiaux entraînés
par des câbles et des treuils classiques est également déterminé. Une étude dynamique est aussi
réalisée afin de déterminer les limites de performance des mécanismes. La méthode de Newton-
Euler est utilisée pour l’analyse dynamique et la détermination de la fréquence naturelle de même
que des rapports d’amplitude entrée-sortie.

Les mécanismes à boucles de câbles avec ressorts permettent d’éviter la redondance d’actionne-
ment. Les paramètres des ressorts doivent être ajustés correctement afin d’obtenir de bonnes
caractéristiques pour ces mécanismes. Toutefois, l’utilisation de ressorts augmente le coût et la
complexité des mécanismes. Par conséquent, il est proposé de réaliser la condition d’équilibre des
forces sans ressorts. À cet effet, un mécanisme à deux degrés de liberté découplé non redondant
à boucles de câbles entraînées par actionneurs prismatiques est proposé. Les actionneurs sont
situés sur les arêtes de l’espace de travail. La redondance d’actionnement est éliminée tout en
fournissant la condition de fermeture de force (force closure) partout dans l’espace de travail.
De plus, l’encombrement du mécanisme est essentiellement égal à son espace atteignable et le
mécanisme ne souffre d’aucune singularité. Deux boucles de câble sont utilisées pour chacune des
directions de mouvement. Une première boucle agit comme boucle d’actionnement alors que la
seconde, qui est passive, est la boucle de contrainte. Grâce à une conception géométrique simple,
les équations cinématiques et statiques du mécanisme sont très compactes. Une étude de la raideur
effective du mécanisme montre que celle-ci est excellente. Finalement, une analyse dynamique est
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proposée en considérant l’élasticité et l’amortissement des câbles.
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Abstract

Cable-driven parallel mechanisms have the advantages of large workspace and high speed since the
displacement range of cables is much larger than that of links and such mechanisms have higher
payload to weight ratio. However, in the conventional cable-driven parallel mechanisms, cables
are wound on actuated spools. This approach leads to inaccuracies because the ratio between the
rotation of the spool and the extension of the cable is generally not constant. Also, cable-driven
parallel mechanisms are usually redundantly actuated due to the unilaterality of the cable force.
This leads to infinitely many solutions to the inverse statics or dynamics problem and makes the
control of the mechanism more complicated. The objective of this dissertation is to explore new
architectures of cable-driven parallel mechanisms using cable loops in order to improve accuracy
or/and avoid redundancy.

Firstly, redundantly actuated cable-loop-driven planar mechanism is proposed. The cables
form closed loops attached to the end-effector and whose motion is driven by slider actuators.
A planar 2-DOF mechanism is proposed. By replacing the cable-spool arrangement with closed
cable loops, the difficulties of measuring the extension of the cables are alleviated. The inverse
kinematics, the Jacobian matrices and the static equilibrium equations for the mechanism are
presented. Using the Jacobian matrices, the singularities of the mechanisms are also analyzed.
Based on the static equations, the available wrench set is determined. It is pointed out that the
trajectory of the end-point of a given cable loop is a portion of ellipse. The intersection of the
ellipses provides the assembly modes. There can be more than one intersection point of the ellipses
at a given position of the sliders. Such geometric characteristics are also analyzed.

In order to eliminate the actuation redundancy, springs are introduced in the cable-loop mech-
anisms. By attaching springs in the cable loops properly, the mechanism only needs n actuators
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to control n DOFs and the actuation redundancy can be eliminated. The mechanisms can be
actuated using either linear sliders or rotary actuators driving the motion of a cable or belt loop.
The conceptual development of the spring-loaded cable-loop architectures is presented. One ar-
chitecture has a non-symmetric compliance since only one side of the cable loop is attached on the
spring. Another architecture has a symmetric compliance since both sides of the cable loop from
the actuator are attached on the spring. The architectures are compared by applying them to
the planar mechanisms. Then, the symmetric spring-loaded cable-loop architecture is applied to a
spatial displacement mechanism. Kinematic and static analyses are presented for the mechanisms.

Based on the static equations, the force capabilities of planar and spatial symmetric compliance
spring-loaded cable-loop-driven parallel mechanisms are analyzed using the available force set and
the force-closure workspace. The force capabilities of the conventional planar and spatial cable-
driven parallel mechanisms which have the same geometry as the spring-loaded cable-loop-driven
mechanisms are also derived for comparison purposes. Due to the cable loops in the mechanisms,
the cable might become slack when the end-effector moves with a high acceleration. Therefore,
it should be verified that the cable forces can be maintained in tension for certain trajectory fre-
quencies. Based on the static force and the Newton-Euler formulation, the natural frequency and
the corresponding ratio of the amplitudes for these two types of mechanisms are also found.

Spring-loaded cable-loop-driven parallel mechanisms avoid the actuation redundancy using
passive springs. The parameters of the springs must be adjusted properly in order to obtain good
characteristics of the mechanisms. The usage of the springs increases the cost and complexity of
the mechanisms. Therefore, it is intended to realize the force-closure condition without springs.
A 2-DOF decoupled non-redundant cable-loop slider-driven parallel mechanism is proposed in the
end. Sliders located on the edges of the workspace are used and actuation redundancy is elim-
inated while providing force closure everywhere in the workspace. Due to the simple geometric
design, the kinematic and static equations of the mechanism are very compact. The stiffness of the
mechanism is also analyzed. The dynamics equations including the compliance and the damping
of the cables are obtained. It is shown that the proposed mechanism’s workspace is essentially
equal to its footprint and that there are no singularities.
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Chapter 1

Introduction

1.1 Cable-Driven Parallel Mechanisms

1.1.1 Characteristics and Analysis of Cable-Driven Parallel
Mechanisms

Cable-driven parallel mechanisms are parallel mechanisms in which a moving platform is driven
by a number of cables. Such mechanisms have been studied in the recent literature because of
their obvious advantages in terms of small moving mass and large range of motion.

Cables have appeared ten thousands years ago. When human could use the most simple tools,
they could entwist out cables with grass and small branches. People used cables to bundle beasts,
to tie thatched cottage firmly, to rope grass skirts as belts and other such applications. Cables
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(a) (b)

Figure 1.1: (a) Picture of the experimental setup for the Large Adaptive Reflector taken from [9],
(b) SEGESTA manipulator taken from [12].

were also used as a method to keep certain staffs in mind before words were created in ancient
China and Peru. In antiquity, more and more simple mechanisms which used cables were invented
to serve the human life. For instance, cables were wound on wheels to lift water from the deep
wells. Recently, with modern science and technology, the NIST (Nation Institute of Standards and
Technology of USA) ROBOCRANE was proposed in the early nineties of the last century [1]. Af-
ter that, cable-driven parallel mechanisms attracted the attention of researchers all over the world.

Since cables are used to totally or partially replace rigid links in cable-driven parallel mecha-
nisms, this leads to the following special advantages:

• The displacement range of cables is larger than that of links, so the workspace of the cable-
driven parallel mechanisms is larger than that of parallel-link mechanisms [1–15] (See for
instance the mechanisms shown in Figure 1.1).

• The mass of a cable is smaller than that of a link, so compared with traditional parallel
mechanisms, the inertia of cable-driven parallel mechanisms is smaller. This means that
such mechanisms have higher payload to weight ratio and that they can move at very high
speed [6, 16–20]. (Two of such mechanisms are shown in Figure 1.2.)

• Cables are thinner than links, so cables reduce the probability of interference during mo-
tion. Moreover, cables may tangle and the robot may still be functional. The possibility of
permitting cable collisions has been analyzed in [99], the experimental platform is shown in
Figure 1.3.



3

(a) (b)

Figure 1.2: (a) FALCON high-speed parallel manipulator taken from [16], (b)The Cable Array
Robot taken from [6].

Figure 1.3: The setup used for collision permitting experiment [99].

• Spherical joints can be avoided in these mechanisms, then the limitations on the angular
motion range can be partially eliminated.

Because of the potential advantages of cable-driven parallel mechanisms, the research about
such mechanisms is very important for many application areas, like manufacturing, processing
and assembling, medical treatment, spaceflight, ocean exploration assistive robotics and military
robotics.

Several challenging problems arise in the analysis and design of cable-driven parallel mecha-
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nisms such as the determination of the workspace, the determination of the wrench capabilities
and the computation of the optimal force distribution. Indeed, because cables can only work
in tension, cable-driven parallel mechanisms are often redundantly actuated, thereby leading to
infinitely many solutions to the inverse statics or dynamics problem.

Basically, the kinematic analysis of cable-driven parallel mechanisms is based on the geometry
of the manipulator. If the configuration of the end-effector is given, it is easy to calculate the
length of the cables. However, the forward kinematics is much more difficult and usually the
results can only be found by numerical methods [21–24, 26–32, 34]. In [100], the elasticity of the
cables was also taken into account in the kinematic problem. In this case, inverse kinematics may
be solved either by first choosing the wire tensions, the control vector being then a linear function
of the tensions or by solving directly a system of nonlinear equations whose unknowns are the
components of the control vector.

Workspace is an important issue in cable robots and it has been studied by many researchers.
Although it is desirable to obtain the workspace using analytic methods, because of inherent com-
plexity in cable robots, such methods can be used only for planar robots and simple geometries.
On the other hand, numerical methods have fewer limitations and are usually used by researchers.
One of the disadvantages of numerical methods is that they need an exhaustive and time con-
suming search in the entire task space [8, 23, 26, 37, 39–46, 48–50]. For the singularity analysis of
cable-driven parallel mechanisms, the method can be deduced with the method shown in [51–54],
which is analyzed based on the Jacobian matrix of the velocity equations. Considering the spe-
cial nature of the cables, the singularities of cable-driven parallel mechanisms can be classified as
Jacobian singularities and force-closure singularities [55]. Generally speaking, the singularity low
is consistent with or is a part of the workspace boundary.

Since cables can only pull and not push on the mobile platform, the forces applied by the cables
on the platform have a unidirectional nature. Then, the static analysis and the determination of
the available force/wrench set of such mechanisms are different from that of parallel link manipu-
lators. The force closure conditions of the cable-driven parallel mechanisms are usually analyzed
based on linear algebra, using, for instance the rank of the wrench matrix or the linear combination
of the column vectors of the wrench matrix [56,57,64,66,67]. The available force/wrench set is also
a significant indication of the force capabilities of the mechanisms. Since the force space of the
end-effector is a zonotope which can be described as the vector sum of a finite number of closed
line segments in a certain Euclidean space, the available force/wrench set of the end-effector can
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(a) Uniformly wound (b) Non uniformly wound

Figure 1.4: Examples of a cable wound on a spool.

be expressed as a special class of convex polytopes [74,75]. Interval analysis can also be used since
the cable force must lie within a certain range that corresponds to the mechanical properties of
the cables [76].

Generally speaking, the dynamic equations for cable-driven parallel mechanisms are simpler
than those obtained for link-driven parallel mechanisms if the mass of the cables can be ne-
glected. Dynamic equations of motion can be obtained from the Lagrangian formulation [79] or
the Newton-Euler formulation [80, 84, 85]. Usually, it is easier to obtain the dynamic equations
of cable-suspended parallel mechanisms using Newton’s method. However, the cable mass should
be considered for large scale cable-driven parallel mechanisms [93]. Elastic and damping char-
acterics of the cables are also included in the dynamic equations in [88]. Although cable-driven
parallel mechanisms can have a sufficient stiffness if the structure of the mechanism is arranged
properly [77], the mechanisms might undergo significant vibrations when they are moving with
large accelerations. The nonlinear vibrations of the cables are studied in [89] and the vibration of
the cable-driven mechanism caused by cable flexibilities in both axial and transversal directions
are analyzed in [91]. Natural frequencies and amplitude-frequency relationships are also interest-
ing due to the flexibility of the cables. These problems can be analyzed based on the dynamic
equations.

1.1.2 Limitations of Conventional Cable-Driven Parallel Mechanisms

In typical cable-driven parallel mechanisms, the cables are wound on spools. From Figure 1.4, it
can be seen that the part of the cable which is wound on a spool might be wound randomly. Such
an approach leads to inaccuracies because the ratio between the rotation of the spool and the
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(a) (b)

Figure 1.5: Improved mechanisms to wind a cable uniformly.

extension of the cable varies with time. There are mechanisms which can wind the cable smoothly
and neatly [94,95], as shown in Figure 1.5. Even with the use of such mechanisms in cable-driven
parallel mechanisms, the ratio between the rotation of the spool and the extension of the cable
is not constant. The ratio is small when the length of the cable which is wound on the spool is
short, and the ratio increases with the length of wound cable.

Since cables can only sustain tension forces, cable-driven parallel mechanisms require particular
approaches to ensure cable tensions. In order to achieve such condition, suspended cable-driven
parallel mechanisms make use of gravity while fully-constrained cable-driven parallel mechanisms
are redundantly actuated. Also, some mechanisms use springs to fulfill the unilaterality con-
ditions [106]. Suspended mechanisms have restrictions on their configurations and redundantly
actuated mechanisms make the control algorithm more challenging.

Given the above limitations, it can be observed that it wound be of great interest if actuated
spools are avoided or/and the actuation redundancy is eliminated in cable-driven parallel mecha-
nisms.

1.1.3 Improvements and Novel Architectures of Cable-Driven
Parallel Mechanisms

Actuating a cable-driven mechanism consists in changing the cable lengths between the end-effector
and the fixed frame. The approach used to realize the change of length has a significant impact on
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(a) The wire system used to actuate the MAR-
IONET robot

(b) The MARIONET robot

Figure 1.6: Merlet’s MARIONET robot taken from [100].

the cable-driven parallel mechanisms since it plays an important role for the workspace, accuracy
and force capabilities of the mechanism. In order to avoid the actuated spools and eliminate the
actuation redundancy, one idea is to find an innovative mechanism in which there is no cable-spool
system. There are many novel cable-driven parallel mechanisms proposed recently, in which the
actuating principle is different from that of conventional cable-driven parallel mechanisms.

The wire system (shown in Figure 1.6(a)) used to actuate the MARIONET robot (shown in
Figure 1.6(b)) comprises a linear actuator and a pulley system. Such an approach allows a higher
modularity of the actuation system and avoids the cable-spool system [100,101].

The hybrid cable-driven mechanism (shown in Figure 1.7) in which the cable forms one single
long loop is introduced in [104]. The Cartesian motion can be realized using only three revolute
actuators. There is no actuation redundancy associated with this architecture. However, it needs
six long slider guides which introduce significant inertia and the motion in the three directions are
coupled.

In [105], several closed-loop cable/belt routings are proposed in order to allow the actuation
of Cartesian SCARA-type manipulators from four actuators fixed to the ground and a Cartesian
bridge and trolley system. For the closed cable loop, the stabilization of the bridge has to be
considered. It is shown that decoupled actuation is possible and leads to great advantages regard-
ing the power needed. Figure 1.8 shows two examples of the proposed routings, which allow the
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Figure 1.7: Behzadipour’s Cartesian cable-loop driven mechanism taken from [104].
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(a) (b)

Figure 1.8: Routings allowing the actuation of planar 3-DOF mechanisms with one cable/belt
loop and three actuators, taken form [105].

actuation of planar 3-DOF mechanisms with one cable/belt loop and three actuators.

1.2 Objectives and Contributions of the Thesis

As mentioned above, conventional cable-driven parallel mechanisms have many advantages, but
the accuracy is not very good due to the use of cable-spool systems and the actuation redundancy
raises control challenges. As a major objective, this thesis aims at exploring new actuation schemes
for cable-driven parallel mechanisms in order to lead to improved properties. It is intended to use
cable loops instead of the straight cables wound on spools to transfer the movement of the actuator
to the end-effector.

When considering new schemes to drive the moving platform, the kinematic problem, static
problem, force capabilities and interference of the cables, will be different from these of the tradi-
tional cable-driven parallel mechanisms. Therefore, all these problems need to be revisited. The
new mechanisms should meet the following conditions:
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• The kinematic properties of the proposed mechanisms should be such that they result in a
well-conditioned workspace in terms of boundary, singularity and mechanical interference.

• The range of the available wrench set is sufficient to perform the work. The mechanism has
the appropriate force capabilities.

• The motion planning and control of the cable-driven parallel mechanisms requires the solution
of the inverse kinematic problem. The computational cost of the inverse kinematic problem should
be reasonable and not too complicated.

• The vibration should be controlled within the allowed limitation using proper control method
even if cables are flexible elements and springs might be introduced in the mechanisms.

In order to have an initial insight of the cable-loop principle, the concept is first introduced
in planar mechanisms. As cables provide unidirectional force, the mechanism is redundantly ac-
tuated. It only eliminates the cable-spool system and improves the accuracy of the cable-driven
mechanisms, which is limited mechanically.

Then, an architecture is proposed in which springs are introduced in the cable-loop mechanisms
in order to eliminate the actuation redundancy. There are many methods to introduce the spring
compliance in a cable loop. Based on a static model, promising configurations of spring-loaded
cable-loop architectures were found for planar mechanisms. Following the application to planar
mechanisms, spring-loaded cable-loop architectures are proposed for spatial mechanisms. The
force capabilities of planar and spatial spring-loaded cable-loop-driven parallel mechanisms are
influenced by the properties of the springs. Since the mechanisms have fewer actuators than the
conventional cable-spool mechanisms as they are not redundantly actuated, their force capabili-
ties cannot be expected to be as good as those of conventional cable-spool mechanisms having the
same geometry as the spring-loaded cable-loop-driven mechanisms. However, the spring-loaded
cable-loop-driven parallel mechanisms can provide very good force capabilities while being more
efficient and cost-effective.

The actuation redundancy is converted into passive redundancy which is realized by the springs
in the spring-loaded cable-loop-driven parallel mechanisms. In order to have better force capa-
bilities, the springs should be chosen properly. Also, springs increase the cost and complexity of
the mechanism. Hence, we intend to find a cable routing which eliminates both the actuation re-
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dundancy and the passive redundancy like the cable routings in [102,104,105]. Then, the 2-DOF
decoupled non-redundant cable-loop slider-driven parallel mechanism is proposed. Due to the
simple geometric design, the kinematic and static equations for this mechanism are very compact.
And the stiffness of the mechanism is much higher than that of the cables.

1.3 Overview of the Thesis

Our work is presented in six main parts —Chapter 2 to Chapter 7, the most important parts are
Chapter 3, 4, 5 and 7. The first part (Chapter 2) starts with an attempt to apply slider-driven
cable loops into cable-driven parallel mechanisms. It then continues with the kinematic, static and
workspace analyses. The second part (Chapters 3-6) describes the planar and spatial spring-loaded
cable-loop-driven parallel mechanisms. Finally, the decoupled 2-DOF non-redundant cable-loop
slider-driven parallel mechanism is introduced in the third part (Chapter 7).

In Chapter 2, the concept of cable-loop-driven mechanism is first used in a 3-cable 2-DOF
planar mechanism. There are three cable loops in this mechanism. Each cable is controlled by a
slider, passes around two fixed pulleys and then attaches to the end-effector. The inverse kinemat-
ics, the Jacobian matrices and the static equilibrium equations for the new architecture are given.
Using the Jacobian matrices, the singularities of the mechanism are also analyzed. Also, based on
the static equations, the available wrench set is determined. It is pointed out that the trajectory
of the end-point of a given cable loop is a portion of an ellipse. The intersection of the ellipses
provides the assembly modes. There can be more than one intersection point of the ellipses at a
given position of the sliders and this geometric characteristic is analyzed.

In Chapter 3, in order to avoid actuation redundancy in cable-driven parallel mechanisms and
require only N actuators to control a N -DOF motion, springs are introduced in the cable loops.
Some compliance must be introduced in the loops in order to compensate for the change of ca-
ble length. Hence, the challenge is to include compliance in the closed loops without introducing
compliance between the actuators and the end-effector. Additionally, it is desired to obtain a sym-
metric layout. The concept is first applied to planar mechanisms. The conceptual development
of the 2-DOF spring-loaded cable-loop-driven parallel mechanism is presented at the beginning
of this chapter. The spring-loaded cable-loop-driven mechanisms with non-symmetric compliance
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and symmetric compliance are proposed. Kinematic and static analyses are presented for the two
new architectures. It is verified that the cables and springs can be kept in tension within a certain
workspace. It is shown that the spring-loaded mechanism with symmetric compliance has a better
available workspace.

In Chapter 4, the spring-loaded cable-loop architecture with symmetric compliance is applied
to a spatial displacement mechanism. The inverse kinematics, the static equilibrium equations and
the workspace analysis are presented. Because all these equations are obtained based on the cable
segment lengths, many square roots appear in the equations. The workspace boundary equations
for different arrangements, i.e., preload, non-zero stiffness and external forces, are obtained sep-
arately in order to simplify the analysis. The workspace boundary equations of each cable force
for any situation can be obtained by combining the equations based on the matrix superposition
principle. It is verified that the mechanism has a significantly large workspace within which the
cables and the springs can be maintained in tension. It is also shown that the mechanism has a
larger workspace with the negative stiffness springs.

Based on the static equations, the force capabilities of planar and spatial spring-loaded cable-
loop-driven parallel mechanisms with symmetric compliance are analyzed in Chapter 5. The
maximum external force that can be applied from all directions at the end-effector is obtained
from the available force set using a geometric method. For comparison purposes, the force capa-
bilities of conventional planar and spatial cable-driven mechanisms which have the same geometry
as the spring-loaded cable-loop-driven parallel mechanisms are also derived. Many simulations
results are given. The average tolerable external force and the workspace for a certain force are
obtained using a numerical method.

In Chapter 6, the dynamic analysis of the symmetric compliance planar and spatial spring-
loaded mechanisms are presented. Due to the cable loops in the mechanisms, the cables might
become slack when the end-effector moves with a high acceleration. So, it should be verified that
the cable forces can be maintained in tension for a certain prescribed trajectories. The required
actuating forces are also found. As the dynamic models of the mechanisms are very complex,
only the masses of the end-effector and the actuators is considered for the trajectory analysis.
Then, the natural frequency and the corresponding ratio of the amplitudes for the mechanisms
are obtained based on the static force and the Newton-Euler formulation.
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A novel 2-DOF cable-loop slider driven parallel mechanism is introduced in Chapter 7. The
two degrees of freedom of the mechanism are decoupled and the mechanism only requires two
actuators to control the motion. There are two cable loops for each direction of motion, one acts
as the actuating loop while the other is the constraint loop. Due to the creative geometric design,
the kinematic and static equations for this mechanism are very simple. Given some reasonable as-
sumptions, the stiffness of the mechanism is analyzed. The dynamic equations of the mechanism,
including the compliance and the damping in the cables are obtained. Considering the stiffness
and the damping of the cables, though the dynamic equation is complex, the motion of the ac-
tuator, the sliders and the connectors and the required actuating force can also be found. The
proposed mechanism’s workspace is essentiallly equal to its footprint and there are no singularities.

Finally, a summary of the results obtained in this thesis and some discussion as well as direc-
tions on future research work are given in Chapter 8.
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Chapter 2

Redundantly Actuated Planar
Cable-Loop-Driven Mechanism

This chapter introduces a redundantly actuated planar cable-loop slider-driven mechanism. The 2-
DOF mechanism has three cable loops: each cable loop is driven by a slider actuator and attached
to the end-effector. The inverse kinematics, the static equilibrium equations, the singularity
analysis and the available wrench set are given in the following. As the end-effector is driven
by cable loops, the position of the end-effector is determined by the intersection point of three
ellipses. This geometric characteristic is analyzed at the end of the chapter.

15
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2.1 Introduction

Cable-driven parallel mechanisms attracted the attention of researchers from all over the world
since the NIST Robocrane was proposed [1]. Pioneer designs of cable-driven parallel mechanisms
also include the Falcon high-speed parallel manipulator [16] and the Skycam [2].

Many challenging problems arise in the analysis and design of cable-driven parallel mechanisms
such as the determination of the workspace, the determination of the wrench capabilities and the
computation of the optimal force distribution. Since cables can only work in tension, cable-driven
parallel mechanisms usually use more actuators than degrees of freedom in order to realize the
force-closure condition. This leads to infinitely many solutions to the inverse statics or dynamics
problem.

Several practical issues also need to be considered in the design and control of cable-driven
parallel mechanisms. In a typical cable-driven parallel mechanism, cables are wound on actuated
spools and the extension of the cables is determined using an encoder mounted on the spool.
This approach leads to inaccuracies because the ratio between the rotation of the spool and the
extension of the cable is generally not constant and depends on how much cable is wound on the
spool. Also, it was shown that the tension in the cable at the time of winding may also affect the
winding and hence the above mentioned ratio [36].

Given the above limitations, it is proposed here to build a planar cable-driven parallel mecha-
nisms based on closed cable loops. By replacing the cable and spool arrangement with closed cable
loops, the difficulties of measuring the extension of the cables are alleviated. Also, the stability
of the platform may be improved by increasing the number of cables attached to the platform.
This chapter presents the application of this concept to 2-DOF closed-loop cable-driven parallel
mechanisms. First, the planar displacement cable-loop slider-driven mechanism is introduced and
its mechanical design is described. The inverse kinematic problem is solved and the velocity equa-
tions are derived. Two Jacobian matrices are obtained and a singularity analysis is then performed
based on the analysis of the Jacobian matrices. The static analysis is presented using the principle
of virtual work and the wrench capabilities of the mechanism are discussed. Finally, a geometric
analysis is presented in order to support the results of the preceding sections.
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Figure 2.1: Schematic representation of a 3-cable 2-DOF cable-loop slider-driven parallel mecha-
nism.

2.2 Description of the Mechanism

The structure of a 3-cable 2-DOF cable-loop slider-driven parallel mechanism is shown in Fig-
ure 2.1. There are three cable loops in this mechanism. Each cable is controlled by a slider, passes
around two fixed pulleys and then attaches to the end-effector. The position of the end-effector
can be changed by controlling the motion of the sliders.

The fixed pulleys are represented by Aij, i = 1, 2, 3, j = 1, 2, the sliders are represented
by Bi, i = 1, 2, 3. The location of point Aij, i = 1, 2, 3, j = 1, 2 is known and expressed as
rAij = [xAij, yAij]T , i = 1, 2, 3, j = 1, 2. The respective length of loops PAi1BiAi2P is Li, i = 1, 2, 3.
The direction of motion of the sliders is noted as the unit vector si = [xsi, ysi]T , i = 1, 2, 3. That
is to say sTi si = 1. And the sliding guides pass through points Ri, rRi = [xRi, yRi]T , i = 1, 2, 3.
Then, the position of point Bi, noted rBi = [xBi, yBi]T , i = 1, 2, 3 can be expressed as

rBi = rRi + ρisi, i = 1, 2, 3 (2.1)

where ρi represents the extension of the ith slider, i.e., the ith actuated joint coordinate.
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2.3 Inverse Kinematics

The solution of the inverse kinematic problem consists in determining the actuator coordinates ρi
for a given position of the end-effector P , given as rp = [xp, yp]T . From the geometry of the ith
cable loop, the total loop length, Li, can be written as

| rp − rAi1 | + | rp − rAi2 | + | rAi1 − rBi | + | rAi2 − rBi |= Li, i = 1, 2, 3. (2.2)

The unknown in the above equation is the extension of the slider. Expanding Eq. (2.2), one has

C1iρ
2
i + C2iρi + C3i = 0, i = 1, 2, 3, (2.3)

where

C1i = 4
[
l2i −

(
rTAi2si − rTAi1si

)2
]
,

C2i = 4
[
2l2i

(
rTRisi − rTAi1si

)
− 4

(
rTAi2si − rTAi1si

) (
l2i + rTAi1rAi1 − rTAi2rAi2 + 2rTAi2rRi − 2rTAi1rRi

)]
,

C3i = 4l2i
(
rTAi1rAi1 + rTRirRi − 2rTAi1rRi

)
− l4i −

(
rTAi1rAi1 − rTAi2rAi2 + 2rTAi2rRi − 2rTAi1rRi

)2

−2l2i
(
rTAi1rAi1 − rTAi2rAi2 + 2rTAi2rRi − 2rTAi1rRi

)
,

and
li = Li− | rp − rAi1 | − | rp − rAi2 | .

Therefore, the inverse kinematic problem can be solved by computing the roots of Eq. (2.3).
It can be observed that two solutions are obtained for each cable loop which leads to 8 solutions
for the complete mechanism. In practice, the correct joint coordinates can be chosen form these
solutions according to the geometry of the mechanism.

2.4 Velocity Equations and Jacobian Matrices

In order to find the velocity equations, Eq. (2.2) is differentiated with respect to time. Collecting
terms, one obtains

(u11 + u12)T

(u21 + u22)T

(u31 + u32)T


 ẋp

ẏp

 =


(v11 + v12)T s1 0 0

0 (v21 + v22)T s2 0
0 0 (v31 + v32)T s3



ρ̇1

ρ̇2

ρ̇3

 (2.4)
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where
uij = rp − rAij

| rp − rAij |
, i = 1, 2, 3, j = 1, 2,

vij = rAij − rBi
| rAij − rBi |

, i = 1, 2, 3, j = 1, 2.

Eq.(2.4) can be written in matrix form as

Jxṙp = Jρρ̇ (2.5)

where the two Jacobian matrices given in Eq. (2.4) are noted as Jx and Jρ respectively, and
ρ̇ = [ρ̇1, ρ̇2, ρ̇3]T .

2.5 Singularity Analysis

The configurations of the planar 2-DOF mechanism that lead to the determinant of Jρ or JTxJx
being equal to zero are singular configurations [51, 52].

The first type of singularity occurs when we have

det(Jρ) = 0. (2.6)

Since the Jacobian matrix Jρ is a diagonal matrix, it is easy to see that Eq. (2.6) can be expressed
as

sTi (vi1 + vi2) = 0, i = 1 or 2 or 3. (2.7)

From Eq. (2.7), we can find the corresponding value of ρi, namely

ρi = sTi mi, i = 1, 2, 3. (2.8)

where

mi =


(xAi1 − xRi) | rAi2 − rBi |
| rAi1 − rBi | + | rAi2 − rBi |

+ (xAi2 − xRi) | rAi2 − rBi |
| rAi1 − rBi | + | rAi2 − rBi |

(yAi1 − yRi) | rAi2 − rBi |
| rAi1 − rBi | + | rAi2 − rBi |

+ (yAi2 − yRi) | rAi2 − rBi |
| rAi1 − rBi | + | rAi2 − rBi |

 .
By inspection of the above equations, it is clear that if the direction of si is perpendicular to the
line Ai1Ai2, i.e., si ⊥ Ai1Ai2, such singularity points are easily avoided.
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The second type of singularity can be deduced by the Jacobian matrix Jx. As the mechanism
is redundantly actuated, the matrix Jx is not a square matrix, its dimension is 3× 2. Then, this
type of singular configurations occurs if

det(JTxJx) = 0. (2.9)

Since there are many different square roots in the denominators of the components of Jacobian
matrix Jx, it is more difficult to obtain a singularity equation from the above expression. However,
by inspection of Eq. (2.4) it is clear that this type of singularity occurs when Eqs. (2.10) to (2.12)
are all satisfied, i.e.,

det
 (u11 + u12)T

(u21 + u22)T

 = 0, (2.10)

det
 (u11 + u12)T

(u31 + u32)T

 = 0, (2.11)

det
 (u21 + u22)T

(u31 + u32)T

 = 0. (2.12)

Figure 2.2 shows an example of the loci associated with Eqs. (2.10) to (2.12). The solid curve
is the solution of each of the equations. It can be observed that the three curves do not have a
common intersection point. Actually, in practice, it is easy to design the mechanism such that the
singularities corresponding to det(JTxJx) = 0 do not exist within the workspace.

2.6 Static Analysis

The forces acting on the sliders and the end-effector of the 3-cable 2-DOF cable-loop slider-driven
parallel mechanism are shown in Figure 2.3. The actuator forces are fBi, i = 1, 2, 3. According
to the kinematic model mentioned earlier, the directions of the actuating forces are si, i = 1, 2, 3.
The external force at the end-point is fp = [fx, fy]T . As a whole system, the mechanism should be
balanced with the actuating force fBi, i = 1, 2, 3 and the external force fp. Using the principle of
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virtual work, we can get

fTB1δrB1 + fTB2δrB2 + fTB3δrB3 + fTp δrp = 0 (2.13)

where the actuating forces are fBi = [fbix, fbiy]T , i = 1, 2, 3.

Substituting Eq.(2.1) into Eq.(2.13), one then obtains

fTB1s1δρ1 + fTB2s2δρ2 + fTB3s3δρ3 + fTp δrp = 0. (2.14)

The above equation can be written as

−fTBδρ = fTp δrp, (2.15)

where
fB =

[
fTB1s1 fTB2s2 fTB3s3

]T
, δρ =

[
δρ1 δρ2 δρ3

]T
in which δρ and δrp are respectively virtual changes of the positions of the sliders and the virtual
generalized displacement of the end-effector.

From Eq.(2.4), it can be obtained that

δρ = J−1
ρ Jxδrp
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and substituting the latter result into Eq.(2.15), we get the static equation as

fp = −JTxJ−Tρ fB. (2.16)

2.7 Force Capabilities of the Mechanism

In this subsection, the force capabilities of the mechanism are investigated using the available force
set. The static equation expressing the relationship between the actuator forces and the external
force applied at the end-effector can be rewritten as

WfB = fp (2.17)

where
W = −JTxJ−Tρ .

Assuming that the minimum slider force and the maximum slider force are known, then the
available force set at the platform can be expressed as

A =
{
fp ∈ R2 | fp = WfB, fBmin � fB � fBmax

}
. (2.18)

where fBmin = [fB1min, fB2min, fB3min, ]T , fBmax = [fB1max, fB2max, fB3max, ]T and � denotes the
componentwise inequality.

For instance, if the minimum slider force is fBmin = [1, 1, 1]T , the maximum slider force is
fBmax = [10, 10, 10]T , and assuming the geometry of the mechanism is such that the fixed pulleys
are located by pairs at points [−6, 0]T , [6, 0]T , [0, 6

√
3]T , then the available forces are easily deter-

mined. They are the convex hull of the extreme forces, as given in Eq.(2.18). Two examples are
illustrated for the above parameters in Figure 2.4(a) and Figure 2.4(b).

2.8 Geometric Analysis

Roughly speaking, the end point of this mechanism can reach any point in the polygon formed by
vertices A11A12A21A22A31A32A11. However, there are some points that can cause the cable loops to
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Figure 2.4: Examples of the available wrench set.

become slack. Indeed, for a given value of ρi, for one cable loop, the two distances between the two
fixed pulleys and the slider are determined, then the sum of the cable segments distance from the
end-effector and the fixed pulleys are constant. All points of the plane whose distances to two fixed
points add to the same constant form an ellipse, so the trajectory of the end-point is a portion of
an ellipse. And the intersection of the three ellipses gives the position of the end point. Depending
on how the ellipses intersect, some of the cables may become slack. This is illustrated in Figure 2.5.

Two of the ellipses in Figure 2.5(a) are tangent to each other, the third ellipse passes through
the tangent point. In Figure 2.5(b), every pair of the three ellipses has two intersection points.
One of the two points is the common point consistent with the loci of the end-effector, the other
points are outside of the polygon formed by the fixed pulleys. In these two cases, the cables will
not become slack. However, if the two intersection points are both within the polygon as shown in
Figure 2.5(c), the end-effector of the mechanism can reach the common intersection region which
determined by the three ellipses, then the cables will become slack in this situation.

For a given point of the workspace, using the equations of the ellipses we can find out whether
the cables will become slack or not. However, it is more meaningful to determine the regions in
which the cables cannot become slack using an approach based on geometry.

Since in a given loop the cable can move freely around the pulleys (all pulleys are free to ro-
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tate), the tension in the cable must be the same everywhere (if friction in the pulleys is neglected).
Therefore, the tension in each of the two cable ends of a given loop attached to the platform must
be the same.

Considering the geometric construction of Figure 2.6, the following vectors are defined as

u1 = u11 + u12

u2 = u21 + u22

u3 = u31 + u32.

(2.19)

Clearly, the force applied to the platform by the ith cable loop must be in the direction of vector
ui, i = 1, 2, 3. To avoid the situation in which one of the cables becomes slack, vectors ui, i = 1, 2, 3
must be in a force-closed configuration. The boundary of this region is reached when two of the
vectors ui, i = 1, 2, 3 are aligned. Therefore, the equation describing this boundary is the combi-
nation of Eq.(2.10), Eq.(2.11) and Eq.(2.12).

The solution of Eqs.(2.10) to (2.12) leads to two possible situations. One situation is that one
of the rows is zero, the other situation is that the direction of each row is along the same line.
The segment between the pulleys of line A11A12, A21A22, A31A32 corresponds to the first situation.
The second situation is the solution of Eq.(2.20).

√
Ai2

√
Aj2 [(yAi1 − yAj1)xp + (xAj1 − xAi1)yp + xAi1yAj1 − xAj1yAi1]

+
√
Ai2

√
Aj1 [(yAi1 − yAj2)xp + (xAj2 − xAi1)yp + xAi1yAj2 − xAj2yAi1]

+
√
Ai1

√
Aj2 [(yAi2 − yAj1)xp + (xAj1 − xAi2)yp + xAi2yAj1 − xAj1yAi2]

+
√
Ai1

√
Aj1 [(yAi2 − yAj2)xp + (xAj2 − xAi2)yp + xAi2yAj2 − xAj2yAi2] = 0

(2.20)



27

−6 −4 −2 0 2 4 6
−4

−3

−2

−1

0

1

2

3

4

5

6

7

x
p

y
p

A
31 A

22

A
21

A
12

A
11

A
32

Figure 2.7: Boundary of the force-closed region for the 3-cable 2-dof cable driven parallel mecha-
nism.

where
Aik = (xp − xaik)2 + (yp − yaik)2, k = 1, 2.

For Eq.(2.10), the i and j of Eq.(2.20) are i = 1 and j = 2, for Eq.(2.11), the i and j of Eq.(2.20)
are i = 1 and j = 3, and for Eq.(2.12) i = 2 and j = 3.

One example of the boundary of the force-closed configurations is shown Figure 2.7. Compared
with Figure 2.2, it can be seen that the force-closed workspace boundary is the combination of
the curves defined by Eqs. (2.10) to (2.12).

2.9 Conclusion

In this chapter, a 3-cable 2-DOF closed-loop cable-driven parallel mechanism is presented. The
cables form loops that are free to move around a set of pulleys. The position of the end-effector
is controlled using sliders that displace one of the pulleys along an axis. This architecture has
the advantage of eliminating the need to wind cables around a spool. The inverse kinematics, the
Jacobian matrices and the static equations were determined. The singularities of the mechanism
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have been analyzed based on two Jacobian matrices. Also, using the method presented in [74], the
set of available forces was obtained from the static equations. The special geometric characteristic
of the novel architecture was studied. It was observed that, for a given position of the ith slider,
the trajectory of the end-point of the ith cable loop is a portion of ellipse. The intersection of
the ellipses gives the position of the end point. Using a geometric reasoning, the boundary of the
force-closed workspace was determined.



Chapter 3

Planar Spring-Loaded
Cable-Loop-Driven Parallel Mechanism

Two novel architectures of planar spring-loaded cable-loop-driven parallel mechanisms that do not
require actuation redundancy are introduced in this chapter. In order to avoid actuation redun-
dancy in the cable-driven parallel mechanisms and require only N actuators to control an N -DOF
motion, new spring-loaded cable-loop-driven mechanisms are proposed. By attaching springs to
the cable loops, two degrees of freedom can be controlled using only two actuators and spools are
also eliminated in these mechanisms. The compliance caused by the spring in the cable loop is
acting on one side of the actuator in one of the mechanisms. For the second mechanism, the com-
pliance is symmetrically attached on both sides of the actuator. The mechanisms can be actuated
using either linear sliders or rotary actuators driving the motion of a cable or belt loop.

Kinematic and static analyses are presented for the new architectures. It is verified that
the cables and springs can be kept in tension within a certain workspace. Results of numerical
simulations are also given in order to provide insight into the design issues.

29
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3.1 Introduction

The planar mechanism introduced in the preceding chapter avoids the cable-spool system. How-
ever, it is redundantly actuated. Due to the unidirectionality of the cable force, cable-driven
parallel mechanisms require the use of certain approaches to realize the force-closure condition.
Suspended cable-driven parallel mechanisms make use of the end-effector’s weight, while fully-
constrained cable-driven parallel mechanisms are redundantly actuated. Also, some cable routings
use rigid-link bridge and trolley systems. Here, it is expected to realize the force-closure condition
using the compliance provided by springs.

The aim of this work is to avoid cable-spool systems and eliminate actuation redundancy in
cable-driven parallel mechanisms using cable loops. Now, it is attempted to use cable loops and
springs to reach this goal.

3.2 Conceptual Development of the 2-DOF
Spring-Loaded Cable-Loop-Driven Parallel
Mechanisms

In this work, it is desired to include a number of actuators equal to the number of degrees of
freedom and to eliminate the spools for the cable-driven parallel mechanism. The proposed solu-
tion is to include cable loops between the actuators and the end-effector. The cable loops make
it possible to avoid the use of spools. Indeed, each of the loops can be driven by a linear actuator
(slider) or by a rotary actuator through a timing belt. The main issue with cable loops is that, in
general, their length changes when the end-effector is displaced. Therefore, some compliance must
be introduced in the loops in order to compensate for this change of length. Here, the challenge is
to include compliance in the closed loops without introducing compliance between the actuators
and the end-effector. Additionally, it is desired to obtain a symmetric layout.

If the objective is to avoid actuation redundancy and if spools are tolerated, the simple mech-
anism illustrated in Figure 3.1(a) could be suggested. Suppose A1A2B1B2 is a square with a
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Figure 3.1: Ineffective mechanisms using springs to avoid actuation redundancy.
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(a) fo = 1 and k = 0

(b) fo = 1 and k = 1

(c) fo = 0 and k = 1

Figure 3.2: The workspaces for different spring parameters of the simple cable mechanism. The
workspaces are illustrated by the shaded areas.
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Figure 3.3: Schematic representation of compliance in the loop on one side of the actuator.

unit half side length and the original position of the end-effector is at the centre of the square.
The available workspaces for different spring parameters (preload fo and stiffness k) are shown in
Figure 3.2. It can be observed that the workspace obtained is rather limited and not symmetric
with respect to a horizontal axis.

One option to eliminate spools is to introduce preloaded compliance in the cables on each side
of the actuator, as illustrated in Figure 3.1(b) where M1 and M2 represent the actuators. Because
there is compliance between the end-effector and the actuators, any external force on the end-
effector will cause one of the springs to extend and the other one to retract, which displaces the
end-effector even if the actuators are fixed. It can be observed that this mechanism is ineffective.

The first suggested option is to include preloaded compliance on only one side of each loop, as
illustrated in Figure 3.3. Then, there is compliance in the loop, but not between the end-effector
and the actuator. Indeed, if an external force is applied on the compliant side, the force on the
rigid side will decrease accordingly and the length in the compliant side will not change, as long as
the external force does not exceed the preload. This arrangement fulfills the design requirements
but it is not symmetric.

Another suggested option, illustrated in Figure 3.4, is to include preloaded compliance on each
side of the actuator, but to couple these compliances. Figure 3.4(a) illustrates the implemen-
tation of the concept using rotary actuators and timing belts while Figure 3.4(b) illustrates the
implementation using prismatic actuators (M1 and M2) and cables. The resulting mechanism has
similarities with the system including compliance on one side of the loop, but it is symmetric. The
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Figure 3.5: Demonstration model of the symmetric 2-DOF spring-loaded cable-loop-driven parallel
mechanism.

compliance in the closed loops allows motion of the end-effector, but the transmission between
the end-effector and the actuators is ideally rigid, as long as the resulting force on the spring does
not exceed its preload. Because of the coupling between the two sides of each loop, if an external
force is applied, the additional force on one side of the loop is compensated for by a reduction of
the force on the other side of the loop without any effect on the preloaded spring, as long as the
external force does not exceed the preload. It is noted that in order to work properly, the two
sides of a given loop must be mounted on fixed pulleys that are mounted on opposite corners of
the rectangular workspace A1A2B1B2 (Figure 3.4(b)), i.e., the mechanism does not work if the
sides of a given loop are mounted on adjacent pulleys.

A demonstration model of the mechanism with symmetric compliance is shown in Figure 3.5.
The analysis for the non-symmetric compliance and symmetric compliance spring-loaded cable-
loop-driven parallel mechanisms is given in the following.
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3.3 Planar Spring-Loaded Cable-Loop-Driven Parallel
Mechanism with Non-Symmetric Compliance

3.3.1 Inverse Kinematics

As shown in Figure 3.3, there are two non-symmetric spring-actuator cable-loop systems in the
non-symmetric 2-DOF spring-loaded cable-loop-driven mechanism. For the ith, i = 1, 2, cable
loop, a spring EiFi is attached on one side of the actuator and the cable passes around the fixed
pulleys Ai, Bi, Ci and Di to complete the ith loop. The position of the fixed pulleys Ai, Bi, Ci and
Di, i = 1, 2, can be expressed by their position vector defined as ai = [xai, yai]T , bi = [xbi, ybi]T ,
ci = [xci, yci]T and di = [xdi, ydi]T , i = 1, 2. The position of the fixed attachment point Fi of the
ith spring is defined as fi = [xfi, yfi]T , i = 1, 2. Suppose the original length of the ith, i = 1, 2,
spring is loi and its deformation is δi, the position of pulley Ei can be expressed as

ei = fi + (loi + δi)si = eoi + δisi, i = 1, 2, (3.1)

where si is the moving direction of the ith spring and eoi is the original position of the spring end
Ei, i = 1, 2.

The inverse kinematic problem can be stated as follows: given the position of the end-effector
p = [x, y]T , find the position of the actuators Mi, i = 1, 2, and the position of the springs’ end Ei,
i = 1, 2, i.e., determine the displacement of the actuators lmi, i = 1, 2, and the deformation of the
springs δi, i = 1, 2.

The lengths of the cable segments PAi and PBi, i = 1, 2, vary according to the position
of point P . The variation of cable segment PAi, i = 1, 2, is caused by the displacement of the
corresponding actuator; the variation of cable segment PBi, i = 1, 2, is caused by the displacement
of the actuator and the deformation of the spring. Assuming the original position of the end-
effector is po = [xo, yo]T , one has

−lmi = |PAi| − |PoAi|, i = 1, 2, (3.2)

lmi + 2δi = |PBi| − |PoBi|, i = 1, 2. (3.3)



37

B2

A1

B1

A2

fb1

fa2

fb2

fa1

fe E2

fs1

E1

fb1fb1
fb1

fs2

fb2 fb2

fa1
fa2

fb2

fm2

fm1

1M

M2

P

Figure 3.6: Forces acting on the 2-DOF spring-loaded cable-loop-driven parallel mechanism with
non-symmetric compliance.

With Eq. (3.2) and Eq. (3.3), lmi and δi, i = 1, 2, can be found as

δi = nai + nbi
2 , i = 1, 2, (3.4)

lmi = −nai, i = 1, 2. (3.5)

where nai = |PAi| − |PoAi| and nbi = |PBi| − |PoBi|, i = 1, 2.

From the above equations, it can be seen that the deformations of the springs and the dis-
placements of the actuators only depend on the position of the end-effector and are independent
from the external forces, assuming that the cables are all under tension.

3.3.2 Static Analysis

Neglecting the friction between the cables and pulleys, the forces acting at the end-effector and
on the moving fixtures and pulleys are shown in Figure 3.6. The cable forces fai, fbi, i = 1, 2, in
the cable segments between the actuators and the end-effector are assumed to be uniform, since
all pulleys are free to rotate and friction is neglected. Considering the static equilibrium of the
end-effector, we have that

fa1sa1 + fb1sb1 + fa2sa2 + fb2sb2 = fe, (3.6)
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where fe = [fex, fey]T is the external force applied on the end-effector, sai, sbi are the unit vectors
in the direction of PAi and PBi, i = 1, 2, respectively and

sai = ai − p
||ai − p|| , sbi = bi − p

||bi − p|| , i = 1, 2. (3.7)

The relationship between the ith spring force, fsi, and its deformation, δi, is assumed to be
given by

fsi = foi + kiδi, i = 1, 2 (3.8)

where foi is the preloading force given for the reference position and ki is the stiffness of the spring.
Also, it can be observed that the forces in the springs are independent from the external forces,
assuming that the cables are all under tension, we have

fsi = 2fbi, i = 1, 2. (3.9)

For a given configuration, the deformation of the spring can be calculated and the cable forces
fbi can then be found using the spring parameters as

fbi = 1
2(fo + kδi), i = 1, 2. (3.10)

Substituting Eq. (3.10) into Eq. (3.6), the cable forces fai, i = 1, 2, are solved as

fai = Θi

Θ , i = 1, 2, (3.11)

where Θ = −sTa1Esa2, Θ1 = −fTf Esa2, Θ2 = fTf Esa1, ff = fe − fb1sb1 − fb2sb2 and

E =
 0 −1

1 0

 .

The cable force fbi, i = 1, 2, can be calculated using Eq. (3.10) for a given position of the end-
effector. Then, the cable force fai, i = 1, 2, can be found with Eq. (3.11) for a certain external force.

3.3.3 Workspace Analysis

In order to simplify the analysis and preserve symmetry, the origin of the fixed coordinate frame
O − xy is located at the centre of rectangle A1A2B1B2 as shown in Figure 3.3. Moreover, the
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modular actuator-spring systems are all assumed to have the same characteristics. That is to
say, the preload and the stiffness of the springs are the same in each loop, i.e., fo1 = fo2 = fo

and k1 = k2 = k respectively. Because cables can only pull and not push, it should be verified
that the cables and springs can be maintained in tension over the workspace. In other words, the
workspace is defined as the set of end-effector positions for which the cables can be maintained in
tension.

Assume no external force applied on the end-effector, i.e., fe = 0. The force in the cables can
be obtained from Eq.(3.10) and Eq.(3.11). As mentioned above, the cables and the springs should
be maintained in tension if the end-effector is within the workspace.

In the reference configuration, it is expected that there is no deformation of the springs and
the spring force equals the preload. That is to say,

fsi = fo, δi = 0, i = 1, 2.

According to their stiffness, springs can be classified as positive stiffness springs, constant force
springs and negative stiffness springs (examples of practical implementation of a negative stiffness
is presented in [108–110]). In order to maintain the springs in tension, the following relationships
should be satisfied

fsi


≥ fo, if k > 0,

= fo, if k = 0,

≤ fo, if k < 0,

i = 1, 2. (3.12)

Let δfsi = fsi − fo and from Eq. (3.4) we have

δfsi = kδi = k

2(nai + nbi), (3.13)

then Eq. (3.12) can be written as

nai + nbi ≥ 0, i = 1, 2. (3.14)

The latter condition is equivalent to

|AiP |+ |BiP | ≥ ci, i = 1, 2, (3.15)

where ci = |AiP0| + |BiP0|, i = 1, 2. This means that the reference position of the end-effector
should be placed at a point for which the sum of the distances from this point to the pulleys Ai
and Bi, i = 1, 2, is the shortest distance. Only one point of the workspace satisfies this condition:
the intersection of diagonal A1B1 and diagonal A2B2, namely the centroid of the rectangle formed
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Figure 3.7: Angles made by the cables.

by the four fixed pulleys A1, A2, B1 and B2.

The cable forces fbi, i = 1, 2, are equal to one half of the corresponding springs forces, as shown
in Eq. (3.10). Therefore, it suffices needs to investigate the cable forces fai, i = 1, 2, in order to
ensure tension in the mechanism.

The maximum potential workspace is assumed to be the rectangle formed by the four fixed
pulleys A1, A2, B1, B2. Within this footprint, the components of vectors sai, sbi, i = 1, 2, can
be expressed as the unit vector defined by the angles (defined in Figure 3.7) which are measured
between the x-axis and the cables [48]. Because Θ = sin(α2 − α1) = − sinχ1 < 0, the workspace
boundary is formed by the curves corresponding to Θ1 and Θ2 equal to zero.

Assuming no external force applied on the end-effector, the expressions of Θ1 and Θ2 when the
springs are constant force springs (k = 0) lead to

−a22b12b22
fo

Θ1 = yb2(x+ xb2)b22 + (yb2x− xb2y)b12 (3.16)

a12b12b22
fo

Θ2 = (yb2x+ xb2y)b22 + yb2(x− xb2)b12 (3.17)

where ai2 = (ai − p)T (ai − p), bi2 = (bi − p)T (bi − p), i = 1, 2.
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(a) With k = 0 (b) With fo = 0

Figure 3.8: Workspace boundary defined by fai, i = 1, 2.

Similarly, if there is no preload in the springs, Θi, i = 1, 2, can be written as

−2a22b12b22
k

Θ1 = yb2(x+ xb2)(na1 + nb1)b22 + (yb2x− xb2y)(na2 + nb2)b12, (3.18)
2a12b12b22

k
Θ2 = (yb2x+ xb2y)(na1 + nb1)b22 + yb2(x− xb2)(na2 + nb2)b12. (3.19)

Combining Eq. (3.16) with Eq. (3.18) and Eq. (3.17) with Eq. (3.19) respectively, the workspace
boundary defined by fa1 and fa2 for a general spring is obtained. Assuming y = 0, and combining
Eq. (3.16) with Eq. (3.18), we have

−a22b12b22Θ1 =yb2
[
(x+ xb2)

√
(xb2 − x)2 + y2

b2 + x
√

(xb2 + x)2 + y2
b2

]
[
fo + k

2

(√
(xb2 − x)2 + y2

b2 +
√

(xb2 + x)2 + y2
b2 − 2

√
x2
b2 + y2

b2

)]
.

(3.20)

From this equation, it can be observed that there exists a certain value for x through which the
workspace boundary will pass, regardless of the characteristics of the springs.

Suppose xb2 = yb2 = 1, the curves defined in Eq. (3.16) and Eq. (3.17) are shown in Fig-
ure 3.8(a), while the curves defined in Eq. (3.19) and Eq. (3.18) are shown in Figure 3.8(b). The
plots for the workspace boundary defined by fai, i = 1, 2, for different values of the non-dimensional
parameter kr

fo
are shown in Figure 3.9 and Figure 3.10, where r is the half length of the square

side. It can be seen that with negative stiffness springs, the mechanism has a larger workspace.
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.
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Figure 3.10: Workspace boundaries defined by fa1 and fa2 with negative stiffness springs, kr
fo

=
−0.5.

When y = 0, the common point on the workspace boundary corresponding to fa1 is [−0.6446, 0]T

according to Eq. (3.20). This is consistent with the results of all these figures. It is remarkable
that the shapes of Figure 3.2(a) and Figure 3.8(a) are the same, which illustrates that with k = 0,
both mechanisms have the same workspace.

From the workspace plots, it can be observed that the workspace boundary for the spring-
loaded cable-loop-driven parallel mechanism with non-symmetric compliance cannot be the whole
rectangle A1A2B1B2 no matter what the ratio kr

fo
is. It is expected that the spring-loaded cable-

loop-driven parallel mechanism with symmetric compliance has better characteristics. The analysis
for the latter mechanism is performed in the next subsection.

3.4 Planar Spring-Loaded Cable-Loop-Driven Parallel
Mechanism with Symmetric Compliance

3.4.1 Inverse Kinematics

In Figure 3.4, there are two schematics of the planar spring-loaded cable-loop-driven parallel mech-
anisms with symmetric compliance. One uses rotary actuators and while the other uses sliding
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actuators. In this section, mechanisms with sliding actuators are analyzed. The mechanisms
built with rotary actuators lead to very similar results which are readily obtained by adapting the
analysis presented here. The structure of the symmetric 2-DOF spring-loaded cable-loop-driven
parallel mechanism with sliding actuators is shown in Figure 3.4(b): there are two spring-actuator
cable-loop systems in this mechanism. For the ith, i = 1, 2, cable loop, a spring DiEi is attached
to the base at point Ei. Two pulleys Ci and Ji are connected to the other end of the spring at
Di. Each cable loop passes around these two pulleys and around the fixed pulleys to complete the
ith loop, namely KiAiBiFiGiHiKi. Cables are mounted on the slider actuators Mi, i = 1, 2. The
cable segments betweenHiGi, FiCi, CiBi, JiHi, JiKi and the springDiEi are parallel to each other.

The positions of the fixed pulleys Ai, Bi, Ei, Fi, Gi, Hi, Ki, i = 1, 2, can be expressed by
their position vectors defined as ai = [xai, yai]T , bi = [xbi, ybi]T , ei = [xei, yei]T , fi = [xfi, yfi]T ,
gi = [xgi, ygi]T , hi = [xhi, yhi]T and ki = [xki, yki]T , i = 1, 2. The lengths of the cable segments
CiDi, JiDi, MiHiJiKiAiP and MiGiFiCiBiP are constant. For the ith, i = 1, 2, loop, when the
length of one of the cable segments HiJiKiAiP or GiFiCiBiP decreases, the length of the other
increases by the same amount, which corresponds to the actuator motion. The total length of each
cable-loop is constant, but the cable length of AiPBi, i = 1, 2, varies according to the position of
point P and this variation is compensated for by the change of length of the spring.

The reference position of points Ji, Ci and Di are noted joi, coi and doi, i = 1, 2, respectively.
Also, the moving direction of the ith spring is represented by unit vector si, the undeformed length
of the spring is loi, and its deformation is δi. Then, the position of points Ji, Ci and Di, i = 1, 2,
with the deformation δi can be calculated as

di = ei + (loi + δi)si = doi + δisi, i = 1, 2, (3.21)

ji = joi − δisi, i = 1, 2, (3.22)

ci = coi + δisi, i = 1, 2, (3.23)

The solution of the inverse kinematics problem consists in finding the position of the actuators
Mi, i = 1, 2, and the position of Di, i = 1, 2, i.e., determine the displacement of the actuators lmi,
i = 1, 2, and the deformation of the springs δi, i = 1, 2 for a given position of the end-effector P ,
p = [x, y]T .

The lengths of the cable segments PAi and PBi, i = 1, 2, vary according to the position of
point P and these variations are induced by the displacement of the actuators and the deformation
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of the springs. Assuming the reference position of the end-effector to be po = [xo, yo]T , we have

2δi − lmi = |PAi| − |PoAi|, i = 1, 2, (3.24)

2δi + lmi = |PBi| − |PoBi|, i = 1, 2. (3.25)

With these four equations (Eqn. (3.24) and Eqn. (3.25)), lmi and δi, i = 1, 2, can be found as

δi = 1
4(nai + nbi), i = 1, 2, (3.26)

lmi = 1
2(nbi − nai), i = 1, 2, (3.27)

where nai = |PAi| − |PoAi|, nbi = |PBi| − |PoBi|, i = 1, 2.

Similarly to the mechanism with the non-symmetric compliance, from Eq. (3.26) and Eq. (3.27),
it can be seen that δi and lmi, i = 1, 2, only depend on the position of the end-effector and are
independent from the external forces.

The extension of the spring of a loop occurs when the end-effector is moved away from the
diagonal associated with the loop, namely AiBi. Also, the maximum elongation of a spring of a
loop occurs when the end-effector is at one of the fixed pulleys of the other loop (e.g. A2 or B2

for loop 1). Therefore, assuming that the four fixed pulleys A1A2B1B2 are located on the corners
of a square, we have

nai,max = nbi,max = (2−
√

2)r, (3.28)

where r is the half length of a side of the square and, from Eqn. (3.26), the maximum elongation
of the spring is obtained as

δi,max = (2−
√

2
2 )r. (3.29)

3.4.2 Static Analysis

Neglecting the friction between the cables and pulleys, the forces acting at the end-effector and
on the moving fixtures and pulleys are shown in Figure 3.11. The static equilibrium equation for
the end-effector is the same as that of the non-symmetric mechanism, that is to say

fa1sa1 + fb1sb1 + fa2sa2 + fb2sb2 = fe (3.30)
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Figure 3.11: Forces acting on the 2-DOF spring-loaded cable-loop-driven parallel mechanism with
symmetric compliance.

The relationship between the ith spring force and its deformation is the same as Eq. (3.8). In
order to facilitate reading, it is rewritten here in matrix form.

fs = fo + Kδ (3.31)

where fs = [fs1, fs2]T , fo = [fo1, fo2]T , K = diag[k1, k2] and δ = [δ1, δ2]T . The forces in the springs
are also independent from the external forces, assuming that the cables are all under tension.
From Figure 3.11, we have

fsi = 2fai + 2fbi, i = 1, 2. (3.32)

Equation (3.32) is the result of the coupling between the two sides of a loop, as illustrated in
Figure 3.12. Depending on the configuration, the preloaded spring will extend or retract, resulting
in a larger or smaller force fsi. The line shown in Figure 3.12, representing the locus of points
satisfying Eq. (3.32) will move accordingly. Then, for a given configuration, the forces fai and
fbi correspond to a point along the line of the graph of Figure 3.12. The location of the point is
dependent on the external forces. If the point is pushed out of the line segment included in the
first quadrant, then one of the cables becomes loose and the configuration cannot be maintained.
Also, it can be seen that in order to keep the mechanism within its working range, the maximum
available force in a cable loop is fsi/2. Therefore, the cable forces must be such that

fai ∈
[
0, 12fsi

]
, fbi ∈

[
0, 12fsi

]
. (3.33)

It is noted that the maximum sustainable external force will generally be smaller than the latter
value especially near the boundary of the workspace. Indeed, at the boundary of the workspace,
the sustainable external force vanishes. This issue will be addressed in detail in Chapter 5.
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Rewriting Eq. (3.32) as fai = fsi
2 − fbi, i = 1, 2, and substituting fai into Eq. (3.30), we then

have
fb1(sb1 − sa1) + fb2(sb2 − sa2) = fq (3.34)

where
fq = fe −

1
2(fs1sa1 + fs2sa2).

Eq. (3.34) can be rewritten in matrix form as

Mfb = fq (3.35)

where fb is a vector defined as fb = [fb1, fb2]T and M is a 2× 2 matrix given as

M =
[

(sb1 − sa1) (sb2 − sa2)
]
. (3.36)

Equation (3.35) is readily solved for fb for a given configuration and external force. Moreover,
it can be observed by inspection of Eq. (3.36) that matrix M cannot become singular inside the
footprint of the mechanism (the rectangle defined by A1A2B1B2). Therefore, the above solution
is robust and can be used to calculate the cable force anywhere within the workspace.

Once vector fb is computed, Eq. (3.32) can be used to compute forces fa1 and fa2, namely

fa = 1
2fs − fb (3.37)

where fa = [fa1, fa2]T . Upon solving Eq. (3.35) and Eq. (3.37) for fb and fa, it should be verified
that all cable tensions are positive.

In fact, Eq. (3.35) is readily solved in closed form, which leads to

fbi = ∆i

∆ , i = 1, 2 (3.38)
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where

∆1 = −fTq E(sb2 − sa2), (3.39)

∆2 = fTq E(sb1 − sa1), (3.40)

∆ = −(sb1 − sa1)TE(sb2 − sa2), (3.41)

and

E =
 0 −1

1 0

 .

Hence, closed-form expressions for the cable forces fai, fbi, i = 1, 2, are directly available using
Eq. (3.37) and Eq. (3.38).

When the mechanism is in static equilibrium, the actuating force fm can be written as

fm = fa − fb, (3.42)

where fm = [fm1, fm2]T . Using Eq. (3.32), the actuating force can be expressed as

fm = 1
2fs − 2fb. (3.43)

Since the cable forces need to satisfy the conditions shown in Eq. (3.33), it follows from interval
arithmetics that the required actuating force must be such that fmi ∈

[
−1

2fsi,
1
2fsi

]
, i = 1, 2.

3.4.3 Simplified Preliminary Analysis

In this subsection, a simplified analysis is performed in order to obtain estimates of the design
parameters. First, it is assumed that the rectangle A1A2B1B2 is a square whose side is of length
2r. Similarly to the analysis performed for the non-symmetric mechanism, it can be verified that
the reference configuration (springs are without deformations) should be placed at the centre of
the square. Therefore, the points of the workspace that lie the furthest from the reference configu-
ration are the four corner points A1, A2, B1 and B2. If the square is considered as the workspace of
the mechanism, these points correspond to the configurations where one of the cable loops reaches
its maximum extension with respect to its reference length.
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Assuming that the corner points are at the boundary of the workspace, we can set the corre-
sponding cable tension to zero. For instance, if we assume that the end-effector is located at point
A2 and that the latter is at the boundary of the workspace, the critical force will be fb2 and the
constraint to be satisfied will be

fb2 ≥ 0. (3.44)

Assuming that the end-effector is located at point A2 with zero external force, Eqn. (3.30) and
Eqn. (3.32) form a system of four linear equations in fai, fbi, i = 1, 2, which can be readily solved
for the latter unknowns. Substituting Eqn. (3.31) and Eqn. (3.29) in the solution then leads to,
for fb2:

fb2 =
(

2−
√

2
4

)
fo −

(√
2− 1
4

)
kr. (3.45)

Substituting Eqn. (3.45) into Inequality (3.44) then leads to

kr

fo
≤
√

2. (3.46)

In other words, Inequality (3.46) provides the maximum ratio of kr
fo

which guarantees that the cor-
ners of the square are included in the workspace. Inequality (3.46) can be used as a first estimate
in order to determine the proper spring parameters for a given mechanism.

In the above analysis, the following cable forces are obtained when the end-effector is located
at point A2:

fa1,max = fb1,max = 1
2(fo + kδmax) = fo

4 +
(

2−
√

2
8

)
kr (3.47)

fa2,min = 1
2fs,min = 1

2fo (3.48)

where fa1,max, fb1,max, fa2,min and fs,min are respectively the maximum and minimum values of the
forces.

Moreover, the elongation of a spring resulting from the preload is given by

δo = fo
k
. (3.49)

Then, from Eq. (3.49) and when the preload is set to allow the workspace to reach the corners
(Inequality (3.46)), δo can be expressed as

δo =
√

2
2 r. (3.50)
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Finally, the maximal total elongation of the spring is given by

δtot = δi,max + δo, (3.51)

and when the preload is set to allow the workspace to reach the corners,

δtot = 2−
√

2
2 r +

√
2

2 r = r, (3.52)

that is, the maximum total elongation of the spring equals half the side of the square.

3.4.4 Workspace Analysis

The cable forces and the springs should be maintained in tension for the end-effector to remain
within the workspace. Similarly to what was done for the non-symmetric mechanism, in order
to preserve symmetry, the origin of the fixed coordinate frame O − xy is located at the centre of
rectangle A1A2B1B2 as shown in Figure 3.4(b) and the modular actuator-spring systems are all
assumed to have the same characteristics.

3.4.4.1 Zero External Forces: Formulation

The mechanism is first assumed to be operated in quasi-static conditions on a horizontal plane
without friction and the external force on the end-effector is assumed to be zero, i.e., fe = 0. The
forces in the cables can then be obtained from Eq. (3.37) and Eq. (3.38) where fq is simply taken
as fq = −1

2(fs1sa1 + fs2sa2), fs is obtained from Eq. (3.31) and δi is obtained from Eq. (3.26).

The springs and the cable forces fai and fbi, i = 1, 2, should be maintained in tension when
the position of the end-effector is within the workspace. This condition leads to

fai ≥ 0, i = 1, 2, (3.53)

fbi ≥ 0, i = 1, 2. (3.54)

Or, using Eq. (3.37),

0 ≤ fai ≤
1
2fsi, 0 ≤ fbi ≤

1
2fsi, i = 1, 2. (3.55)

which is equivalent to Eq. (3.33).
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If the original configuration of the end-effector is placed at the centre of the rectangle, the
springs will always be maintained in tension no matter what the stiffness is. Therefore, only the
conditions of Inequality (3.53) and Inequality (3.54) (or alternatively Inequality (3.55)) need to
be considered in order to ensure tension in the mechanism.

As shown in Figure 3.7, the determinant of matrix M can be written as

∆ = det
 (cos β1 − cosα1) (cos β2 − cosα2)

(sin β1 − sinα1) (sin β2 − sinα2)

 = −
4∑
i=1

sinχi, (3.56)

where χ1 = α1 − α2, χ2 = 2π + β2 − α1, χ3 = β1 − β2, χ4 = α2 − β1 and
4∑
i=1

χi = 2π. Because

0 < χi < π, i = 1, . . . , 4, then it can be seen that the determinant of M is always negative.
Therefore, the numerators appearing in Eq. (3.38) should be negative in order to keep the cables
in tension. Equations (3.39) and (3.40) lead to

fTq E(sb2 − sa2) ≥ 0 (3.57)

−fTq E(sb1 − sa1) ≥ 0. (3.58)

Because rectangle A1A2B1B2 is symmetric and the spring-actuator systems are modular with
the same characteristics, then the four cable forces fai, fbi, i = 1, 2, have the same properties.
Therefore, it suffices to satisfy any of Inequality (3.57) or Inequality (3.58) in order to verify that
the cables can be maintained in tension when the end-effector is within the footprint defined by
rectangle A1A2B1B2. Hence, Inequality (3.57) is used in the following analysis.

Two special cases are now analyzed in order to simplify the problem. First, constant-force
springs are assumed (k = 0). In this case, Inequality (3.57) can be written as

1√
A12
√
B22

(a1x+ b1y+ c1)+ 1√
A22
√
B22

(a2x+ b2y+ c2)+ 1√
A12
√
A22

(a3x+ b3y+ c3) ≥ 0. (3.59)

The second special case corresponds to fo = 0, i.e., no preload in the springs. In this case,
Inequality (3.57) becomes

1√
B22

[(a1 + a2)x+ (b1 + b2)y + (c1 + c2)] + 1√
A22

[(a2 + a3)x+ (b2 + b3)y + (c2 + c3)]

+
√
B12√

A12
√
B22

(a2x+ b2y + c2) +
√
B12√

A12
√
A22

(a3x+ b3y + c3)

− da2 + db2√
A22
√
B22

(a2x+ b2y + c2) + da1 + db1√
A12
√
B22

(a3x+ b3y + c3)

+ da1 + db1√
A12
√
A22

(a1x+ b1y + c1) ≥ 0.

(3.60)
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In the above equations, one has

Ai2 = (ai − p)T (ai − p), Bi2 = (bi − p)T (bi − p),

a1 = yb2 − ya1, a2 = yb2 − ya2, a3 = ya1 − ya2,

b1 = xa1 − xb2, b2 = xa2 − xb2, b3 = xa2 − xa1,

c1 = −bT2 Ea1, c2 = −bT2 Ea2, c3 = −aT1 Ea2,

dai = |PoAi|, dbi = |PoBi|, i = 1, 2.

First, Inequality (3.59) is analyzed. Because the mechanism is symmetric and the origin of the
coordinate system is in the centre of the workspace, the coordinates of the fixed pulleys have the
following relationships

xa1 = xb2, ya1 = −yb2, xa2 = −xb2,

ya2 = −yb2, xb1 = −xb2, yb1 = yb2.

Hence, Inequality (3.59) can be simplified to

yb2(x− xb2)
√

(x+ xb2)2 + (y + yb2)2 + (yb2x− xb2y)
√

(x− xb2)2 + (y + yb2)2

− xb2(y + yb2)
√

(x− xb2)2 + (y − yb2)2 ≤ 0.
(3.61)

From the latter equation, the following observations can be made:

1. When x = xb2, the left-hand side of Eq. (3.61) becomes 0, so the segment x = xb2, −yb2 ≤
y ≤ yb2 is a part of the workspace boundary;

2. When x = −xb2, the left-hand side of Eq. (3.61) becomes

−(y + yb2)
[
2xb2yb2 + xb2

√
A12 + xb2

√
B22

]
.

Within the rectangle A1A2B1B2, the value of y is constrained to −yb2 ≤ y ≤ yb2, so −(y +
yb2) ≤ 0. Because

[
2xb2yb2 + xb2

√
A12 + xb2

√
B22

]
> 0, Eq. (3.61) is satisfied when x = −xb2,

−yb2 ≤ y ≤ yb2 and it becomes identically 0 at point (−xb2,−yb2);

3. When y = yb2, the left-hand side of Eq. (3.61) becomes

−(xb2 − x)
[
yb2
√
A22 + yb2

√
A12 + 2xb2yb2

]
.

Within the rectangle A1A2B1B2, the value of x is constrained to −xb2 ≤ x ≤ xb2, so
−(xb2 − x) ≤ 0. Because

[
yb2
√
A22 + yb2

√
A12 + 2xb2yb2

]
> 0, Eq. (3.61) is satisfied when

y = yb2, −xb2 ≤ x ≤ xb2 and it becomes identically 0 at point (xb2, yb2);
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Figure 3.13: Division of the workspace.

4. When y = −yb2, the left-hand side of Eq. (3.61) becomes 0, so the segment y = −yb2,
−xb2 ≤ x ≤ xb2 is also a part of the workspace boundary.

Therefore, if there exists any curve corresponding to the equality in Eq. (3.61) within the
rectangle A1A2B1B2, the curve must pass through points located on the line segment A2A1 or the
line segment A1B2. However, it turns out that there is no such curve, as will now be shown in the
following.

(i) If yb2x − xb2y ≤ 0 (i.e., in the region noted (I) in Figure 3.13), Eq. (3.61) will always be
satisfied, the left-hand side of Eq.(3.61) is negative within this region because yb2(x−xb2) < 0 and
−xb2(y + yb2) < 0, except for point (−xb2,−yb2) and point (xb2, yb2).

(ii) If yb2x−xb2y > 0 (i.e., in the region noted (II) in Figure 3.13), Eq. (3.61) can be rearranged
as

yb2(x− xb2)
√

(x+ xb2)2 + (y + yb2)2 − xb2(y + yb2)
√

(x− xb2)2 + (y − yb2)2

< (xb2y − yb2x)
√

(x− xb2)2 + (y + yb2)2 < 0
(3.62)

Since Eq. (3.61) is equal to 0 when x = xb2, −yb2 ≤ y ≤ yb2 or −xb2 ≤ x ≤ xb2, y = −yb2, if there
is any curve corresponding to Eq. (3.61) within region (II), the curve should include these two line
segments. But it turns out that the left-hand side of Eq. (3.61) is always negative in the area near
x = xb2, −yb2 ≤ y ≤ yb2 or −xb2 ≤ x ≤ xb2, y = −yb2 within region (II).

Let −xb2 < x < xb2, y = −yb2+ε, where ε is a small positive quantity. Substituting y = −yb2+ε
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into Eq. (3.62), leads to

0 < (yb2x+ xb2yb2 − xb2ε)
√

(x− xb2)2 + ε2

< yb2(xb2 − x)
√

(x+ xb2)2 + ε2 + xb2ε
√

(x− xb2)2 + (2yb2 − ε)2.
(3.63)

Squaring Eq. (3.63) and simplifying, one has

x2 − x2
b2 − 2yb2ε+ ε2 < 0 <

√
(x+ xb2)2 + ε2

√
(x− xb2)2 + (2yb2 − ε)2. (3.64)

Hence, Eq. (3.61) is always negative when 0 < x < xb2, y = −yb2 + ε.

Let x = xb2 − ε, −yb2 < y < yb2, where ε is a small positive quantity. Substituting x = xb2 − ε
into Eq. (3.62), leads to

0 < (yb2xb2 − yb2ε− xb2y)
√
ε2 + (y + yb2)2

< yb2ε
√

(2xb2 − ε)2 + (y + yb2)2 + xb2(y + yb2)
√
ε2 + (y − yb2)2.

(3.65)

Squaring Eq. (3.65) and simplifying, one has

y2 − y2
b2 − 2xb2ε+ ε2 < 0 <

√
(2xb2 − ε)2 + (y + yb2)2

√
ε2 + (y − yb2)2. (3.66)

Therefore, Eqn. (3.61) is always negative when x = xb2 − ε, −yb2 < y < yb2.

With Eq. (3.64) and Eq. (3.66), it can be concluded that there is no locus for Eq. (3.61) within
region (II). So, the left-hand side of Eq. (3.61) is negative within both region (I) and region (II).

Since the mechanism is symmetric, fai, fbi, i = 1, 2, have the same characteristics, which
means that if the springs of the mechanism are constant force springs, the cable forces can be
maintained in tension within the workspace defined by the footprint of the mechanism, namely
rectangle A1A2B1B2.

The case for which the spring preload is zero but the stiffness is not zero is more difficult to
analyze. Indeed, Inequality (3.60) is very complicated and the analysis presented above for In-
equality (3.59) cannot be applied. For this case and for the general case for which the stiffness and
the preload of the springs are both not zero, one must resort to numerical computations. Examples
of results are now presented in order to illustrate how the characteristics of the mechanism can be
adjusted by changing the preload and stiffness of the springs.
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Figure 3.14: Workspace of the mechanism when fo = 0.

For the figures presented in the following, we assume that the workspace A1A2B1B2 is a square
and we normalize the square side length as r = 1. Also, the original position of the end-effector is
placed at po = [0, 0]T . If fo = 0, the boundary curves for fbi = 0 and fai = 0, i = 1, 2, are shown
in Figure 3.14, where the shaded area is the available workspace.

A non-dimensional parameter characterizing the springs’ properties with respect to the mech-
anism’s size is then defined as kr

fo
. The workspace boundaries defined by fbi = 0 and fai = 0,

i = 1, 2, for different values of kr
fo

are shown in Figure 3.15. The interior of the curves is the
available workspace.

It can be observed that there should be preload in the springs because the central configuration
p = [0, 0]T is at the workspace boundary if fo = 0. Also, the workspace is very small when there
is no preload. The mechanism has a smaller workspace if the stiffness of the springs is positive.
But if kr

fo
is adjusted properly, a significantly large workspace can be obtained.

It can be seen that the workspace characteristics of the spring-loaded cable-loop-driven mech-
anism with symmetric compliance is better than that of the non-symmetric spring-loaded cable-
loop-driven mechanism.
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.
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3.4.4.2 Nonzero External Forces

If there are external forces applied on the end-effector, the available workspace will be reduced.
The effect of the external forces on the workspace boundary is now analyzed. Since the mechanism
is symmetric and the four cable forces have the same characteristics, only the analysis for the cable
force fb1 is given in the following. The analysis for the other cable forces is similar and the results
are readily obtained from the analysis shown here. The equations for all the cable forces are given
in Appendix A.

(1) Constant force spring

If the springs in the mechanism are constant force springs, modifying Inequality (3.57) we have[
fe −

1
2fo(sa1 + sa2)

]T
E(sb2 − sa2) ≥ 0. (3.67)

By inspection of the components of the above inequality, it can be observed that the worst condi-
tion appears when the x component of fe is positive while the y component is negative.

Assuming fex = ρfo and fey = −ρfo, where ρ is a positive value, it can be verified that the
following inequality should be satisfied:

ρ
[
(x+ y)

√
A12(

√
B22 −

√
A22) + (xb2 + yb2)

√
A12(

√
A22 +

√
B22)

]
+ yb2(x− xb2)

√
A22

+ (yb2x− xb2y)
√
A12 − xb2(y + yb2)

√
B22 ≤ 0.

(3.68)

From the analysis presented above, we know that the workspace boundary defined by cable
force fb1 is in range (II) of Figure 3.13. Now, we try to find the boundary point on the diagonal
for the situation in which the four fixed pulleys form a square and for the situation in which they
form a rectangle.

First, suppose xb2 = yb2, for the diagonal defined by y = −x, let the left-hand side of Inequal-
ity (3.68) be equal to zero and simplify it. We have

2
√

2ρ
√
x2
lim + x2

b2 −
√
x2
lim + x2

b2 + xlim = 0, (3.69)

where xlim stands for the x coordinate of the workspace boundary point on the diagonal. Assuming
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xb2 = 1 and rearranging Eq. (3.69), we obtain

ρ =

√
x2
lim + 1− xlim

2
√

2
√
x2
lim + 1

. (3.70)

In order to make sure that the mechanism has a non-vanishing workspace, the boundary defined
by the cable force fb1 should be in the fourth quadrant which means that xlim should be positive.
The largest possible value of ρ is

√
2

4 when xlim = 0. The plot representing Eq. (3.70) is shown
in Figure 3.16. From this figure, it can be seen that the workspace along the diagonal starts to
decrease when ρ ≥

√
2−1
4 .

If the quadrilateral formed by the four fixed pulleys is a rectangle, it is assumed that γ = yb2
xb2

and xb2 = 1. For the diagonal described by y = −γx, letting Inequality (3.68) equal to zero and
rearranging it, we have

ρ = γ [n2 + n3 − 2xlimn1]
n1 [(1 + γ + xlim − γxlim)n2 + (1 + γ − xlim + γxlim)n3]

, (3.71)

where n1 =
√

1 + γ2, n2 =
√

(xlim − 1)2 + γ2(xlim + 1)2 and n3 =
√

(xlim + 1)2 + γ2(xlim − 1)2.

If the range of the external force space has the same scale as the rectangle, that is to say
fex = ρfo and fey = −γρfo, for fb1, equating the left-hand side of Ineqn. (3.67) to zero leads to:

ρ = n2 + n3 − 2xlimn1

2n1 (n2 + n3)
. (3.72)

The plots of Eq. (3.71) and Eq. (3.72) are shown in Figure 3.17(a) and Figure 3.17(b) respec-
tively. If the required range for the external force applied on the end-effector is the same for all
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directions, from Figure 3.17(a), we can see that when γ = 1, that is to say the four vertices form
a square, the workspace is maximized. If the external force has the same direction as the aspect
ratio of the rectangle, the smaller γ, the smaller the external force in the y direction is, so the
ratio between the external force and the preload is larger for a certain boundary of the workspace.

(2) General Spring

If the springs used in the mechanism have non zero stiffness, the analytical expression for the
workspace boundary becomes very complicated. Now, a simplified situation is analyzed. The
workspace boundary for general situations can be found numerically using the basic inequalities
of Inequality (3.57) and Inequality (3.58).

Similarly to what was done above, we use fb1 in the analysis. Assuming that xb2 = yb2 = r,
y = −x, fex = ρfo and fey = −ρfo and simplifying Inequality (3.57), we obtain the following
inequality

fo

(
−2
√

2ρ√
x2 + r2

+ 1√
x2 + r2

− x

x2 + r2

)
− 2
√

2kx(
√
x2 + r2 − r)
x2 + r2 ≤ 0 (3.73)

Defining q = k

fo
, equating the left-hand side of Inequality (3.73) to zero and simplifying it, we

obtain

q =
(1− 2

√
2ρ)

√
x2
lim + r2 − xlim

2
√

2xlim(
√
x2
lim + r2 − r)

. (3.74)

Normalizing r as one unit, the plot for Eq. (3.74) is shown in Figure 3.18. It can be observed that
the mechanism will have a better workspace if the springs have a proper negative stiffness.

If the external force workspace is defined as
√
f 2
ex + f 2

ey ≤
√

2ρfo, by inspection of the compo-
nents of Inequality (3.67), we know that the worst condition for fb1 is fex = ρfo and fey = −ρfo.
Similarly, it can be shown that the worst condition for fb2 is fex = −ρfo and fey = −ρfo, for fa1
is fex = −ρfo and fey = ρfo, for fa2 is fex = ρfo and fey = ρfo.

Assuming that the rectangle formed by the four fixed pulleys is a square with 2 side length,
the half length of the square is r = 1. The square length and the characteristics of the spring
are normalized as kr

fo
=
√

2. Then, for ρ = 0.1 and ρ = 0.2, the workspace boundary defined by
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2.

the four cable forces are shown in Figure 3.19(a) and Figure 3.19(b), respectively. The black thin
dashed lines in these figures are the boundaries for k = 0.

It can be seen that the workspace is reduced if external forces are applied. However, a large
workspace can still be obtained if the springs are sufficiently preloaded, compared to the maximum
external forces.
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3.5 Conclusion

This chapter presented new spring-loaded cable-loop-driven planar parallel mechanisms. The two
degrees of freedom are controlled by two actuators because the cable loops are attached to springs
in these mechanisms. The inverse kinematics and statics equations for the non-symmetric and
symmetric spring-loaded cable-loop-driven mechanisms are given. The workspace of these two
mechanisms is analyzed based on the static equations. It is shown that by coupling the compli-
ance on each side of the actuators, the symmetric mechanism has the best available workspace
among the proposed concepts. If constant force springs are used, the workspace covers the whole
rectangle formed by the four fixed pulleys directing the cables to the end-effector for a null external
force. For the symmetric mechanism, the workspace can also be significantly large provided that
the ratio between the stiffness and the preload of the springs is not too large.



Chapter 4

Spatial Spring-Loaded
Cable-Loop-Driven Parallel Mechanism

The spring-loaded cable-loop model with symmetric compliance is applied to a spatial mechanism
in this chapter. First, the architecture of spatial spring-loaded cable-loop-driven parallel mecha-
nism is introduced. In this mechanism, cable-spool actuating systems and actuation redundancy
are avoided. By attaching springs to the cable loops, three degrees of freedom for spatial displace-
ment can be controlled using only three actuators. The inverse kinematics, the static equilibrium
equations and the workspace analysis are presented. Because all these equations are obtained
based on the cable segment lengths, many square roots appear in the equations. The boundary
equations for different arrangements, i.e., preload, non-zero stiffness and external forces, are ob-
tained separately in order to simplify the analysis. The boundary equations of each cable force
for any situation can be obtained by combining the equations based on the matrix superposition
principle. It is verified that the mechanism has a significantly large workspace within which the
cables and the springs can be maintained in tension compared to a standard mechanism actuated
with three motors.
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Figure 4.1: Demonstration model of the spatial spring-loaded cable-loop-driven parallel mecha-
nism, one of the loops is highlighted.

4.1 Introduction

In Chapter 3, spring-loaded cable-loops are used to drive a planar mechanism. The suggested
option is to include preloaded compliance on each side of the actuators, but to couple these com-
pliances. In such a planar mechanism, the actuators can be rotary actuators or linear actuators. In
this chapter, it is intended to apply this model to a spatial mechanism. For a spatial cable-driven
mechanism, the end-effector translations without actuation redundancy can be performed using
three actuated cables and three springs attached between the end effector and the six vertices of
an octahedron. The resulting workspace is a triangular pyramid with its base coincident with one
of the faces of the octahedron and its apex at the centroid of the opposite face. The volume of
the workspace is approximately one quarter of the volume of the octahedron. In order to improve
the size of the workspace, the concept used in the proceeding chapter is applied here.

In this chapter, the concept of spring-loaded cable-loop module is extended to a 3D displace-
ment spatial mechanism and the workspace of this mechanism is analyzed. The demonstration
model of this spatial mechanism built in the laboratory is shown in Figure 4.1.
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Figure 4.2: Diagram of a 3-actuator translational spatial spring-loaded cable-loop-driven parallel
mechanism.

4.2 Description of the Mechanism

The structure of the translational spatial spring-loaded cable-loop-driven parallel mechanism is
illustrated schematically in Figure 4.2. The mechanism includes preloaded compliance on each
side of the actuators and these compliances are coupled. The compliance in the closed loop allows
motion of the end-effector, but the transmission between the end-effector and the actuators is
rigid, as long as the resulting force on the spring does not exceed its preload.

Six fixed pulleys (Ai, Bi, i = 1, 2, 3) are mounted on the vertices of a regular octahedron, cables
passing on these pulleys are attached to a common end-effector (see in Figure 4.2(a)). Opposing
cables are connected by a cable loop. As a result, the cables of the loops are orthogonal to each
other when in neutral position. In the practical implementation, one of the faces of the octahedron,
as well as the springs and actuators, lie on the ground. Therefore, there are three spring-loaded
cable-loop modules (illustrated in Figure 4.2(b)) in this mechanism. For one cable loop, a spring
NiHi is attached to the ground at point Ni. Two pulleys Ci1 and Ci2 are connected to the other
end of the spring at Hi. Each cable loop passes around these two pulleys and the fixed pulleys
to complete the loop, namely PAiCi1DiEiCi2FiGiBiP , i = 1, 2, 3. The cable loops are driven by
linear actuatorsMi, i = 1, 2, 3. The cable segments AiCi1, DiCi1, Ci1Hi, JiHi and the spring HiNi

are parallel to each other. The cable segments DiEi, Ci2Ei, JiCi2 and Ci2Fi are also parallel to
each other. As stated in Chapter 3, rotary actuators also can be used as the drivers if the pulleys
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and the routing of the cable are arranged in a different way.

The positions of the fixed pulleys Ai, Bi and the fixed end of the spring Ni can be expressed as
ai = [xai, yai, zai]T , bi = [xbi, ybi, zbi]T and ni = [xni, yni, zni]T , i = 1, 2, 3, respectively. The lengths
of the cable segments Ci1Hi, Ci2JiHi,MiDiCi1AiP andMiEiCi2FiGiBiP are constant. For the ith,
i = 1, 2, 3, cable loop, if one length of the cable segmentsDiCi1AiP or EiCi2FiGiBiP decreases, the
other will increase by the same amount as the actuator is moving, because of the closed cable loop.

4.3 Inverse Kinematics

Similarly to the planar symmetric mechanism, the lengths of the cable segments PAi and PBi,
i = 1, 2, 3, vary according to the position of the end-effector. These variations are induced by
the displacements of the actuators and the deformations of the springs. Assuming the reference
position of the end-effector (centroid of the octahedron) is po = [xo, yo, zo]T , we have

2δi + lmi = |PAi| − |P0Ai|, i = 1, 2, 3, (4.1)

2δi − lmi = |PBi| − |P0Bi|, i = 1, 2, 3. (4.2)

With these six equations (Eq.(4.1) and Eq.(4.2)), lmi and δi, i = 1, 2, 3, can be found as

lmi = oai − obi
2 , i = 1, 2, 3, (4.3)

δi = oai + obi
4 , i = 1, 2, 3, (4.4)

where oai, obi are the length change of cable segments PAi, PBi respectively and oai = |PAi| −
|P0Ai|, obi = |PBi| − |P0Bi|, i = 1, 2, 3.

It can be seen that lmi and δi, i = 1, 2, 3, only depend on the position of the end-effector and
are independent from the external forces, assuming that the cables are all under tension.
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4.4 Static Analysis

Neglecting the friction between the cable and pulleys, the cable forces fai, fbi, i = 1, 2, 3, in the
cable segments between the actuators and the end-effector are assumed to be uniform. Considering
the static equilibrium of the end-effector, we have that

Safa + Sbfb = fe (4.5)

where fa = [fa1, fa2, fa3]T and fb = [fb1, fb2, fb3]T are the forces in the cable segments, fe =
[fex, fey, fez]T is the external force applied on the end-effector and Sa = [sa1, sa2, sa3], Sb =
[sb1, sb2, sb3], where sai, sbi, i = 1, 2, 3, are the unit vectors in the direction of PAi and PBi,
i = 1, 2, 3, respectively. That is to say

sai = ai − p
||ai − p|| , sbi = bi − p

||bi − p|| , i = 1, 2, 3.

The relationship between the ith spring force, fsi, and its deformation, δi, is assumed to be
given by

fsi = foi + kiδli, i = 1, 2, 3, (4.6)

where foi is the preload and ki is the stiffness of the ith spring. Also, it can be seen that the forces
in the springs are independent from the external forces. They are dependent on the parameters of
the springs and the deformation of the spring. If the cables are all under tension, according to the
geometry of the mechanism, the spring forces and the cable forces have the following relationship:

fs = 2fa + 2fb, (4.7)

where fs = [fs1, fs2, fs3]T .

Rewriting Eq. (4.7) as fa = fs
2 − fb and substituting fa into Eq. (4.5), we have

Mbfb = fbe (4.8)

where Mb = Sb − Sa and fbe = fe − 1
2Safs.

If the end-effector is not in a singular configuration, with Eq. (4.8), fb1, fb2 and fb3 can be
solved as

fbi = det(Bi)
det(Mb)

, i = 1, 2, 3, (4.9)
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where

B1 =
[

fbe (sb2 − sa2) (sb3 − sa3)
]
,

B2 =
[

(sb1 − sa1) fbe (sb3 − sa3)
]
,

B3 =
[

(sb1 − sa1) (sb2 − sa2) fbe
]
.

Using the same method we can find the equations to calculate the cable forces fai, i = 1, 2, 3.
Combining the equations for fai and fbi, i = 1, 2, 3, we have

Mf = ff (4.10)

where

M =
 −Mb 0

0 Mb

 , f =
 fa

fb

 , ff =
 fae

fbe

 ,
and fae = fe − 1

2Sbfs.

Because the deformations of the springs are determined when the position of the end-effector is
given. The sum for the cable forces fai and fbi is equal to one half of the spring force fsi, i = 1, 2, 3,
according to Eq. (4.7). But the cable forces fai and fbi, i = 1, 2, 3, vary for different external forces.

For the actuator of the mechanism, we have

fm = fa − fb (4.11)

where fm = [fm1, fm2, fm3]T is the actuator force vector. Substituting fa = fs
2 − fb into Eqn. (4.11),

it can be found that
fm = fs

2 − 2fb (4.12)

Like in the planar mechanism, the required actuating force range is fmi ∈
[
−1

2fsi,
1
2fsi

]
, i = 1, 2, 3.

4.5 Workspace Analysis

In order to preserve symmetry, the octahedron formed by the six pulleys Ai, Bi, i = 1, 2, 3, is a
regular octahedron and the radius of the circumsphere for this octahedron is noted a, as shown in
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Figure 4.2(a). The coordinates for the six pulleys are

a1 =
[
−a 0 0

]T
, a2 =

[
0 −a 0

]T
, a3 =

[
0 0 −a

]T
,

b1 =
[
a 0 0

]T
, b2 =

[
0 a 0

]T
, b3 =

[
0 0 a

]T
.

Moreover, the modular actuator-spring systems are all assumed to have the same characteristics.
Let the preload and the stiffness of the springs be foi = fo and ki = k, i = 1, 2, 3. Because cables
can only pull and not push, it should be verified that there is a certain workspace within which
the cables and the springs can be maintained in tension.

When the position of the end-effector is within the range of the workspace, the cable extension
forces should satisfy all the following conditions:

fa � 0, fb � 0. (4.13)

Or, using Eq. (4.7),
0 � fb �

1
2fs. (4.14)

where � and � denote the componentwise inequality.

In the reference configuration, it is expected that there is no deformation of the springs and
the spring force is equal to the preload. That is to say,

fsi = fo, δi = 0, i = 1, 2, 3. (4.15)

According to their stiffness, springs can be classified as positive stiffness springs, constant force
springs and negative stiffness springs. In order to maintain the springs in tension, the following
relationships should be satisfied

fsi


≥ fo, if k > 0,

= fo, if k = 0,

≤ fo, if k < 0,

i = 1, 2, 3. (4.16)

Let δfsi = fsi − fo and from Eq. (4.4) we have

δfsi = kδi = k

4(oai + obi), (4.17)

then Eq. (4.16) can be written as

oai + obi ≥ 0, i = 1, 2, 3. (4.18)
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The latter condition is equivalent to

|AiP |+ |BiP | ≥ ci, i = 1, 2, 3 (4.19)

where ci = |AiP0| + |BiP0|. This means that the reference position of the end-effector should be
placed at a point for which the sum of the distances from this point to the pulleys Ai and Bi,
i = 1, 2, 3, is the shortest distance. Only one point of the workspace satisfies this condition: the
intersection of line A1B1, line A2B2 and line A3B3, namely the centroid of the octahedron. Then,
only the conditions of Eq. (4.13) or alternatively Eq. (4.14) need to be considered in order to
ensure tension in the mechanism.

For a given configuration of the mechanism, the position of the end-effector is p = [x, y, z]T .
The unit vectors for the direction of the end-effector to the six pulleys are

sa1 = 1
Xa


−a− x
−y
−z

 , sa2 = 1
Ya


−x
−a− y
−z

 , sa3 = 1
Za


−x
−y
−a− z

 ,

sb1 = 1
Xb


a− x
−y
−z

 , sb2 = 1
Yb


−x
a− y
−z

 , sb3 = 1
Zb


−x
−y
a− z

 ,
where

Xa = |PA1|, Ya = |PA2|, Za = |PA3|, Xb = |PB1|, Yb = |PB2|, Zb = |PB3|.

From Eq. (4.10), it can be seen that the cable forces fai and fbi, i = 1, 2, 3, are the ratios of the
determinants of matrices Ai or Bi over the determinant of matrix Mb (where matrix Ai is similar
to matrix Bi). Matrix Mb can be written explicitly using the expressions of the unit vectors and
its determinant can be expanded and written as

det(Mb) = a2

XaXbYaYbZaZb
[a(Xa +Xb)(Ya + Yb)(Za + Zb)

− x(Xa −Xb)(Ya + Yb)(Za + Zb)− y(Xa +Xb)(Ya − Yb)(Za + Zb)

−z(Xa +Xb)(Ya + Yb)(Za − Zb)] .

(4.20)

It can seen from Eq. (4.20) that the determinant of Mb vanishes at the six vertices, and that
it is always positive within the octahedron. Then, in order to find the boundary of the workspace,
it suffices to find the combinations of the surfaces for which det(Bi) = 0 and det(Ai) = 0 (where
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matrix Ai is similar to matrix Bi), i = 1, 2, 3. Because the mechanism is symmetric and the
spring-actuator systems are modular with identical characteristics, the six cable extension forces
fbi and fai, i = 1, 2, 3, have similar properties. Therefore, in what follows only the expression of
the determinant of B1 is analyzed, the analysis of the determinants of Bi and Ai, i = 1, 2, 3, being
similar.

From the expression of matrix B1, we can see that the determinant of this matrix depends on
the springs’ characteristics (the preload fo, the stiffness k) and the external force fe as well as the
position of the end-effector. We will now describe the workspace boundaries associated with these
parameters separately in the following. The boundary equations of each cable force for any general
situation can then be obtained by combining these equations based on the matrix superposition
principle. The expressions for the determinants of Bi and Ai, i = 1, 2, 3, for these parameters are
shown in Appendix B.

4.5.1 Zero External Forces

First, in order to find the influence of the springs’ characteristic for the workspace, we assume
that there is no external forces applying on the mechanism. The springs’ preload and the springs’
stiffness are analyzed seperately, then they are combined to analyze.

4.5.1.1 Let fo 6= 0, k = 0 and fe = 0

When the spring is constant force spring and there is no external force applied at the end-
effector, fbe can be expressed as

fbe = 1
2fo



a+ x

Xa

+ x

Ya
+ x

Za
y

Xa

+ a+ y

Ya
+ y

Za
z

Xa

+ z

Ya
+ a+ z

Za

 . (4.21)
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Figure 4.3: Plot of det(B1)fo = 0 when fo 6= 0, k = 0 and fe = 0.

Substituting fbe into B1 and calculating the determinant of this matrix, we have

det(B1)fo = foa
2

2XaYaYbZaZb
[(x+ a)(Ya + Yb)(Za + Zb)− y(Ya − Yb)(Za + Zb)

− z(Ya + Yb)(Za − Zb) +2xXa(Ya + Yb + Za + Zb)] .
(4.22)

Assuming a = 1, the surface for det(B1)fo = 0 is shown in Figure 4.3. With a similar method,
the expression for the determinant of matrices Ai and Bi can be found. The plot for the whole
workspace of the mechanism is shown in Figure 4.4. We can see that the workspace of the mech-
anism is like a ball with six bumps on it when the springs in the mechanism are constant force
springs and there is no external force.

In order to get further insight, the following cases are considered.

(1) When the end-effector is at the centre of the octahedron, that is to say p = [0, 0, 0]T , we
have

fbe = 1
2fo

[
1 1 1

]T
, Mb = diag

([
2 2 2

])
.

Then, the value of the cable force fb1 can be found as

fb1 = det(B1)fo
det(Mb)

= fo
4 .

Because the deformations of the springs are zero in this reference configuration, we can see that
all the cable forces are a quarter of the springs’ preload.
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Figure 4.4: Plot of the whole workspace when fo 6= 0, k = 0 and fe = 0.

(2) When the end-effector is on the x axis, which means y = 0 and z = 0, that is one of the
diagonals of the octahedron, then we have

det(B1)fo = 2foa2

(x2 + a2)3/2

(√
x2 + a2 + 2x

)
. (4.23)

By making Eq. (4.23) equal to zero, the boundary of the workspace on the x axis is obtained
as xlim = −

√
3

3 a and xlim stands for the boundary of the workspace on the x axis. Because the
mechanism is symmetric, we can see that the workspace boundary at the axes is at the distance of
√

3
3 a from the centre of the octahedron. It is consistent with the inscribed sphere of the octahedron.

(3) When the end-effector is on a line perpendicular to the opposite planes of the octahedron,
for example in the direction of x = y = z, Eq. (4.22) can be simplified as

det(B1)fo = (3x+ a)foa2

(9x4 + 2a2x2 + a4)
√

3x2 − 2ax+ a2

(
3x2 + a2 +

√
3x2 + 2ax+ a2

)
. (4.24)

It can be seen that det(B1)fo equals zero when x = −1
3a, and the distance from the centre of the

octahetron to the workspace boundary point in this direction is r =
√

3x2 =
√

3
3 a which is also

consistent with the inscribed sphere of the octahedron.

(4) When the end-effector is on the plane given by x = 0, the determinant of B1 can be
simplified as

det(B1)fo = foa

2Xa

(
a+ y

Ya
− y − a

Yb

)(
a+ z

Za
− z − a

Zb

)
. (4.25)
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Figure 4.5: Plots of the det(Ai) = 0 and det(Bi) = 0, i = 2, 3, on the plane defined by x = 0.

Within the square formed be the four pulleys A2A3B2B3, there is no configuration which makes
Eq. (4.25) equal to zero.

When the end-effector is on the plane given by y = 0, the determinant of B1 is

det(B1)fo = foa
2

Ya

(
x+ z + a

XaZa
+ x− z + a

XaZb
+ x

YaZa
+ x

YbZb
+ 2x
ZaZb

)
. (4.26)

Because the mechanism is symmetric, the expressions for the determinant of Bi, Ai, i = 1, 2, 3, in
the planes defined by x = 0, y = 0 or z = 0 are all similar. With a = 1, the workspace boundaries
in the plane defined by x = 0 formed by these determinants are shown in Figure 4.5. It can be
seen that the boundary point on the axes is consistent with the result of the above case (2).

4.5.1.2 Let fo = 0, k 6= 0 and fe = 0

Now, it is assumed that the springs just have stiffness without preload and no external force
applied at the end-effector. In order to be concise, fbe can be written as

fbe = k

8


a+ 3x+ a+ x

Xa

(Xb − 2a) + x

Ya
(Yb − 2a) + x

Za
(Zb − 2a)

a+ 3y + y

Xa

(Xb − 2a) + a+ y

Ya
(Yb − 2a) + y

Za
(Zb − 2a)

a+ 3z + z

Xa

(Xb − 2a) + z

Ya
(Yb − 2a) + a+ z

Za
(Zb − 2a)

 . (4.27)
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Figure 4.6: General aspect of the curves for det(Ai)k = 0 and det(Bi)k = 0 on the planes defined
by x = 0, y = 0 or z = 0.

The determinant of B1 in this case, det(B1)k, can be calculated as

det(B1)k = ka2

8XaYaYbZaZb
[a(Xa +Xb)(Ya + Yb)(Za + Zb) + x(5Xa +Xb)(Ya + Yb)

(Za + Zb)− y(Xa +Xb)(Ya − Yb)(Za + Zb)− z(Xa +Xb)(Ya + Yb)(Za − Zb)

− 2a(x+ a)(Ya + Yb)(Za + Zb) + 2ay(Ya − Yb)(Za + Zb)

+ 2az(Ya + Yb)(Za − Zb) −4axXa(Ya + Yb + Za + Zb)] .

(4.28)

When the end-effector is at the centre of the octahedron, there is no deformation in the springs,
then fbe = fae = 0. Therefore, all the determinants of matrices Bi and Ai, i = 1, 2, 3, are equal
to zero. This means that the cable forces are zero and the centre of the octahedron is on the
workspace boundary. Since the centre of the octahedron is an important configuration which has
to be included in the workspace, the springs of the mechanism must have a preload.

Similarly to the case which only considers the preload of the springs, the curves in planes x = 0,
y = 0 and z = 0 for det(Bi)k = 0 and det(Ai)k = 0 in this case have the same shape. Assuming
a = 1, Figure 4.6 shows the general aspect of the curves in these three planes. The workspace is
quite small in this situation.

However, it should be noticed that for the direction orthogonal to the opposite planes, which
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is the direction of x = y = z, the expression of det(B1)k can be rewritten as

det(B1)k = −ka
2(a+ 3x)

2X2
aX

3
b

[
(3x2 + a2)(a−Xa −Xb) + ax(Xa −Xb) + aXaXb

]
. (4.29)

Let det(B1)k be equal to zero, the solutions of the x coordinate are 0 and −1
3a. Considering the

analysis stated above, the solution xlim = 0 is the solution for the situation for which the springs
have no preload. But r =

√
3

3 a still is a solution for Eq. (4.29).

4.5.1.3 Let fo 6= 0, k 6= 0 and fe = 0

According to their stiffness, springs can be classified as constant force springs, positive stiffness
springs and negative stiffness springs. If the preload and the stiffness of the springs in the mech-
anism are adjusted properly, the workspace boundary should be larger. The ratio between the
preload and the stiffness is defined as qs = k

fo
. Then the influence of this ratio on the workspace

boundary on the axes is analyzed in the following.

Since the global effect is a linear combination of the effects of the preload, the spring stiffness
and the external force, the determinant of matrix B1 equals the sum of det(B1)fo , det(B1)k and
det(B1)fe . Here, we only consider the situation for which fe = 0, and hence we have

det(B1) = det(B1)fo + det(B1)k. (4.30)

As both of Eq. (4.22) and Eq. (4.28) have a solution at x = −1
3a for the direction of the lines

orthogonal to two opposite planes, the workspace boundary in these directions is always at a dis-
tance of

√
3

3 a from the centre of the octahedron. These three directions are similar to the two line
segments between the opposite centre points of the square sides of the spring-loaded planar mecha-
nism, which are always included in the static workspace no matter what the spring parameters are.

However, the effect of the preload and the stiffness of the springs on the determinant of B1

should now be assessed. Suppose a = 1, on the x axis we can get the expression of det(B1) as

det(B1) = 2(x2 + 1)−3/2
[
fo(
√
x2 + 1 + 2x) + kx(

√
x2 + 1− 1)

]
. (4.31)

Making Eq. (4.31) equal to zero, then we have

qs =

√
x2
lim + 1 + 2xlim

xlim(1−
√
x2
lim + 1)

. (4.32)
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Figure 4.7: Position xlim of the workspace boundary on the negative x semi-axis for different
values of qs.

According to the mechanism geometry, the mechanism will have a certain workspace only when
the boundary on the axes defined by the determinant of matrices B1, A1, B2, A2, B3 and A3 are
respectively on the negative side of the x axis, the positive side of the x axis, the negative side of
the y axis, the positive side of the y axis, the negative side of the z axis and the positive side of
the z axis. The relationship between the workspace boundary in the negative part of the x axis
and the value of qs is shown in Figure 4.7. The red point in this figure means xlim = −

√
3

3 when
the springs’ stiffness is zero. We can see from this figure that the workspace becomes smaller when
the stiffness is positive, the workspace can be broadened with negative stiffness springs. More-
over, whatever the value of qs, the workspace of this mechanism cannot be the whole octahedron.
Suppose qs = −2, the whole workspace of the mechanism is shown in Figure 4.8. Compared with
Figure 4.4, it can be seen that the workspace is larger especially on the diagonals. Also, it is
consistent with Figure 4.7 which shows that the workspace includes the whole diagonal of the
octahedron when qs is smaller than −1.5.

4.5.2 Nonzero External Forces

The purpose of designing a mechanism is to use such a mechanism to realize an application. So, the
mechanism should successfully carry out its job. This means, the end-effector has to be subjected
to certain external forces. We now consider the influence of the external force on the determinant
of B1. det(B1)fe can be expressed as

det(B1)fe = a

YaYbZaZb
[fexa(Ya + Yb)(Za + Zb) + (feyx− fexy)(Ya − Yb)(Za + Zb)

+(fezx− fexz)(Ya + Yb)(Za − Zb)] .
(4.33)
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Figure 4.8: Plot of the whole workspace boundary when qs = −2.

As mentioned above, the determinant of B1 is the sum of Eqs. (4.22), (4.28) and (4.33). That is
to say

det(B1) = det(B1)fo + det(B1)k + det(B1)fe . (4.34)

The workspace boundary, the external force space, the characteric of the springs are combined
with each other. Now, their relationships should be analyzed.

From the above analysis, it is known that the springs should have a certain preload in order
to get a proper workspace. In practice, we can use constant force springs or springs with nonzero
stiffness. So the two situations should be analyzed in the following.

4.5.2.1 Let fo 6= 0, k = 0 and fe 6= 0

If the springs in the mechanism are constant force springs, using the distributive law, the
determinant of B1 is expressed in Eq. (4.35).

det(B1) = a

YaYbZaZb

{
foax(Ya + Yb + Za + Zb) +

[
afex + foa

2Xa

(x+ a)
]
(Ya + Yb)(Za + Zb)

+
(
feyx− fexy −

foa

2Xa

y

)
(Ya − Yb)(Za + Zb)

+
(
fezx− fexz −

foa

2Xa

z

)
(Ya + Yb)(Za − Zb)

}
.

(4.35)
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This equation is rather complex. In order to get some intuitive relationships between the preload,
the affordable external force and the workspace of the mechanism, this equation will be simplified
by assuming that the end-effector is located at the centre of the octahedron or on the axes of the
coordinate system.

When the end-effector is at the centre of the octahedron, we have

det(B1) = 4
(
fex + fo

2

)
≥ 0. (4.36)

From Eq. (4.36), we can see that fex should satisfy −fo
2 ≤ fex. And it can be verified that fex

should smaller than fo
2 by considering the determinant of A1.

Assume the external force space of this mechanism is

|fex| ≤ qffo; |fey| ≤ qffo; |fez| ≤ qffo, (4.37)

where qf is the ratio between the external force and the preload of the springs. Because the
workspace of the mechanism should include the centre of the octahedron and the mechanism has
a good symmetric property, then, from the above analysis we can see that qf should satisfy

0 < qf <
1
2 .

This conclusion is reasonable: the actuating force is about one half of the spring preload as stated
above and the affordable external force cannot be larger than the actuating force.

When the end-effector is on the x axis, which means y = 0 and z = 0, we have

det(B1) = 4a2(x2 + a2)−3/2
[(
fex + fo

2

)√
x2 + a2 + fox

]
. (4.38)

From Eq. (4.38), it can be seen that the worst condition for det(B1) is when fex < 0, then assume
fex = −qffo. If there is any workspace of this mechanism, the workspace boundary on the x axis
determined by det(B1) should be in the negative semi-axis. Suppose a = 1 and the workspace
boundary on the negative x axis is xlim, letting det(B1) be equal to zero, we can get the following
relationship:

qf = xlim√
x2
lim + 1

+ 1
2 . (4.39)

Because xlim is negative, the square root is positive, it is known that qf will always be smaller
than 1

2 . The plot of Eq. (4.39) is shown in Figure 4.9.
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Figure 4.9: Plot of the relationship between the workspace boundary on the x axis and the external
force coefficient qf .
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Figure 4.10: Plot of the relationship between the workspace boundary on the z axis and the
external force coffercience qf .

When the end-effector is on the z axis, that is to say x = y = 0, simplifing Eq. (4.35) we have

det(B1) = 4a√
a2 + z2

(
fex + foa

2
√
a2 + z2

)
. (4.40)

Equating Eq. (4.40) to zero, we get

qf = − a

2
√
a2 + z2

lim

or |zlim| = a

√√√√ 1
4q2
f

− 1. (4.41)

where zlim stands for the boundary of the workspace on the z axis. Normalizing with a = 1, the
plot for Eq. (4.41) is shown in Figure 4.10.

This result is consistent with the practical observation that the larger the worspace is, the
smaller the external force it can afford as shown in Figure 4.9 and Figure 4.10. Comparing these
plots, it can be seen that the workspace boundary determined by the cable force fb1 is much more
constraining on the negative x axis. The workspace boundary curves on the xy plane are shown
in Figure 4.11 respectively for qf = 0.1 and qf = 0.2 (the curves on the xy plane and yz plane



81

(a) For qf = 0.1 (b) For qf = 0.2

Figure 4.11: Plots of the workspace boundary for different coefficient qf .

are same with these shown in Figure 4.11). In these figures, the dashed curves are the workspace
boundary when qf = 0. It can be observed that in order to get a proper workspace, the external
force space is small compared with the preload or the actuating forces.

4.5.2.2 Let fo 6= 0 , k 6= 0 and fe 6= 0

Now, the general situation of the mechanism is analyzed. Due to the matrix superposition
principle and the distributive law of matrix determinants, for the most general situation, the
determinant of B1 is

det(B1) = det(B1)fo + det(B1)k + det(B1)fe . (4.42)

From the above analysis, it is known that the workspace boundary point on the negative x
semi-axis is determined by the determinant of B1. Suppose the end-effector is on the x axis, i.e.
y = 0 and z = 0, based on Eq. (4.42) we get

det(B1) = 4a
(x2 + a2) 3

2

[
ax

(
fo −

ka

2

)
+
√
x2 + a2

(
foa

2 + kax

2 + fexa

)]
. (4.43)

Normalizing with a = 1 and assuming fex = −qffo, letting det(B1) equal zero, then Eq. (4.43)
can be simplified as (1

2 + 1
2xlimqs − qf

)√
x2
lim + 1 = xlim

(1
2qs − 1

)
(4.44)

where −
√

3
3 < xlim < 0 and 0 < qf <

1
2 .
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Figure 4.12: The relationship between the workspace boundary on the negative x semi-axis and
parameters q and kfe.

Rearranging Eq. (4.44), we have

qs =
(1− 2qf )

√
x2
lim + 1 + 2xlim

xlim(1−
√
x2
lim + 1)

(4.45)

For different values of qf (qf = 0, qf = 0.1, qf = 0.2), the relationship between the ratio of the
springs’ stiffness and springs’ preload qs and the workspace boundary on the negative x semi-axis
xlim are shown in Figure 4.12. From this figure, it can be seen that it is better to choose a negative
stiffness spring. Such a spring can also avoid large cable forces in the mechanism. Optimizing the
characteristics of the spring, the mechanism can get a proper large workspace with a certain exter-
nal force space. Based on this figure, suppose qs = −2, qf = 0.1, the whole workspace boundary
for this mechanism is shown in Figure 4.13, the slender curves are the workspace boundary when
qs = 0, qf = 0, the thick curves are the workspace boundary when qs = −2, qf = 0.1.

4.6 Conclusion

This chapter has applied the symmetric compliance spring-loaded cable-loop model to a spatial
mechanism. The three degrees of freedom of the mechanism can be controlled by three actuators
because the cable-loops are attached to springs. The solutions for the inverse kinematic and static
problems were given. The workspace analysis for this mechanism was presented. It was shown
that if constant force springs are used, the reachable workspace is like a ball and is slightly smaller
than the sphere inscribed in the octahedron. In fact, the workspace reaches this sphere along
the axes and at the centre of the faces of the octahedron. In practice, the workspace can also be
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Figure 4.13: Plot of the whole workspace when a = 1, qs = −2 and qf = 0.1.

significantly large with non zero stiffness springs provided that the stiffness and the preload of
the springs are properly adjusted. If external forces are applied on the end-effector, the available
workspace becomes smaller as the applied external force is enlarged. The largest external force
should be less than half of the spring’s preload, that is to say the maximum actuating force. In
practice, in order to keep an acceptable workspace, the largest external force should be signifi-
cantly smaller than the actuating force.
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Chapter 5

Force Capabilities of the Planar and
Spatial Spring-Loaded Cable-loop-driven

Parallel Mechanisms

In order to avoid actuation redundancy in cable-driven parallel mechanisms and eliminate cable
spool drive systems which cause inaccuracies, spring-loaded cable-loop-driven parallel mechanisms
were proposed in Chapter 3 and 4. In this chapter, the force capabilities of the symmetric planar
and spatial spring-loaded cable-loop-driven parallel mechanisms are analyzed using the available
force set and the force-closure workspace based on the static equations. The force capabilities of
conventional planar and spatial cable-driven mechanisms based on spools are also derived for com-
parison purposes. The comparison of the results obtained for the two types of mechanisms provides
insight into the force characteristics of spring-loaded cable-loop-driven parallel mechanisms.
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5.1 Introduction

Since cables can only work in tension, the study and determination of the available wrench set for
given poses is an important issue for parallel cable-driven mechanisms. The available wrench set is
the set of wrenches that the mechanism can generate [62,74,75]. This set depends on the architec-
ture of the mechanism, the pose and the minimum and maximum acceptable tension in the cables.
An approach for the determination of the available wrench set based on the geometric concept of
zonotope was proposed in [74]. Based on the fact that the available wrench set is a zonotope in
a given configuration, [75] dealt with the characterization of the facet-defining hyperplanes of the
available wrench set. The latter approach leads to the representation of the available wrench set
as the set of solutions of a system of linear inequalities. Using convex analysis, a sufficient and
necessary tension-closure condition is also proposed in [67].

A pose is a wrench-closure pose if the corresponding available wrench set satisfies certain
conditions. A review of these characteristics of a force-closure pose was proposed in the form
of theorems in [72]. The wrench-closure workspace is the set of poses in which any wrench can
be generated at the end-effector assuming no limit on the cable tensions. The wrench-closure
workspace is therefore a purely geometric property. Wrench-closed poses can also be referred to
as fully constrained poses. The shape and size of the wrench-closure workspace (the force-closure
workspace for a point end-effector) — whose name derives from an analogy with force-closure
grasps of robotic hands [60] — depends on the geometry of the mechanism and the routing of
the cables. Reference [61] analyzed the force-feasible workspace of planar and spatial mecha-
nisms with a point-mass end-effector. A detailed study of the wrench-closure workspace of planar
cable-driven mechanisms is provided in [70] while [64] deals with the wrench-closure workspace
of 6-DOF parallel cable-driven mechanisms. Finally, an approach based on interval analysis for
the determination of the wrench-feasible workspace of n-DOF parallel mechanisms driven by n

or more than n cables was proposed in [76]. The wrench-feasible workspace is defined as the set
of poses in which a prescribed set of external wrenches can be produced at the end-effector. As
opposed to the wrench-closure workspace, the wrench-feasible workspace is not a purely geometric
property since it is also dependent on the minimum and maximum forces that can be supported
by the cables.

In this chapter, the force capabilities of planar and spatial spring-loaded cable-loop-driven
parallel mechanisms are analyzed mainly based on the approach proposed in [74]. Since these
mechanisms have point end-effectors, the terms available force set and force-feasible workspace
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Figure 5.1: Cable-spool mechanisms having the same geometry as the spring-loaded cable-loop-
driven mechanisms. The planar mechanism uses four spools while the spatial mechanism uses six
spools.

are used in the following. The boundaries of the force-feasible workspace can be determined by
considering the limit poses in which the prescribed force set can no longer be produced.

5.2 Analysis of the Force Capabilities

In conventional cable-driven mechanisms using spools, the actuators can apply torques only in
one direction since the cables must remain in tension. In spring-loaded cable-loop-driven parallel
mechanisms, however, both directions can be used, as shown in the preceding chapters. In this
regard, spring-loaded cable-loop-driven parallel mechanisms can be viewed as more efficient since
the capabilities of the actuators are better exploited. However, spring-loaded mechanisms have
fewer actuators than cable-spool mechanisms and cannot be expected to have the same force ca-
pabilities because there is no actuation redundancy.

The force capabilities of the planar and spatial spring-loaded cable-loop-driven parallel mech-
anism with symmetric compliance are now investigated. For comparison purposes, the force ca-
pabilities of conventional planar and spatial cable-spool-driven parallel mechanisms (shown in
Figure 5.1(a) and Figure 5.1(b)) are also analyzed in the following.
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Because the mechanisms are symmetric, it is assumed that the different cable loops have the
same characteristics. This means that the springs of the cable loops have the same stiffness (ki = k)
and the same preload (foi = fo). Moreover, the actuators have the same maximum actuating force
fmi,max = fm,max. In order to keep the cables in tension, the spring preload should be equal to at
least twice the maximum actuating force. Also, a minimum force, fmin, should be applied in the
cables in order to guarantee that they do not become slack. The maximum cable force might be
determined by the cable capabilities, safety issues, or the maximum actuating force. If the cables
and actuators are designed accordingly, the cable forces can reach the maximum force that the
spring can provide and then the maximum cable force is given by

fmax = fsi
2 − fmin. (5.1)

It should be noted that since the spring force is configuration dependent, the maximum cable
force given by Eq.(5.1) is not constant within the workspace. In other words, although the line
shown in Figure 3.12 always has the same slope, it is located closer or further away from the origin
depending on the configuration, thereby changing the force capabilities of the mechanism.

5.2.1 Planar Mechanisms

5.2.1.1 Spring-loaded Cable-Loop-Driven Parallel Mechanism with Symmetric
Compliance

Based on the static equilibrium of the end-effector — Eq. (3.30) — the available force set of
the cable-loop-driven planar mechanism in a given configuration can be expressed as

A =
{

f ∈ <2 | f =
2∑
i=1

[
faisai + (12fsi − fai)sbi

]
, fai ∈ (fmin, fmax), i = 1, 2

}
, (5.2)

where fmax is given by Eq.(5.1). The above set, A, represents the set of available forces at the end-
effector in the given configuration. Since vectors sai and sbi are constant in a given configuration
and that A is defined as a linear combination of these vectors, it is clear that the available force
set has four vertices. The vertices can be defined as

• f1 = [xf1, yf1]T for fa1 = fmin, fa2 = fmin,

• f2 = [xf2, yf2]T for fa1 = fmax, fa2 = fmin,

• f3 = [xf3, yf3]T for fa1 = fmax, fa2 = fmax,
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Figure 5.2: Examples of available force sets for different configurations (obtained with r = 1,
fo = 2, k = 0, fmin = 0 and fmax = 1

2fo = 1, where r is one half of the distance between A1 and
A2).

• f4 = [xf4, yf4]T for fa1 = fmin, fa2 = fmax.

Substituting the above conditions into Eq.(5.2) and subtracting the equations corresponding to
neighboring vertices, one then obtains

f2 − f1 = (fmin + fmax)(sa1 − sb1), (5.3)

f3 − f2 = (fmin + fmax)(sa2 − sb2), (5.4)

f4 − f3 = (fmin + fmax)(sb1 − sa1), (5.5)

f1 − f4 = (fmin + fmax)(sb2 − sa2). (5.6)

It can be seen that f2 − f1 = f3 − f4 and f3 − f2 = f4 − f1, which means that the quadrilateral
of the available force set is a parallelogram and that the available force set is defined by a zonotope.

Examples of available force sets for different configurations are shown in Figure 5.2. From
this figure, it can be observed that the force capabilities can vary significantly from one config-
uration to another. One useful measure of the force capability is the maximum force that can
be provided by the mechanism in all directions. This concept is illustrated schematically in Fig-
ure 5.3 where the radius of the shaded disk, noted rf , is the maximum force that can be applied
in all directions. This value is easily determined once the force parallelogram has been established.
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Figure 5.3: Available force set and the maximum force that can be applied in all directions.

The equations of the lines f1f2, f2f3, f3f4, f4f1 and the intercepts on the fx and fy axes for these
four straight lines, noted bxi and byi, can be found after forces fi have been calculated, i = 1, . . . , 4.
The smallest absolute value of the intercept on the fx and fy axes, noted bx and by, can then be
found. For instance, if the spring in the cable loop is a constant force spring (zero stiffness) and
if the minimum cable force is equal to zero (fmin = 0), one has

bx =



bx1, if ρx ≥ 0, ρy ≤ 0

bx2, if ρx ≥ 0, ρy ≥ 0

−bx3, if ρx ≤ 0, ρy ≥ 0

−bx4, if ρx ≤ 0, ρy ≤ 0

(5.7)

by =



by1, if ρx ≥ 0, ρy ≤ 0

−by2, if ρx ≥ 0, ρy ≥ 0

−by3, if ρx ≤ 0, ρy ≥ 0

by4, if ρx ≤ 0, ρy ≤ 0

(5.8)

where the position of point P (the end-effector) is noted

p = [ρxr, ρyr]T , −1 ≤ ρx, ρy ≤ 1, (5.9)

in which r is equal to one half of the distance between A1 and A2, i.e., one half of the side of the
square defining the footprint of the mechanism. It should also be verified that the force capability
parallelogram includes the origin. Then, the equations for line BxBy (Bx [bx, 0]T , By [0, by]T ) and
for the line which is orthogonal to line BxBy and passes through the origin can be obtained. The
coordinate for the intersection point of these two lines can be calculated as(

bxb
2
y

b2x + b2y
,

b2xby
b2x + b2y

)
(5.10)
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and the radius rf can be written as
rf = bxby√

b2x + b2y
. (5.11)

The force-feasible workspace corresponding to a prescribed force value fp can be defined as the
set of all configurations of the mechanism for which rf > fp.

5.2.1.2 Four-Actuator Cable-Spool Mechanism

The available force set of the mechanism shown in Figure 5.1(a) can be expressed as

B =
{

f ∈ <2 | f =
2∑
i=1

[faisai + fbisbi] , fai, fbi ∈ (fmin, fmax), i = 1, 2
}
. (5.12)

It can be observed that the definition of sets A and B is similar. However, in B, the cable forces
fai and fbi can vary independently, whereas they are coupled in A (fbi is replaced with (1

2fsi− fai)
in the latter). Therefore, the available force set of the cable-spool mechanism may have up to 16
vertices, corresponding to the combinations obtained when fa1, fa2, fb1 and fb2 take the values
fmin or fmax. This force set is also a zonotope in the (fx, fy) space.

Using the same parameters as for the cable-loop-driven mechanism, namely r = 1, fmax = 1
and fmin = 0, the available-force sets obtained for a few configurations are shown in Figure 5.4.
In the latter plots, the dashed lines correspond to the available-force sets of the cable-loop-driven
mechanism. From these figures, it can be observed that the force capabilities in the centre con-
figuration is the same for the two mechanisms while the force capabilities of the four-actuator
cable-spool mechanism are better when the end-effector moves away from the centre configuration.

The approach proposed above to find the value of rf can easily be extended to the four-actuator
cable-spool mechanism.

5.2.2 Spatial Mechanisms

The approach presented above for the analysis of the force capabilities of planar mechanisms is
now extended to spatial mechanisms.
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Figure 5.4: Comparison of the available force set of the four-actuator cable-spool mechanism (solid
line) and the available force set of the cable-loop-driven mechanism (dashed line) for three different
configurations.
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5.2.2.1 Spring-Loaded Cable-Loop-Driven Mechanism

The available force set of the spatial spring-loaded cable-loop-driven mechanism can be ex-
pressed as

C =
{

f ∈ <3 | f =
3∑
i=1

[
faisai + (12fsi − fai)sbi

]
, fai ∈ (fmin, fmax), i = 1, 2, 3.

}
. (5.13)

The available force set C is embedded in a three-dimensional space and may have up to 8 vertices,
corresponding to the combinations of minimum and maximum cable forces. For a given config-
uration of the mechanism, assume that the 8 vertices of the available force set are defined as fi,
i = 1, 2, . . . , 8. These vertices form an hexahedron. Vectors normal to the faces of the hexahedron
are readily obtained and the distance from the origin of the force space to the faces can be calcu-
lated.

For instance, consider the face defined by f1f2f3f4. A vector normal to this face can be obtained
as

n1 = (f2 − f1)× (f3 − f2), (5.14)

where × is the cross product of the vectors. Then, the distance from the origin of the force space
to the face can be written as

rf1 = |f
T
1 n1|
||n1||

. (5.15)

After all the six distances rfi, i = 1, . . . , 6, to the faces are calculated, the maximum force that
can be applied in all directions is found as the minimum value of rfi, i = 1, . . . , 6.

Assuming that the length of a diagonal of the octahedron is 2a = 2 and that k = 0, fo = 2,
fmin = 0 and fmax = 1

2fo = 1, plots of the available force set are shown for three different config-
urations in Figure 5.5.

5.2.2.2 Six-Actuator Cable-Spool Mechanism

If the end-effector of the mechanism is driven by six actuated spools located on the vertices of
an octahedron as shown in Figure 5.1(b), the available force set for a given configuration is defined
as

D =
{

f ∈ <3 | f =
3∑
i=1

[faisai + fbisbi] , fai, fbi ∈ (fmin, fmax), i = 1, 2, 3.
}
. (5.16)
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Figure 5.5: The available force set of the spatial spring-loaded cable-loop-driven mechanism for
different configurations. (2a = 2, k = 0, f0 = 2, fmin = 0 and fmax = 1)

The available force set D is embedded in a three-dimensional space and may have up to 26 = 64
vertices. For a given configuration, the maximum force that can be applied in all directions can
be found using the following steps:

1. Obtain the vertices of the available force set of the end-effector, which form a polyhedron
(zonotope);

2. Find vectors normal to the faces of the polyhedron;

3. Calculate the distance from the origin of the force space to the planes of the convex polyhe-
dron;

4. Find the smallest distance.

Using the same parameters as for the cable-loop-driven mechanism, namely a = 1 and fmax = 1,
fmin = 0, the available force sets of this mechanism for different configurations are shown in Fig-
ure 5.6. Comparing Figure 5.6 with Figure 5.5, it can be observed that the available-force set of
the two mechanisms is the same in the centre configuration and that the six-actuator mechanism
has a better available force set when the end-effector moves away from the centre configuration.
This result is similar to what was obtained for the planar mechanisms.
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Figure 5.6: The available-force set of the six-actuator cable-spool mechanism. (a = 1, fmax = 1,
fmin = 0)
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5.3 Simulation Results

The average value of index rf over a given workspace as well as the workspace within which rf is
larger than a prescribed value are now used in order to obtain a more global comparison of the
force capabilities of spring-loaded cable-loop-driven parallel mechanisms and cable-spool parallel
mechanisms.

5.3.1 Planar Mechanisms

Consider a workspace defined as a disk bounded by a circle which can be defined as x2+y2 = (ρr)2,
where 0 < ρ < 1. Also, assume r = 1, fmin = 0.1 and fm,max = 1. For the four-actuator cable-spool
mechanism, the average value of rf over the workspace is r̄f = 0.6660 when ρ = 0.9 and r̄f = 0.7144
when ρ = 0.8. With the same minimum and maximum cable force, the average value of rf for the
spring-loaded cable-loop-driven mechanism is r̄f = 0.4749 when ρ = 0.9 and r̄f = 0.5168 when
ρ = 0.8. As expected, the four-actuator mechanism has better force capabilities than the two-
actuator mechanism. However, the spring-loaded mechanism still has acceptable force capabilities.

For the spring-loaded cable-loop-driven mechanisms, the preload of the springs should be ap-
proximately equal to twice the maximum actuating force, fo = 2fm,max = 2, considering the
coupled compliance on each side of the actuator. In order to assess the effect of the springs’ stiff-
ness and preload on the force capabilities, assume that the cable force can be zero and that the
cable can bear the maximum force generated by the springs. The average value of rf is plotted for
kr
fo
∈ [−

√
2,
√

2] in Figure 5.7 for two different workspaces. It can be noted that the spring-loaded
mechanism has better force capabilities when the springs have a negative stiffness.

The workspace boundaries within which a value of rf > 0.6 can be maintained are now shown
for different minimum cable forces. Figure 5.8 shows the plots for the four-actuator mechanism
with a force range [0, 1] and the spring-loaded mechanism with spring characteristics of fo = 2,
k = −1. The plots are repeated with different values of fmin. It can be observed that the minimum
cable force has a more significant effect on the spring-loaded mechanism.
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Figure 5.7: The average value of rf as a function of the spring parameters.

5.3.2 Spatial Mechanisms

Similarly to what was shown for planar mechanisms, the workspace within which one has rf > 0.4
is now plotted for the two types of spatial mechanisms. Figure 5.9 shows the result obtained
for the spring-loaded cable-loop-driven mechanism while Figure 5.10 presents the workspace for
the six-actuator cable-spool mechanism. It is obvious that the volume of the workspace for the
cable-spool mechanism is larger than that of the spring-loaded mechanism.

5.4 Conclusion

The force capabilities of planar and spatial spring-loaded cable-loop-driven parallel mechanisms
are investigated in this chapter. The concept of available force set is used to obtain a clear rep-
resentation of the capabilities of the mechanisms. Based on this concept, indices are defined that
provide some insight into the characteristics of the mechanisms. Also, the force capabilities of
spring-loaded cable-loop-driven parallel mechanisms are compared with those of more conven-
tional redundantly actuated cable-driven mechanisms. As expected, simulation results show that
the redundantly actuated mechanisms have better force capabilities. However, it is also shown
that spring-loaded cable-loop-driven parallel mechanisms can provide very good force capabilities
while being more efficient and cost-effective. Based on the simulation results, it is also found
that the minimum cable force has a significant impact on the spring-loaded mechanisms due to
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the coupled compliance on each side of the actuators. Therefore, friction should be minimized
in a practical design so that the minimum force can be kept low. Finally, it is shown that the
performance of the mechanisms can be improved if the ratio between the stiffness and the preload
of the springs is adjusted properly and if negative stiffness springs are used.



Chapter 6

Dynamic Modelling and Mechanical
Bandwidth of Planar and Spatial
Spring-Loaded Cable-Loop-Driven

Parallel Mechanisms

The dynamic analysis of the novel architectures of planar and spatial spring-loaded cable-loop-
driven parallel mechanisms is introduced in this chapter. The cable forces are obtained for the
dynamic operation of the mechanisms. Due to the cable loops in the mechanisms, the cables
might become slack when the end-effector moves with high accelerations. Therefore, it should be
verified that the cable forces can be maintained in tension for a certain range of the trajectory
frequencies. The required actuating forces are found. Based on the static force and the Newton-
Euler formulation, the natural frequency and the corresponding ratio of the amplitudes for these
two mechanisms are also found.
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6.1 Introduction

For conventional cable-driven parallel mechanisms, one end of the cables is wound on an actuated
drum while the other end attaches to the end-effector directly. In this approach, the cables can
be maintained in tension if the end-effector is not in a singular configuration no matter how large
the acceleration is. Because the mass of the cables can be neglected and the actuators are fixed,
the dynamic model of the conventional cable-driven parallel mechanisms is quite simple compared
to that of the link-driven parallel mechanisms. For such mechanisms, more attention is payed to
the workspace within which the cables always maintain in tension.

However, in cable-loop-driven mechanisms, a spring is attached in each cable loop. When
the mechanisms are moving with high accelerations, vibrations might occur and the cables might
become slack. Therefore, it is important to investigate the dynamic characteristics of these mech-
anisms and find the acceleration range within which the cables can be maintained in tension. The
natural frequencies and the corresponding ratio of the amplitudes should also be found.

6.2 Velocity and Acceleration of the Mechanisms

The inverse kinematic equations for the planar and spatial mechanisms have be found in Chapters
3 and 4. For convenience, the equations are repeated in the following. One has

δi = 1
4(nai + nbi), (6.1)

lmi = 1
2(nbi − nsi), (6.2)

where nai = |PAi|−|PoAi|, nbi = |PBi|−|PoBi|. And i = 1, 2 for the planar mechanism, i = 1, 2, 3
for the spatial mechanism.

Differentiating the expressions of δi and lmi, for the planer mechanism, one has

 δ̇i

l̇mi

 =


1
4

(
x− xai
|PAi|

+ x− xbi
|PBi|

)
1
4

(
y − yai
|PAi|

+ y − ybi
|PBi|

)
1
2

(
x− xbi
|PBi|

− x− xai
|PAi|

)
1
2

(
y − ybi
|PBi|

− y − yai
|PAi|

)

 ẋ

ẏ


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and

 δ̈i

l̈mi

 =


1
4

(
x− xai
|PAi|

+ x− xbi
|PBi|

)
1
4

(
y − yai
|PAi|

+ y − ybi
|PBi|

)
1
2

(
x− xbi
|PBi|

− x− xai
|PAi|

)
1
2

(
y − ybi
|PBi|

− y − yai
|PAi|

)

 ẍ

ÿ



+


(y − yai)2

4|PAi|3
+ (y − ybi)2

4|PBi|3
−(x− xai)(y − yai)

2|PAi|3
− (x− xbi)(y − ybi)

2|PBi|3
(x− xai)2

4|PAi|3
+ (x− xbi)2

4|PBi|3
(y − ybi)2

2|PBi|3
− (y − yai)2

2|PAi|3
(x− xai)(y − yai)

|PAi|3
− (x− xbi)(y − ybi)

|PBi|3
(x− xbi)2

2|PBi|3
− (x− xai)2

2|PAi|3



ẋ2

ẋẏ

ẏ2



For the spatial spring-loaded mechanism, the velocity and acceleration of the spring deforma-
tions and the displacements of the actuators can be obtained as

δ̇ = Jδṗ, (6.3)

l̇m = Jmṗ, (6.4)

where δ = [δ̇1, δ̇2, δ̇3]T , l̇m = [l̇m1, l̇m2, l̇m3]T and

Jδ = 1
4



x+ a

|PA1|
+ x− a
|PB1|

y

|PA1|
+ y

|PB1|
z

|PA1|
+ z

|PB1|
x

|PA2|
+ x

|PB2|
y + a

|PA2|
+ y − a
|PB2|

z

|PA2|
+ z

|PB2|
x

|PA3|
+ x

|PB3|
y

|PA3|
+ y

|PB3|
z + a

|PA3|
+ z − a
|PB3|



Jm = 1
2



x+ a

|PA1|
− x− a
|PB1|

y

|PA1|
− y

|PB1|
z

|PA1|
− z

|PB1|
x

|PA2|
− x

|PB2|
y + a

|PA2|
− y − a
|PB2|

z

|PA2|
− z

|PB2|
x

|PA3|
− x

|PB3|
y

|PA3|
− y

|PB3|
z + a

|PA3|
− z − a
|PB3|


and

δ̈ = Jδp̈ + Kδṗ, (6.5)

l̈m = Jmp̈ + Kmṗ, (6.6)

where

Kδ(1, 1) = 1
4

[
(y2 + z2)ẋ− (x+ a)yẏ − (x+ a)zż

|PA1|3
+ (y2 + z2)ẋ− (x− a)yẏ − (x− a)zż

|PB1|3

]
,
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Kδ(1, 2) = 1
4

{
−(x+ a)yẋ+ [(x+ a)2 + z2]ẏ − yzż

|PA1|3
+ −(x− a)yẋ+ [(x− a)2 + z2]ẏ − yzż

|PB1|3

}
,

Kδ(1, 3) = 1
4

{
−(x+ a)zẋ− yzẏ + [(x+ a)2 + y2]ż

|PA1|3
+ −(x− a)zẋ− yzẏ + [(x− a)2 + y2]ż

|PB1|3

}
,

Kδ(2, 1) = 1
4

{
[(y + a)2 + z2]ẋ− x(y + a)ẏ − xzż

|PA2|3
+ [(y − a)2 + z2]ẋ− x(y − a)ẏ − xzż

|PB2|3

}
,

Kδ(2, 2) = 1
4

[
−x(y + a)ẋ+ (x2 + z2)ẏ − (y + a)zż

|PA2|3
+ −x(y − a)ẋ+ (x2 + z2)ẏ − (y − a)zż

|PB2|3

]
,

Kδ(2, 3) = 1
4

{
−xzẋ− (y + a)zẏ + [x2 + (y + a)2]ż

|PA2|3
+ −xzẋ− (y − a)zẏ + [x2 + (y − a)2]ż

|PB2|3

}
,

Kδ(3, 1) = 1
4

{
[y2 + (z + a)2]ẋ− xyẏ − x(z + a)ż

|PA3|3
+ [y2 + (z − a)2]ẋ− xyẏ − x(z − a)ż

|PB3|3

}
,

Kδ(3, 2) = 1
4

{
−xyẋ+ [x2 + (z + a)2]ẏ − y(z + a)ż

|PA3|3
+ −xyẋ+ [x2 + (z − a)2]ẏ − y(z − a)ż

|PB3|3

}
,

Kδ(3, 3) = 1
4

[
−x(z + a)ẋ− y(z + a)ẏ + (x2 + y2)ż

|PA3|3
+ −x(z − a)ẋ− y(z − a)ẏ + (x2 + y2)ż

|PB3|3

]
.

Km(1, 1) = 1
2

[
(y2 + z2)ẋ− (x+ a)yẏ − (x+ a)zż

|PA1|3
− (y2 + z2)ẋ− (x− a)yẏ − (x− a)zż

|PB1|3

]
,

Km(1, 2) = 1
2

{
−(x+ a)yẋ+ [(x+ a)2 + z2]ẏ − yzż

|PA1|3
− −(x− a)yẋ+ [(x− a)2 + z2]ẏ − yzż

|PB1|3

}
,

Km(1, 3) = 1
2

{
−(x+ a)zẋ− yzẏ + [(x+ a)2 + y2]ż

|PA1|3
− −(x− a)zẋ− yzẏ + [(x− a)2 + y2]ż

|PB1|3

}
,

Km(2, 1) = 1
2

{
[(y + a)2 + z2]ẋ− x(y + a)ẏ − xzż

|PA2|3
− [(y − a)2 + z2]ẋ− x(y − a)ẏ − xzż

|PB2|3

}
,

Km(2, 2) = 1
2

[
−x(y + a)ẋ+ (x2 + z2)ẏ − (y + a)zż

|PA2|3
− −x(y − a)ẋ+ (x2 + z2)ẏ − (y − a)zż

|PB2|3

]
,

Km(2, 3) = 1
2

{
−xzẋ− (y + a)zẏ + [x2 + (y + a)2]ż

|PA2|3
− −xzẋ− (y − a)zẏ + [x2 + (y − a)2]ż

|PB2|3

}
,

Km(3, 1) = 1
2

{
[y2 + (z + a)2]ẋ− xyẏ − x(z + a)ż

|PA3|3
− [y2 + (z − a)2]ẋ− xyẏ − x(z − a)ż

|PB3|3

}
,

Km(3, 2) = 1
2

{
−xyẋ+ [x2 + (z + a)2]ẏ − y(z + a)ż

|PA3|3
− −xyẋ+ [x2 + (z − a)2]ẏ − y(z − a)ż

|PB3|3

}
,

Km(3, 3) = 1
2

[
−x(z + a)ẋ− y(z + a)ẏ + (x2 + y2)ż

|PA3|3
− −x(z − a)ẋ− y(z − a)ẏ + (x2 + y2)ż

|PB3|3

]
.
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Observing the previous expressions, it can be seen that the velocity and acceleration equations
of the springs deformations and the displacements of the actuators for both of the planar and
spatial mechanisms can be expressed as

δ̇δδ = Jδṗ, (6.7)

l̇m = Jlṗ, (6.8)

δ̈δδ = Jδp̈ + Kδṗ, (6.9)

l̈m = Jlp̈ + Klṗ, (6.10)

where
Jδ = −1

4(Sb + Sa)T , Jl = −1
2(Sb − Sa)T ,

Kδ = −1
4

[
∂(Sb + Sa)T

∂x
ṗ ∂(Sb + Sa)T

∂y
ṗ
]
,

Kl = −1
2

[
∂(Sb − Sa)T

∂x
ṗ ∂(Sb − Sa)T

∂y
ṗ
]
.

and Sa = [sa1, . . . , saj], Sb = [sb1, . . . , sbj]. j = 2 for the planar mechanism and j = 3 for the
spatial mechanism. sai, sbi are the unit vectors for the direction of the cable segments from the
end-effector to the fixed pulleys in which the cables pass first, namely

sai = ai − p
||ai − p|| , sbi = bi − p

||bi − p|| .

Then, the inverse kinematics equations for the position, velocity and acceleration relationships
are found as Eq. (6.2), Eq. (6.8) and Eq. (6.10) respectively. From the above equations, it can be
observed that the inverse kinematic equations only depend on the position, velocity and acceler-
ation of the end-effector and are independent from the external forces, assuming that the cables
are all under tension.

6.3 Dynamic Model

The dynamic equations of the mechanism provide the relationships between actuation and ex-
ternal forces acting on the mechanism and the acceleration and motion trajectories that result.
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Usually, cable-driven parallel mechanisms have simpler dynamic models than link-driven parallel
mechanisms because the mass of the cables can be neglected. The dynamic equations of mo-
tion can be obtained from the Lagrangian formulation or the Newton-Euler formulation. Here,
the Newton-Euler formulation is used to obtain the dynamic equations of the planar and spatial
spring-loaded cable-loop-driven parallel mechanisms.

Assume that the masses of the springs and the free pulleys are small enough to be neglected.
Neglecting the friction between the cables and pulleys and considering only the mass of the end-
effector mp and the mass of the actuators mm, the forces acting at the end-effector and on the
moving fixtures and pulleys fai, fbi are assumed to be uniform. The dynamic equations for the
end-effector and the actuators can be found as

Mml̈m = fb − fa + fm, (6.11)

Mpp̈ = Safa + Sbfb. (6.12)

where Mm and Mp are the mass matrices for the actuator and the end-effector, respectively,
namely Mm = diag

[
mm1, mm2

]
, Mp = diag

[
mp, mp

]
for the planar mechanism, Mm =

diag
[
mm1, mm2, mm3

]
, Mp = diag

[
mp, mp, mp

]
for the spatial mechanism.

From Eq. (6.12) and Eq. (3.32) or (4.7) which expresses the relationship between the spring
force and the two cable forces, the cable forces fa, fb in a dynamic situation can be found as fa

fb

 =
 I + S−1

ba Sa −S−1
ba

−S−1
ba Sa S−1

ba

 1
2fs

Mpp̈

 (6.13)

where I is an 2× 2 or 3× 3 identity matrix. Moreover, matrix Sba = Sb − Sa is always invertible
within the square or the octahedron which is formed by the fixed pulleys Ai and Bi. When the
cable forces fa and fb are known, the actuating force fm can be found using the dynamic equations
for the actuators Eq. (6.11) as

fm = 1
2(Sb − Sa)−1(Sa + Sb)fs − 2(Sb − Sa)−1Mpp̈ + Mm(Jlp̈ + Klṗ). (6.14)

Moreover, the modular actuator-spring systems are all assumed to have the same characteris-
tics, that is to say fo = foi, k = ki and mm = mmi. Then, the cable extension forces fai and fbi
have the same properties for each mechanism. Because the cables can only pull and not push, it
should be verified that the cable forces fa and fb can be maintained in tension for a certain set of
trajectories of the end-effector. Then, the frequency limitation for the mechanisms can be found.
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In order to preserve symmetry, the origin of the fixed coordinate frame O − xy is located at the
centre of the rectangle A1A2B1B2 for the planar mechanism. Similarly, the origin of the fixed co-
ordinate frame for the spatial mechanism is also located at the centre of the octahedron as shown
in Figure 4.2(a). The expression of Eq. (6.13) are very complicated, in order to get some basic
dynamic characteristics of the mechanisms, assume that the quadrilateral of the planar mechanism
is a square with 2r side length and the octahedron of the spatial mechanism has 2a diagonal length.

For the planar mechanism, Eq. (6.13) can be modified as fa
fb

 = 1
Ω

 Wp1,1 Wp1,2

Wp2,1 Wp2,2

 1
2fs

Mpp̈

 (6.15)

where Ω = 2r[(a2b1 − a1b2)x+ (a1a2 − b1b2)y − (a1 + b1)(a2 + b2)r],

a1 =
√

(r − x)2 + (r + y)2, a2 =
√

(r + x)2 + (r + y)2,

b1 =
√

(r + x)2 + (r − y)2, b2 =
√

(r − x)2 + (r − y)2,

Wp1,1 =
 2ra1[a2(y − r)− b2(x+ r)] −2ra1b1(x− y)

2ra2b2(x+ y) 2ra2[a1(y − r) + b1(x− r)]

 ,
Wp2,1 =

 2rb1[a2(x− r)− b2(y + r)] 2ra1b1(x− y)
−2ra2b2(x+ y) −2rb2[a1(x+ r) + b1(y + r)]

 ,
−Wp1,2 = Wp2,2 =

[
w1 w2

]
,

and

w1 =
 a1b1[(b2 − a2)y + (a2 + b2)r]
a2b2[(a1 − b1)y − (a1 + b1)r]

 , w2 =
 a1b1[(a2 − b2)x− (a2 + b2)r]
a2b2[(b1 − a1)x− (a1 + b1)r]

 .

For the spatial mechanism, Eq. (6.13) can be modified as fa
fb

 = 1
Θ
[

ws1 ws2 ws3 ws4 ws5 ws6

]  1
2fs

Mpp̈

 (6.16)

where

Θ =a[(a1 + b1)(a2 + b2)(a3 + b3)a− (a1 − b1)(a2 + b2)(a3 + b3)x

− (a1 + b1)(a2 − b2)(a3 + b3)y − (a1 + b1)(a2 + b2)(a3 − b3)z],
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and ai, bi, i = 1, 2, 3, are the distances between the end-effector and the fixed pulleys

a1 =
√

(a+ x)2 + y2 + z2, b1 =
√

(a− x)2 + y2 + z2,

a2 =
√
x2 + (a+ y)2 + z2, b2 =

√
x2 + (a− y)2 + z2,

a3 =
√
x2 + y2 + (a+ z)2, b3 =

√
x2 + y2 + (a− z)2.

with also

ws1 = a



x1,1

−2a2b2(a3 + b3)y
−2a3b3(a2 + b2)z

z1,1

2a2b2(a3 + b3)y
2a3b3(a2 + b2)z


, ws2 = a



−2a1b1(a3 + b3)x
x2,2

−2a2b3(a1 + b1)z
2a1b1(a3 + b3)x

z2,2

2a3b3(a1 + b1)z


, ws3 = a



−2a1b1(a2 + b2)x
−2a2b2(a1 + b1)y

x3,3

2a1b1(a2 + b2)x
2a2b2(a1 + b1)y

z3,3


,

ws4 =
 −v4

v4

 , v4 =


y1,1

a2b2(a1 − b1)(a3 + b3)y
a3b3(a1 − b1)(a2 + b2)z

 ,

ws5 =
 −v5

v5

 , v5 =


a1b1(a2 − b2)(a3 + b3)x

y2,2

a3b3(a1 + b1)(a2 − b2)z

 ,

ws6 =
 −v6

v6

 , v6 =


a1b1(a2 + b2)(a3 − b3)x
a2b2(a1 + b1)(a3 − b3)y

y3,3

 .
and

x1,1 =a1[(a2 + b2)(a3 + b3)(a− x)− (a2 − b2)(a3 + b3)y − (a2 + b2)(a3 − b3)z],

x2,2 =a2[(a1 + b1)(a3 + b3)(a− y)− (a1 − b1)(a3 + b3)x− (a1 + b1)(a3 − b3)z],

x3,3 =a3[(a1 + b1)(a2 + b2)(a− z)− (a1 − b1)(a2 + b2)x− (a1 + b1)(a2 − b2)y],

y1,1 =a1b1[(a2 + b2)(a3 + b3)a− (a2 − b2)(a3 + b3)y − (a2 + b2)(a3 − b3)z],

y2,2 =a2b2[(a1 + b1)(a3 + b3)a− (a1 − b1)(a3 + b3)x− (a1 + b1)(a3 − b3)z],

y3,3 =a3b3[(a1 + b1)(a2 + b2)a− (a1 − b1)(a2 + b2)x− (a1 + b1)(a2 − b2)y],

z1,1 =b1[(a2 + b2)(a3 + b3)(a+ x)− (a2 − b2)(a3 + b3)y − (a2 + b2)(a3 − b3)z],

z2,2 =b2[(a1 + b1)(a3 + b3)(a+ y)− (a1 − b1)(a3 + b3)x− (a1 + b1)(a3 − b3)z],

z3,3 =b3[(a1 + b1)(a2 + b2)(a+ z)− (a1 − b1)(a2 + b2)x− (a1 + b1)(a2 − b2)y].
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The static workspace of the planar mechanism always includes the line segments between the
corresponding centre points of the four sides of the square. And if the ratio between the stiffness
and the preload of the springs changes, the direction in which the workspace changes the most
is the diagonals of the square. For the spatial mechanism, the static workspace is similar to a
ball with six bumps which point to the six pulleys on the diagonal directions. From the numer-
ical results, it can be seen that the largest variation of the workspace boundary caused by the
parameters of the springs is the diagonal directions of the octahedron. Along the line orthogonal
to two opposite planes of the octahedron, the diameter of the inscribed sphere of the octahedron
is always included in the workspace boundary.

Because the mechanism is symmetric, the cable forces have the same characteristics when
the end-effector is moving along the lines orthogonal to the faces or moving along the diagonals.
Therefore, in the following sections, we will analyze the trajectories in one of these directions
for the two mechanisms separately. For the planar mechanism, the line orthogonal to an edge is
analyzed using the x axis direction and the diagonal trajectory using x = y direction. For the
spatial mechanism, the direction along x = y = z is used for the line orthogonal to a face and the
x axis is used for the diagonal trajectory.

6.4 Mechanical Bandwidth and Actuating Force

In this section, the frequency limitations for a periodic sinusoidal trajectory for the two special
directions will be obtained for both the planar and the spatial mechanisms. The corresponding
required actuating forces will be found.

6.4.1 Planar Mechanism

6.4.1.1 Direction Orthogonal to an Edge

For the planar mechanism, the x axis direction is used to analyze the cable force characteristics
in a direction orthogonal to an edge. When the end-effector is on the x axis, the cable forces can
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be simplified to as

fb1 = fa2 = a2(a1 + a2)
2Υ

{
a1mpẍ+ (x− r)

[
fo + k

4(a1 + a2 − 2
√

2r)
]}

, (6.17)

fb2 = fa1 = −a1(a1 + a2)
2Υ

{
a2mpẍ+ (x+ r)

[
fo + k

4(a1 + a2 − 2
√

2r)
]}

, (6.18)

where Υ = 2rx2 − 4r3 − 2r
√

4r4 + x4, a1 =
√

(r − x)2 + r2, a2 =
√

(r + x)2 + r2. It can be ob-
served that Υ is always negative when the end-effector is moving along the x axis and x ∈ [−r, r].

Suppose the trajectory and the acceleration of the end-effector are

p =
 r sin(ωt)

0

 , p̈ =
 −rω2 sin(ωt)

0

 .
Because cables can only works in tension, there will exist a maximum frequency which ensures
that 2Υfb1

a2(a1+a2) is negative and − 2Υfb2
a1(a1+a2) is positive. This frequency will be determined. Then, the

conditions which ensure that the cable forces are positive for different kinds of springs are analyzed.

(1) If the springs used in the mechanism are constant force springs, substituting p and p̈ into
Eq. (6.17) and Eq. (6.18), then the condition which ensure that the cable forces are positive are

q = fo
mprω2 ≥

−sωt
√

2− 2sωt + s2
ωt

1− sωt
(6.19)

q = fo
mprω2 ≥

sωt
√

2 + 2sωt + s2
ωt

1 + sωt
(6.20)

where sωt = sin(ωt). If sωt is considered as the variable argument of the functions defined by
the right-hand side of Eq. (6.19) and Eq. (6.20), the derivative of the function defined by the
right-hand side of Eq. (6.19) is always negative as sωt belongs to the interval [−1, 1]. Therefore, it
is a decreasing function, the largest value of function shown in Eq. (6.19) appears when sωt = −1.
Similarly, the significant value for q appears when sωt = 1 according to Eq. (6.20). From Eq. (6.19)
and Eq. (6.20), we get the same condition which can maintain the cable forces in tension. That is

q ≥
√

5
2 . (6.21)

Then, the maximum frequency is

ωmax =
√√√√ 2fo√

5mpr
. (6.22)
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Figure 6.1: Plots of maximum frequency of the planar mechanism along the direction orthogonal
to an edge for different values of mpr .

For different values of mpr, the plot for Eq. (6.22) is shown in Figure 6.1.

(2) If the springs used in the mechanism have a nonzero stiffness, the mechanism has a large
enough workspace if the ratio of kr

fo
is properly adjusted.

The end-effector can reach the four fixed pulleys only when the factor kr
fo

is smaller than
√

2 but
no matter what is the amount of factor kr

fo
the workspace always includes the line segments within

the square along the x and y axes. So when the preloaded springs have the stiffness, based on
Eq. (6.17) and Eq. (6.18) the condition that maintains the cable forces in tension can be modified
as

q = fo
mprω2 ≥

−sωtasωt1
[1− sωt]

{
1 + d

4

[
asωt1 + asωt2 − 2

√
2
]} (6.23)

q = fo
mprω2 ≥

sωtasωt2

[1 + sωt]
{
1 + d

4

[
asωt1 + asωt2 − 2

√
2
]} (6.24)

where asωt1 =
√

2− 2sωt + s2
ωt, asωt2 =

√
2 + 2sωt + s2

ωt and d = kr
fo
.

Considering the physical meaning of factor q which has to be positive and using a method
similar to the one applied for the constant force springs mechanism, it can be found that the
significant value of q appears when sωt = −1 for Eq. (6.23) and sωt = 1 for Eq. (6.24). Then we
get the same condition which can guarantee that the cables are not slack, i.e.,

q ≥
√

5
2 + d

2(1 +
√

5− 2
√

2)
. (6.25)
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Figure 6.2: Trajectory frequency limit along a direction orthogonal to an edge for different end-
effector masses.

Then, the maximum frequency for this trajectory is

ωmax =

√√√√ fo
mpr

√
2 + d

2(1 +
√

5− 2
√

2)
4
√

5
. (6.26)

Suppose the frequency of the trajectory is the above ωmax, the actuating forces can be modified
as

fm1 = −fm2 = fofab + mmfo
mp

fmmlm , (6.27)

where

fab =− [4 + d(1 +
√

5− 2
√

2)]sωtasωt1asωt2
4
√

5[(1 + sωt)asωt1 + (1− sωt)asωt2]
+ (1 + sωt)asωt1 − (1− sωt)asωt2

2[(1 + sωt)asωt1 + (1− sωt)asωt2][
1 + d

4
(
asωt1 + asωt2 − 2

√
2
)]
,

fmmlm = 4 + d(1 +
√

5− 2
√

2)
2
√

5

[
sωt(sωt − 1)

asωt1
− a(a+ 1)

asωt2
+ 1− s2

ωt

2a3
sωt1
− 1− s2

ωt

2a3
sωt2

]
.

When sωt = ±1, the actuating force has the maximum absolute value

fm,max = 4 + d(1 +
√

5− 2
√

2)
5

mmfo
mp

. (6.28)

Normalizing the ratio between the half side length of the footprint square and the springs’
preload as a unit, the plot of the Eq. (6.26) is shown in Figure 6.2 for different values of mp.

Normalizing the mass of the end-effector and the square length as mp = 1, r = 1, ω = 1. Let
q =

√
5

2+ d2 (1+
√

5−2
√

2) and fo = qmprω
2, the plots for the cable forces fbi, fai, i = 1, 2, for d = 0,
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(a) fa1 and fb2

(b) fa2 and fb1

Figure 6.3: Plots of the cable forces for d = 0, d = 1 and d = −1.
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d = 1 and d = −1 are shown in Figure 6.3.

Since the mechanism is symmetric, the results of Eq. (6.22) and Eq. (6.26) can be obtained for
such a trajectory in the y direction.

6.4.1.2 Diagonal Direction

It was shown in Chapters 3 and 4 that the workspace boundary of the mechanism will retract to
the centre of the square formed by the four fixed pulley A1A2B1B2 if the ratio between the stiffness
and the preload of the springs is increased. Moreover, the main directions in which the workspace
boundary contracts significantly are along the two diagonals. Therefore, the moving trajectory
along the diagonals should be analyzed. As the mechanism is symmetric, the positive diagonal
will be used in the following analysis. When x = y, the cable forces expressed in Eq. (6.15) can
be expressed as

fa1 = fb1 = 1
4fs1 = 1

4fo +
√

2k
8

(√
r2 + x2 − r

)
, (6.29)

fa2 = fo
4 −

x

2
√
x2 + r2

[
fo
2 +

√
2k
4

(√
r2 + x2 − r

)]
−
√

2
2 mpẍ, (6.30)

fb2 = fo
4 + x

2
√
x2 + r2

[
fo
2 +

√
2k
4

(√
r2 + x2 − r

)]
+
√

2
2 mpẍ. (6.31)

The end-effector certainly cannot reach the four fixed pulleys in practice. Here, it is supposed
that the amplitude of the movement is the same as that of the analyzed trajectory in the x
direction. That is to say, the trajectory and the acceleration of the end-effector are

p =
 √

2
2 r sin(ωt)
√

2
2 r sin(ωt)

 , p̈ =
 −√2

2 rω
2 sin(ωt)

−
√

2
2 rω

2 sin(ωt)

 .
Substituting p in Eq. (6.29), Eq. (6.30) and Eq. (6.31), the cable forces can be expressed as

fa1 = fb1 = 1
4fo + kr

8 (asωt −
√

2), (6.32)

fa2 = 1
4fo(1−

sωt
asωt

) + kr

8 (
√

2sωt
asωt

− sωt) + 1
2mprω

2sωt, (6.33)

fb2 = 1
4fo(1 + sωt

asωt
)− kr

8 (
√

2sωt
asωt

− sωt)−
1
2mprω

2sωt. (6.34)

where asωt =
√

2 + s2
ωt.
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In order to get a significantly large workspace, the ratio d needs to be within a certain range if
the springs have stiffness, no matter whether it is negative or positive. For the sake of maintaining
the cable forces fa1 and fb1 in tension, the following inequality should be satisfied:

d = kr

fo
>

2
√

2−
√

2 + s2
ωt

.

When sωt equals 1 or −1, we get the minimal value of d, that is −2(
√

2 +
√

3).

Substituting d = kr
fo

into Eq. (6.33) and Eq.(6.34), the coefficients of 1
4fo for these two equations

are

ffo1 = (1− sωt
asωt

) + d

2(
√

2sωt
asωt

− sωt),

ffo2 = (1 + sωt
asωt

)− d

2(
√

2sωt
asωt

− sωt).

It can be found that both ffo1 and ffo2 are positive when
√

3+1√
2−
√

3 < d
2 <

√
3−1√

3−
√

2 . Actually, the
chosen d should always be within this range. Then, in order to maintain the cable forces fa2 and
fb2 in tension, from Eq. (6.33) and Eq. (6.34), we get

q = fo
mprω2 >

−2sωtasωt
(asωt − sωt) + d

2(
√

2sωt − sωtasωt)
,

q = fo
mprω2 >

2sωtasωt
(asωt + sωt)− d

2(
√

2sωt − sωtasωt)
.

The above relationship can be reduced to

q >
2
√

3
(
√

3 + 1) + d
2(
√

3−
√

2)
. (6.35)

Then, the affordable maximum trajectory frequency is

ωmax =

√√√√√ fo
mpr

(1
2 + 1

2
√

3

)
+ 1

4d
1−

√
2
3

. (6.36)

Since fa1 and fb1 are equal to each other, the required actuating force of M1 is zero, that is to
say fm1 = 0. If the end-effector is moving with the largest frequency, fm2 can be expressed as

fm2 = fosωt
2

1 +
√

3
3 −

2
asωt

+ d

2

√2
asωt
−
√

2
3

+mmfosωt
mp

[
1
2 + 1

2
√

3
+ d

(
1
4 −

√
2

4
√

3

)]
. (6.37)
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Figure 6.4: Plot of the maximum trajectory frequency for the diagonal direction and for different
values of mp.

When sωt = ±1, the actuating force fm2 has the maximum absolute value as

fm2,max = fo(1−
√

3
3 ) + mmfo

mp

[
(12 + 1

2
√

3
) + d(14 −

√
2

4
√

3
)
]
.

Normalizing the ratio between the half square side length and the preload of the springs as a
unit fo

r
= 1, the plot of the maximum frequency for different values of mp is shown in Figure 6.4.

Assuming the mass of the end-effector and the half square side length as mp = 1 and r = 1 and
assuming that the preload of the springs is fo = 1, let q = 4

√
3

2(
√

3+1)+d(
√

3−
√

2) , then the maximum
frequency of the trajectory should be ω =

√
fo

mprq
. The plots of the cable forces for k = 0 and

k = −1.5 are shown in Figure 6.5.

6.4.2 Spatial Mechanism

6.4.2.1 Motion along a Direction Orthogonal to a Face

When x = y = z, the cable force equations can be simplified as

fai = a1

d3

{
(a− 3x)[fo2 + k

8(a1 + b1 − 2a)]−mpẍb1

}
, (6.38)

fbi = b1
d3

{
(a+ 3x)[fo2 + k

8(a1 + b1 − 2a)] +mpẍa1

}
, (6.39)
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(a) fa1 and fa2

(b) fb1 and fb2

Figure 6.5: Plots of the cable forces when the end-effector move in the diagonal direction for k = 0
and k = −1.5.
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where a1 =
√

3x2 + 2ax+ a2, b1 =
√

3x2 − 2ax+ a2, d3 = a(a1 + b1)− 3x(a1 − b1) and i = 1, 2, 3.
Because a1

d3
and b1

d3
are always positive, the conditions which guarantee that the cable forces are

positive are

(a− 3x)[ fo2 + k
8 (a1 + b1 − 2a)]−mpẍb1 ≥ 0 (6.40)

(a+ 3x)[ fo2 + k
8 (a1 + b1 − 2a)] +mpẍa1 ≥ 0 (6.41)

Since the static workspace boundary in this direction is at a distance of
√

3
3 from the centre of

the octahedron, the trajectory can be defined as

p = 1
3a sin(ωt)

[
1 1 1

]T
.

For this trajectory, Eq. (6.40) and Eq. (6.41) can be written as

fo(1− sωt)
[

1
2 + ρ

8 (axyz + bxyz − 2)
]
+ 1

3mpaω
2sωtbxyz ≥ 0,

fo(1 + sωt)
[

1
2 + ρ

8 (axyz + bxyz − 2)
]
− 1

3mpaω
2sωtaxyz ≥ 0,

where ρ = ka
fo
, axyz =

√
1
3s

2
ωt + 2

3sωt + 1 and bxyz =
√

1
3s

2
ωt − 2

3sωt + 1. It can be observed that the
coefficients of the preload fo are always positive. The condition which ensures that the cable forces
are positive expressed as a function of the ratio of the mechanism parameters and the trajectory
frequency can be obtained as

fo
mpaω2 ≥

√
2

3 + ρ
4(3
√

2 +
√

6− 6)
(6.42)

The maximum trajectory frequency for a certain workspace boundary is then

ωmax =

√√√√ fo
mpa

[3
√

2
2 + ρ

4(3 +
√

3− 3
√

2)]. (6.43)

If the springs are constant force springs, ρ = 0, then the maximum trajectory frequency can be
found as

√
3
√

2fo
2mpa .

When the end-effector moves in the direction defined as x = y = z, the actuating forces are

fmi = ffoifo + fmpimpaω
2 + fmmimmaω

2, (6.44)

where

ffoi = (sωt − 1)axyz + (1 + sωt)bxyz
(1− sωt)axyz + (1 + sωt)bxyz

[1
2 + ρ

8(axyz + bxyz − 2)
]
,

fmpi = −2
3

sωtaxyzbxyz
(1− sωt)axyz + (1 + sωt)bxyz

,

fmmi = −sωt6

(
1 + sωt
axyz

+ 1− sωt
bxyz

)
+ 1− s2

ωt

18

(
1
a3
xyz

− 1
b3xyz

)
.
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Suppose that the trajectory has the maximum frequency shown in Eq. (6.43), the maximum
actuating force is

fmi,max = fo
2 (1 + mm

mp

)[1 + ρ

4(
√

2 +
√

6
3 − 2)].

6.4.2.2 Diagonal Direction

If the end-effector is moving along the x-axis, Eq. (6.16) can be simplified to

fa1 = 1
4fo −

x√
a2 + x2

[
1
2fo + k

4
(√

a2 + x2 − a
)]
− 1

2mpẍ, (6.45)

fb1 = 1
4fo + x√

a2 + x2

[
1
2fo + k

4
(√

a2 + x2 − a
)]

+ 1
2mpẍ, (6.46)

fai = fbi = 1
4fo + k

8
(√

a2 + x2 − a
)
, i = 2, 3. (6.47)

It can be observed that the cable forces fai and fbi, i = 2, 3, are always positive if ka
fo
> 2

1−
√

1+(x
a
)2 .

It is verified that the workspace boundary point on this direction is larger than
√

3
3 a from the cen-

tre of the octahedron if the springs are negative stiffness springs. Substituting
√

3
3 a, the minimum

value of ka
fo

is about −13. In practice, the springs’ stiffness cannot be so small. Hence, we can say
that the cable forces fai and fbi, i = 2, 3, are always positive.

Assume the trajectory of the end-effector to be

p = λa sin(ωt)e, (6.48)

where e = [1, 0, 0]T and λ > 0. Eq. (6.45) and Eq. (6.46) can be simplified as

fa1 = 1
4fo −

λωt
adiag

[
1
2fo + ka

4 (adiag − 1)
]

+ 1
2mpaω

2λωt, (6.49)

fb1 = 1
4fo + λωt

adiag

[
1
2fo + ka

4 (adiag − 1)
]
− 1

2mpaω
2λωt, (6.50)

where λωt = λ sin(ωt) and adiag =
√

1 + λ2
ωt.

In order to maintain fa1 and fb1 be positive, the following relationships should be satisfied

fo

[
1
2 −

λωt
adiag

− ρλωt
2

(
1− 1

adiag

)]
≥ −mpaω

2λωt, (6.51)

fo

[
1
2 + λωt

adiag
+ ρλωt

2

(
1− 1

adiag

)]
≥ mpaω

2λωt. (6.52)
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Figure 6.6: The relationship between λ and ωmax.

In Chapter 4, it was shown that the mechanism has a better workspace with negative stiffness
springs. When ρ < 0 and λ ∈ [0,

√
3

3 ], the coefficients of fo in Eq. (6.51) and Eq. (6.52) are always
positive. The condition which can ensure that the cable forces fa1 and fb1 are positive can be
found as

fo
mpaω2 ≥

2λ
√

1 + λ2
√

1 + λ2 + 2λ+ ρλ(
√

1 + λ2 − 1)
. (6.53)

Then, the maximum trajectory frequency can be determined as

ωmax =

√√√√ fo
mpa

√√√√√1 + λ2 + 2λ+ ρλ(
√

1 + λ2 − 1)
2λ
√

1 + λ2
,

s.t. λ ∈ (0,
√

3
3 ), ρ < 0.

(6.54)

Similarly to the diagonal direction of motion of the planar mechanism, the cable forces which
are not in this direction are equal to each other, fai = fbi, i = 2, 3. Then, the actuating force of the
corresponding actuators is equal to zero. If the end-effector moving at the trajectory frequency,
the maximum actuating force fm1,max is

fm1,max = (12 + mm

2mp

)fo + mmλ

mp

√
1 + λ2

fo

[
1 + ρ

2(
√

1 + λ2 − 1)
]
.

Normalizing the parameters of the mechanism, the half of the diagonal is a = 1, the mass of
the end-effector is mp = 1 and the preload of the springs is fo = 1. Based on Eq. (6.54), the
relationships between the workspace boundary point on the diagonal of the octahedron λ and the
maximum frequency of the trajectory ωmax for different values of springs stiffness are shown in
Figure 6.6. It can be seen that the maximum frequency is smaller when the larger the workspace
is desired.
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The periodic sinusoidal trajectories on the two special directions were used to obtain the basic
requirements of the mechanism’s parameters. But there are many kinds of trajectories, and the
above analysis is not sufficient to get the overall behaviour of the mechanism. In the following
section, the natural frequency of the mechanisms will be analyzed.

6.5 Natural Frequency

The natural frequency of the mechanisms will be obtained based on the Newton-Euler formulation
and the ratio of the amplitudes of motion of the actuators and the end-effector will be found.

6.5.1 Planar Mechanism

The dynamic equation for the end-effector Eq. (6.12) can be rewritten as

g1(x, y) = fa1xsa1 + fb1xsb1 + fa2xsa2 + fb2xsb2 = mpẍ,

g2(x, y) = fa1ysa1 + fb1ysb1 + fa2ysa2 + fb2ysb2 = mpÿ,

where xai, yai, xbi and ybi are the x and y components of the unit vectors sai and sbi, respectively.
In static situation, fai and fbi, i = 1, 2, can be obtained using Eq. (4.10) for a given configuration.
Assuming fai and fbi, i = 1, 2, are constant and substituting them in the initial end-effector
dynamic equation, then the above dynamic equations can be written as

 mp 0
0 mp

 ẍ

ÿ

+


∂g1

∂x

∂g1

∂y
∂g2

∂x

∂g2

∂y


 ẋ

ẏ

 =
 0

0

 (6.55)

Let x = xoe
st and y = yoe

st, and substituting them into Eq. (6.55), we get

mps+ ∂g1

∂x

∂g1

∂y
∂g2

∂x
mps+ ∂g2

∂y


 xo

yo

 =
 0

0

 (6.56)



122

where

∂g1

∂x
= fa1

−(ya1 − y)2

[(xa1 − x)2 + (ya1 − y)2]
3
2

+ fb1
−(yb1 − y)2

[(xb1 − x)2 + (yb1 − y)2]
3
2

+ fa2
−(ya2 − y)2

[(xa2 − x)2 + (ya2 − y)2]
3
2

+ fb2
−(yb2 − y)2

[(xb2 − x)2 + (yb2 − y)2]
3
2
,

∂g1

∂y
= ∂g2

∂x
= fa1

(xa1 − x)(ya1 − y)
[(xa1 − x)2 + (ya1 − y)2]

3
2

+ fb1
(xb1 − x)(yb1 − y)

[(xb1 − x)2 + (yb1 − y)2]
3
2

+ fa2
(xa2 − x)(ya2 − y)

[(xa2 − x)2 + (ya2 − y)2]
3
2

+ fb2
(xb2 − x)(yb2 − y)

[(xb2 − x)2 + (yb2 − y)2]
3
2
,

∂g2

∂y
= fa1

−(xa1 − x)2

[(xa1 − x)2 + (ya1 − y)2]
3
2

+ fb1
−(xb1 − x)2

[(xb1 − x)2 + (yb1 − y)2]
3
2

+ fa2
−(xa2 − x)2

[(xa2 − x)2 + (ya2 − y)2]
3
2

+ fb2
−(xb2 − x)2

[(xb2 − x)2 + (yb2 − y)2]
3
2
.

This equation is satisfied for any xo and yo if the determinant of the matrix in the above equation
is zero. That is to say

m2
ps

2 +mp(
∂g1

∂x
+ ∂g2

∂y
)s+ ∂g1

∂x

∂g2

∂y
− ∂g1

∂y

∂g2

∂x
= 0 (6.57)

Then, the two natural frequencies can be calculated using the latter equation.

Suppose the rectangle formed by the four fixed pulleys is a square and the side length is 2r,
at the reference configuration (x = 0 and y = 0), for the static situation, we have

fs1 = fs2 = fo, fa1 = fa2 = fb1 = fb2 = fo
4 .

Then, using Eq. (6.57), the natural frequency can be found as

so1,2 = fo

2
√

2mpr
. (6.58)

From Eq. (6.56), two expressions for the ratio of the amplitudes are found:

xo
yo

= −
∂g1
∂y

mps+ ∂g1
∂x

, or
xo
yo

= −
mps+ ∂g2

∂y
∂g2
∂x

. (6.59)

The substitution of the natural frequencies in either of these equations leads to the ratio of the
amplitudes.
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Figure 6.7: Plots of the natural frequency when k = 0 for the planar mechanism.

Normalizing the parameters for the mechanism as xb2 = yb2 = 1, mp = 1, fo = 1, suppose the
springs used in the mechanism are constant force springs, then the natural frequencies s1 and s2

are shown in Figure 6.7. The corresponding ratio of the amplitudes for these two natural frequen-
cies are shown in Figure 6.8. In these figures, the small black dots represent the position of the
end-effector and the small line segments represent the direction associated with the corresponding
ratio of the amplitudes. The plots of the two natural frequencies and ratio of the amplitude are
symmetric since the mechanism is symmetric. It can be noticed that the directions of the two
ratio of amplitude are perpendicular to each other.

If the springs have non-zero stiffness, the shape of surfaces for the two natural frequencies are
similar to the surfaces shown in Figure 6.7. Moreover, the natural frequency will increase when
the stiffness of the springs is increased. The working frequency of the mechanism should be below
the natural frequency s1 in order to avoid undesired vibration.

6.5.2 Spatial Mechanism

For the spatial mechanism, the dynamic equation of the end-effector is

g = Safa + Sbfb = Mpp̈ (6.60)
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where g(x, y, z) = [g1(x, y, z), g2(x, y, z), g3(x, y, z)]T . In a static situation, the cable forces can be
obtained using Eq. (4.10) for a given configuration pp = [xp, yp, zp]T . Assuming the cable forces
fa and fb are constant and substituting them in the initial end-effector dynamic equation, then
Eq. (6.60) can be rewritten as:

Mpp̈ + Gṗ = 0 (6.61)

where

G =



∂g1

∂x

∂g1

∂y

∂g1

∂z
∂g2

∂x

∂g2

∂y

∂g2

∂z
∂g3

∂x

∂g3

∂y

∂g3

∂z

 .

and

∂g1

∂x
=fa1

−y2 − z2

[(x+ a)2 + y2 + z2] 3
2

+ fa2
−(y + a)2 − z2

[x2 + (y + a)2 + z2] 3
2

+ fa3
−y2 − (z + a)2

[x2 + y2 + (z + a)2] 3
2

+fb1
−y2 − z2

[(x− a)2 + y2 + z2] 3
2

+ fb2
−(y − a)2 − z2

[x2 + (y − a)2 + z2] 3
2

+ fb3
−y2 − (z − a)2

[x2 + y2 + (z − a)2] 3
2
,

∂g1

∂y
= ∂g2

∂x
=fa1

(x+ a)y
[(x+ a)2 + y2 + z2] 3

2
+ fa2

x(y + a)
[x2 + (y + a)2 + z2] 3

2
+ fa3

xy

[x2 + y2 + (z + a)2] 3
2

+fb1
(x− a)y

[(x− a)2 + y2 + z2] 3
2

+ fb2
x(y − a)

[x2 + (y − a)2 + z2] 3
2

+ fb3
xy

[x2 + y2 + (z − a)2] 3
2
,

∂g1

∂z
= ∂g3

∂x
=fa1

(x+ a)z
[(x+ a)2 + y2 + z2] 3

2
+ fa2

xz

[x2 + (y + a)2 + z2] 3
2

+ fa3
x(z + a)

[x2 + y2 + (z + a)2] 3
2

+fb1
(x− a)z

[(x− a)2 + y2 + z2] 3
2

+ fb2
xz

[x2 + (y − a)2 + z2] 3
2

+ fb3
x(z − a)

[x2 + y2 + (z − a)2] 3
2
,

∂g2

∂y
=fa1

−(x+ a)2 − z2

[(x+ a)2 + y2 + z2] 3
2

+ fa2
−x2 − z2

[x2 + (y + a)2 + z2] 3
2

+ fa3
−x2 − (z + a)2

[x2 + y2 + (z + a)2] 3
2

+fb1
−(x− a)2 − z2

[(x− a)2 + y2 + z2] 3
2

+ fb2
−x2 − z2

[x2 + (y − a)2 + z2] 3
2

+ fb3
−x2 − (z − a)2

[x2 + y2 + (z − a)2] 3
2
,

∂g2

∂z
= ∂g3

∂y
=fa1

yz

[(x+ a)2 + y2 + z2] 3
2

+ fa2
(y + a)z

[x2 + (y + a)2 + z2] 3
2

+ fa3
y(z + a)

[x2 + y2 + (z + a)2] 3
2

+fb1
yz

[(x− a)2 + y2 + z2] 3
2

+ fb2
(y − a)z

[x2 + (y − a)2 + z2] 3
2

+ fb3
y(z − a)

[x2 + y2 + (z − a)2] 3
2
,

∂g3

∂z
=fa1

−(x+ a)2 − y2

[(x+ a)2 + y2 + z2] 3
2

+ fa2
−x2 − (y + a)2

[x2 + (y + a)2 + z2] 3
2

+ fa3
−x2 − y2

[x2 + y2 + (z + a)2] 3
2

+fb1
−(x− a)2 − y2

[(x− a)2 + y2 + z2] 3
2

+ fb2
−x2 − (y − a)2

[x2 + (y − a)2 + z2] 3
2

+ fb3
−x2 − y2

[x2 + y2 + (z − a)2] 3
2
.
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Assuming pp = [xpest, ypest, zpest]T and substituting it into the above equation, we get

(sMp + G)pp = 0 (6.62)

This equation is satisfied for any pp if the determinant of the matrix sMp + G equals zero, that
is to say

m3
ps

3 + S1m
2
ps

2 + S2mps+ S3 = 0 (6.63)

where

S1 = ∂g1

∂x
+ ∂g2

∂y
+ ∂g3

∂z
,

S2 = ∂g1

∂x

∂g2

∂y
+ ∂g2

∂y

∂g3

∂z
+ ∂g3

∂z

∂g1

∂x
−
(
∂g1

∂y

)2

−
(
∂g1

∂z

)2

−
(
∂g2

∂z

)2

,

S3 = ∂g1

∂x

∂g2

∂y

∂g3

∂z
+ 2∂g1

∂y

∂g1

∂z

∂g2

∂z
− ∂g1

∂x

(
∂g2

∂z

)2

−
(
∂g1

∂y

)2
∂g3

∂z
−
(
∂g1

∂z

)2
∂g2

∂y
.

Using Eq. (6.63), the three natural frequencies can be found. The eigenvectors, which can be
considered as the ratio of the amplitude, can be obtained as

v1 =



1
−∂g1

∂y
mps− ∂g1

∂y
∂g3
∂z

+ ∂g1
∂z

∂g2
∂z

m2
ps

2 + (∂g2
∂y

+ ∂g3
∂z

)mps+ ∂g2
∂y

∂g3
∂z
− (∂g2

∂z
)2

−∂g1
∂z
mps− ∂g2

∂y
∂g1
∂z

+ ∂g1
∂y

∂g2
∂z

m2
ps

2 + (∂g2
∂y

+ ∂g3
∂z

)mps+ ∂g2
∂y

∂g3
∂z
− (∂g2

∂z
)2


, (6.64)

v2 =



−∂g1
∂y
mps− ∂g1

∂y
∂g3
∂z

+ ∂g1
∂z

∂g2
∂z

m2
ps

2 + (∂g1
∂x

+ ∂g3
∂z

)mps+ ∂g1
∂x

∂g3
∂z
− (∂g1

∂z
)2

1
−∂g2

∂z
mps− ∂g1

∂x
∂g2
∂z

+ ∂g1
∂y

∂g1
∂z

m2
ps

2 + (∂g1
∂x

+ ∂g3
∂z

)mps+ ∂g1
∂x

∂g3
∂z
− (∂g1

∂z
)2


, (6.65)

v3 =



−∂g1
∂z
mps− ∂g1

∂z
∂g2
∂y

+ ∂g1
∂y

∂g2
∂z

m2
ps

2 + (∂g1
∂x

+ ∂g2
∂y

)mps+ ∂g1
∂x

∂g2
∂y
− (∂g1

∂y
)2

−∂g2
∂z
mps− ∂g1

∂x
∂g2
∂z

+ ∂g1
∂y

∂g1
∂z

m2
ps

2 + (∂g1
∂x

+ ∂g2
∂y

)mps+ ∂g1
∂x

∂g2
∂y
− (∂g1

∂y
)2

1


. (6.66)

At the original configuration, the spring forces are fsi = fo, the cable forces are fai = fbi = fo
4 ,

i = 1, 2, 3, and G = −afoI ( I is a 3× 3 identity matrix). Then, Eq. (6.63) becomes

(Mps− afo)3 = 0 (6.67)
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It can be seen that the natural frequencies in the original configuration are

sio = afo
mp

, i = 1, 2, 3.

Using Eq. (6.64) to Eq. (6.66), the three ratios of the amplitude eigenvectors can be found as

v1o =


1
0
0

 , v2o =


0
1
0

 , v3o =


0
0
1

 .

Normalizing the parameters of the mechanism as a = 1 and mp = 1, suppose the springs in the
mechanism are constant force springs and fo = 1. The natural frequencies for z = 0, z = ±0.2,
z = ±0.4 are shown in Figure 6.9.

It can be seen that the three natural frequencies have little differences near the centre of the
octahedron, the farther the distance from the centre of the octahedron the bigger differences the
three natural frequencies have. It has been verified that the reference position of the end-effector
should be placed in the centroid of the octahedron in order to keep the springs in tension. Hence,
the most important natural frequency is the smallest one s1. In order to avoid significant vibra-
tions, the mechanisms should work below the smallest natural frequency in most situations.

6.6 Conclusions

In this chapter, the dynamic characteristics of planar and spatial spring-loaded cable-loop-driven
parallel mechanisms are analyzed. The velocity and acceleration equations for the inverse kine-
matics are deduced based on the displacement equations. The dynamic equations which only
consider the mass of the actuators and the end-effector are obtained. The frequency limitations
of the sine trajectories in the two special directions for both of the two spring-loaded mechanisms
have been found based on the dynamic equations. The natural frequencies and the ratio of the
amplitudes of both mechanisms have been found using a Newton-Euler formulation and the static
cable forces. With these results, undesired vibration can be avoided for the mechanisms.



128

−0.5

0

0.5

−0.5
0

0.5

0.6

0.8

1

1.2

1.4

1.6

xy

s i

s
3

s
2

s
1

(a) z = 0

−0.5

0

0.5

−0.5
0

0.5
0.6

0.8

1

1.2

1.4

1.6

xy

s i s
2

s
3

s
1

(b) z = ±0.2

−0.5

0

0.5

−0.5
0

0.5
0

0.5

1

1.5

2

xy

s i

s
1

s
2

s
3

(c) z = ±0.4

Figure 6.9: The three natural frequencies of the spatial mechanism.



Chapter 7

Two-Degree-of-Freedom Decoupled
Non-Redundant Cable-Loop-Driven

Parallel Mechanism

A novel two-degree-of-freedom cable-loop slider-driven parallel mechanism is introduced in this
chapter. The two degrees of freedom of the mechanism are uncoupled and only two actuators are
needed to control the motion. There are two cable loops for each direction motion: one acts as
the actuating loop while the other is the constraint loop. Due to the simple geometric design, the
kinematic and static equations of the mechanism are very compact. The stiffness of the mechanism
is analyzed. It can be observed that the mechanism’s stiffness is much higher than the stiffness of
the cables. The dynamic equations of the mechanism, including the compliance and the damping
of the cables are also obtained. The proposed mechanism’s workspace is essentially equal to its
footprint and there are no singularities. The mechanism does not require the use of a rigid-link
passive bridge and trolley (only cables are connected to the end-effector). Sliders located on the
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edges of the workspace are used and actuation redundancy is eliminated while providing force
closure everywhere in the workspace.
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7.1 Introduction

In Chapters 3 and 4, planar and spatial spring-loaded cable-loop-driven parallel mechanisms were
introduced. These mechanisms are non-redundant and avoid the use of cable-spool systems. How-
ever, they require the use of extension springs which limits their force capabilities. In [104], a
Cartesian cable-driven mechanism is introduced, in which a long cable loop is circling on a rigid-
link Cartesian translational mechanism, and three stationary actuators provide the 3-DOF motion.
However, this mechanism requires the use of a rigid-link passive bridge and trolley. For parallel
mechanisms, it is often difficult to decouple the motion. Nevertheless, there are notable examples,
such as the fully-decoupled 3-DOF translational parallel mechanism proposed in [111].

In this chapter, a 2-DOF cable-loop driven parallel mechanism is presented. The mechanism
does not require actuation redundancy and it does not include a rigid-link translational mech-
anism: only cables are connected to the end-effector. Therefore, it retains the advantages of
cable-spool mechanisms while alleviating their drawbacks. Moreover, the two degrees of freedom
are decoupled in the mechanism.

Generally speaking, the stiffness of cable-driven parallel mechanisms is not as good as that
of link-driven mechanisms since cables are flexible elements, and critical vibrations might be in-
duced when large accelerations are performed. With redundant actuation, the stiffness can be
improved. The stiffness matrix and the natural frequency of general 6-DOF cable-driven parallel
manipulators is obtained in [91] and it is also shown that the transversal vibration of cables is
insignificant while the axial flexibility of cables is the most important. The stiffness of conven-
tional cable-based robots is studied in [77], where an approach to obtain the total stiffness matrix
and a set of sufficient conditions which ensure the manipulator stability are introduced. For most
cable-driven mechanisms, the cable mass is negligible. However, for very large manipulators with
a huge workspace, the cable mass cannot be neglected for the static and stiffness analysis [58,78].

In the early stages of the dynamic analysis of cable-driven parallel mechanisms, the dynamic
equations are compact since the cables are assumed to be massless and straight and the dynam-
ical characteristics of cables themselves are neglected [39, 87]. However, the dynamic model for
large cable-driven mechanisms considering the cable mass and the nonlinear dynamic equations
of the mechanism with time-varying length cables is obtained in [93]. The preliminary study of
the dynamics of a 6-DOF cable-driven parallel manipulator is presented in [84], where the inverse
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Figure 7.1: Schematic representation of the 2-DOF cable-loop slider driven parallel mechanism.

dynamics problem which is required for real-time control and the assessment of the rigidity char-
acteristics due to the inevitable cable elasticity have been studied.

The dynamics and stiffness of the proposed planar decoupled cable-loop-driven parallel mecha-
nism are analyzed here. This chapter is arranged as follows. First, the structure of the mechanism
is described. Then, the kinematic and static equations are given. Since the geometry of the
mechanism is simple, these equations are very compact. The effects of the cable compliance on
the stiffness of the mechanism are studied after the static analysis. Finally, the dynamics of the
mechanism are investigated. The dynamic model assuming that the cables are infinitely stiff and
the model considering the stiffness and the damping of the cables are both obtained.

7.1.1 Description of the Mechanism

The routings of the 2-DOF decoupled non-redundant cable-loop-driven parallel mechanism are
shown in Figure 7.1. Four sliders, S1, . . . , S4, are located on the edges of a rectangle. The mech-
anism is symmetric and the origin of the fixed reference frame is located at the centre of the
mechanism. Two cable loops are needed to control one DOF: the cable loop which is attached to
the actuator is referred to as the drive-routing, while the other loop is referred to as the assist-
routing. The mechanism has two such pairs of cable routings. The two cable loops represented
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by the dashed gray curves and the dashed black curves, which are attached to one another by
connectors C1 and C2, control the motion in the x direction. The cable loops represented with
solid lines control the motion in the y direction and are attached to one another by connectors C3

and C4. The gray cable loops are attached to the slider actuators Ai, i = 1, 2, respectively. The
motion of the actuators produces a displacement of the gray loops, which induces a motion of the
black loops and sliders, thereby producing the motion of the end-effector.

It is now assumed that the distances between the sliders S1 and S2, S3 and S4 are 2sy and 2sx
respectively while the reference position of the end-effector Po is po = [0, 0]T , the reference position
of the four sliding pulleys Sio, i = 1, . . . , 4, is s1o = [0, sy]T , s2o = [0,−sy]T , s3o = [sx, 0]T and
s4o = [−sx, 0]T . Based on the geometry of the mechanism and on the routings described above,
it can be readily observed that when the actuators Aj, j = 1, 2, are displaced by dj, j = 1, 2, the
position of Si and the distance |PSi|, i = 1, . . . , 4, have the following relationships:

s1 =
 d1

sy

 , s2 =
 d1

−sy

 , s3 =
 sx

d2

 , s4 =
 −sx

d2

 ,
and

|PS1| − |PoS1o| = −d2. (7.1)

|PS2| − |PoS2o| = d2, (7.2)

|PS3| − |PoS3o| = −d1, (7.3)

|PS4| − |PoS4o| = d1, (7.4)

Hence, the motion of the sliding actuators is directly reflected at the end-effector.

A demonstration model of the mechanism was built, as shown in Figure 7.2. Although the
preload in the mechanism is not vary large, the model can be used to demonstrate the general
principle of the mechanism.

7.1.2 Kinematic Analysis

According to the geometry of the mechanism and using Eqs.(7.1) — –(7.4), the kinematic equations
can easily be found. Suppose the position of the end-effector p = [x, y]T is known, then the
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Figure 7.2: Photograph of the demonstration model of the decoupled non-redundant cable-loop-
driven parallel mechanism.

displacements of the cable connectors lci, the displacements of the sliders lsi, i = 1, . . . 4, and the
displacements of the actuators di, i = 1, 2, can be found as

d1 = −lc1 = −lc2 = ls1 = ls2 = x, (7.5)

d2 = −lc3 = −lc4 = ls3 = ls4 = y. (7.6)

Differentiating Eq. (7.5) and Eq. (7.6) with respect to time, we have the velocity relationships as

ḋ1 = −l̇c1 = −l̇c2 = l̇s1 = l̇s2 = ẋ, (7.7)

ḋ2 = −l̇c3 = −l̇c4 = l̇s3 = l̇s4 = ẏ. (7.8)

Then, differentiating Eq. (7.7) and Eq. (7.8) again, the acceleration can be found as

d̈1 = −l̈c1 = −l̈c2 = l̈s1 = l̈s2 = ẍ, (7.9)

d̈2 = −l̈c3 = −l̈c4 = l̈s3 = l̈s4 = ÿ. (7.10)

From Eq. (7.7) and Eq. (7.8), the Jacobian matrix can be found as a 2× 2 identity matrix. That
is to say

ḋ = Jṗ. (7.11)

where

ḋ =
 ḋ1

ḋ2

 , ṗ =
 ẋ

ẏ

 , J =
 1 0

0 1

 .

Clearly, the kinematics of this mechanism are very simple and the two degrees of freedom are
completely decoupled. Also, the workspace of the mechanism is essentially equal to its footprint
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and there are no singularities. Finally, the mechanism does not require a rigid-link passive bridge
and trolley. Only cables are connected to the end-effector. Sliders located on the edges of the
workspace are used and actuation redundancy is eliminated while providing force closure every-
where in the workspace.

7.1.3 Static Analysis

Consider the mechanism in which we neglect the friction in the sliders and in the pulleys. When
the mechanism is in static equilibrium, if there is an external force fe = [fex, fey]T applied on the
end-effector, by virtue of the principle of virtual work, the actuators’ forces fai, i = 1, 2, should be

fa = −JT fe (7.12)

where fa = [fa1, fa2]T and fe = [fex, fey]T . Since the Jacobian matrix is equal to the identity
matrix, one simply has

fa = −fe. (7.13)

7.2 Stiffness analysis

Cables have a relatively low stiffness compared to rigid links, especially when a long span is used.
Therefore, it is important to investigate the global stiffness of the mechanism.

The following assumptions are made:

1. There is no friction in the mechanism,

2. The position of the actuator is not changed when there is an external force applied on the
end-effector,

3. The total cable length of each cable loop is assumed to be constant,

4. The cables between the sliders and the end-effector remain orthogonal.
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Figure 7.3: The forces on the cable-routing system for the y direction.

The second assumption arises from the fact that the stiffness of the cable transmission is inves-
tigated independently from the stiffness of the actuators, the third assumption is based on the
condition that the cables do not become slack and the last assumption is proposed since the de-
formations of the end-effector are small compared to the workspace.

Suppose the end-effector of the mechanism undergoes a displacemnet of δp = [δx, δy]T when
there is an external force of fe = [fex, fey]T applied at the end-effector under static conditions, that
is to say the stiffness relationship of the mechanism is

fe = Kδp. (7.14)

In other words, when there is an external force applied on the end-effector, a displacement δp will
appear at the end-effector which is caused by the deformation of the cables.

As the motion of the two cable-routing systems are decoupled, they can be analyzed separately.
For the y direction cable routing, the forces are shown in Figure 7.3.

It is assumed that the cable-routing system is symmetric. The lengths of the two segments
of the assist-routing is the same which is noted l2 and the stiffness of each segment is defined as
k2, the deformations of the cables are δy1 and δy2 respectively. For the drive-routing, the lengths
of the cable segments in the drive-routing A2C4, C4C3 and C3A2 are l11, l12 and l13 respectively.
Because the stiffness of the cable is related to the cable length, the corresponding stiffness of the
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cable segments can be defined as k
l11
, k
l12

and k
l13
, where k is the stiffness of the cable per unit length.

In order to maintain the cables in tension, a preload is applied to the cable loops. Assume that
the original deformation of the two segments of the assist-routing are δ2, then the preload of the
assist-routing is

fo2 = k2δ2. (7.15)

and the total length of the assist-routing is 2(l2 + δ2). The original deformations for the three
segments in the drive-routing are noted δ11, δ12 and δ13 respectively, which produce a certain
preload fo1. Then, The preload of the drive-routing is

fo1 = k

l11
δ11 = k

l12
δ12 = k

l13
δ13.

The total length of the drive-routing is l1(1 + fo1
k

), where l1 = l11 + l12 + ll3.

For the assist-routing, the cable length does not vary with an external force, therefore

δy1 + δy2 = 0 (7.16)

where δy1 and δy2 are respectively the change of length for each half of the assist-routing. Using
Eq. (7.15), the cable forces of each segments are then

f1p = fo2 + k2δy1 = k2δ2 + k2δy1 (7.17)

f2p = fo2 + k2δy2 = k2δ2 − k2δy1 (7.18)

where f1p and f2p are the cable forces between the slider Si, i = 1, 2, and the end-effector P .
Because the cables have to be maintained in tension, the relationships of f1p > 0 and f2p > 0
should be satisfied. Based on Eq. (7.16) to Eq. (7.18), it can be shown that

−δ2 < δy1 < δ2 (7.19)

It can be seen that the maximum cable force of the assist-routing (constraint-routing) is 2fo2 =
2k2δ2.

For the drive-routing, the cable segments undergo deformations δl11, δl12 and δl13 respectively
when there is an external force fey in the y direction. Because the length of the cable routing is
constant, then we have

δl11 + δl12 + δl13 = 0 (7.20)
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The cable forces in the segments become

fy1 = fo1 + k

l11
δl11 = k

l11
(δ11 + δl11) (7.21)

fy2 = fo1 + k

l12
δl12 = k

l12
(δ12 + δl12) (7.22)

fy3 = fo1 + k

l13
δl13 = k

l13
(δ13 + δl13) (7.23)

where fyi, i = 1, 2, 3, are the cable forces in cable segments A2C4, C4C3 and C3A2 respectively.

When the mechanism is in static equilibrium, the free-body diagram of the end-effector leads
to

2f1p + fey = 2f2p (7.24)

which leads to
fey = 2(f2p − f1p) = 2(−k2δy1 + k2δy2) = −4k2δy1 (7.25)

and the deformations are
δy1 = −δy2 = − fey4k2

. (7.26)

The static equilibrium of the connectors C4 and C3 leads to

C4 : fy1 + f1p − fy2 − f2p = 0 (7.27)

C3 : fy2 + f1p − fy3 − f2p = 0 (7.28)

Combining Eq. (7.27) and Eq. (7.28) with Eq. (7.20) and rearranging, one obtains

Bδl1 = τ (7.29)

where δl1 =
[
δl11 δl12 δl13

]t
, τ =

[
0 fey

2k
fey
2k

]T
and

B =


1 1 1
1
l11

− 1
l12

0
0 1

l12
− 1
l13

 .
Then, the deformations of the cable segments in the drive-routing caused by the external force
can be expressed as

δl1 = Cτ = fey
2l1k


l11(l12 + 2l13)
l12(l13 − l11)
−l13(2l11 + l12)

 , (7.30)

where

C = 1
l1


l11 l11(l12 + l13) l11l13

l12 −l11l12 l12l13

l13 −l11l13 −l13(l11 + l12)

 .
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After finding all the deformations of the cable segments, the displacement of the end-effector
in the y direction can be calculated as

δy = 1
2(δl11 − δl13)−

1
2δy1 = −1

2δl12 −
1
2δy1 = fey

4l1k
l12(l11 + l13) + fey

8k2
. (7.31)

Then, the stiffness of the mechanism in the y direction is obtained as

ky = fey
δy

= 8k2l1k

2l12(l11 + l13)k2 + l1k
. (7.32)

As the cable segments have to be maintained in tension, the following relationships must be
satisfied:

δ2 + δy1 > 0, δ2 + δy2 > 0,

δ11 + δl11 > 0, δ12 + δl12 > 0, δ13 + δl13 > 0.

Based on the solution for the deformations, the above inequalities can be modified as

−4fo2 < fey < 4fo2, (7.33)

−2fo1(l11 + l12 + l13)
l12 + 2l13

< fey <
2fo1(l11 + l12 + l13)

2l11 + l12
. (7.34)

From the geometry of the mechanism shown in Figure 7.3, it can be observed that the length of
cable segment C4C3 is approximately the sum of the length of cable segments A1C4 and C3A2,
i.e., l12 = l11 + l13 and l1 = 2l12, then the deformation of the end-effector and the stiffness of the
mechanism in the y direction can be simplified to

δy = fey
8

(
l12

k
+ 1
k2

)
, (7.35)

ky = 8k2k

l12k2 + k
. (7.36)

and if the geometry of the mechanism is symmetric, i.e., l11 = l13, the relations between the preload
forces of the two cable loops and the external force become

−2fo1 < fey < 2fo1, −4fo2 < fey < 4fo2.

That is to say, the preload of the drive-routing is twice that of the assist-routing.

Based on the analysis presented in this section, the actuating force can be found as

fa2 = fy3 − fy1 = k(δl13

l13
− δl11

l11
) = −fey (7.37)
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which is consistent with the result of the static analysis.

If the cables in the assist-routing and the drive-routing have the same stiffness per unit length,
k, then the stiffness of one segment of the assist-routing can be written as

k2 = k

l2
. (7.38)

Substituting the latter relationship into Eqn. (7.36), one then obtains

ky = 8k
l12 + l2

. (7.39)

Hence, the stiffness of mechanism is smaller with a larger workspace. However, the cable stiffness
calculated using the lengths l12 and l2 is amplified by a factor of 8 by the mechanism, which
provides a very good global stiffness.

With the same method, the stiffness of the cable-routing that controls the motion along the x
direction can also be found. The results are equivalent to those obtained for the y direction.

7.2.1 Dynamic Analysis

Depending on the application, the effects of the compliance of the cable on the dynamic model
may be of interest. During the design process, the cables may be selected such that the stiffness of
the mechanism is sufficiently large. In that case, the inclusion of the cable stiffness in the dynamic
model will only increase the mathematical complexity and is not necessary. On the other hand, in
high-speed applications, it might be required to include the stiffness of the cables in the dynamic
model. In the following, the two situations will be studied separately. To obtain the dynamic
model, it is assumed that cables are massless and that friction is negligible. Also, the cables are
always under extension.

7.2.2 Dynamic Model Neglecting Cable Compliance

Using the Newton-Euler method, the dynamic equations of the connectors, the sliders, the actu-
ators and the end-effector can be obtained. Suppose the masses of the end-effector, the sliders,
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the connectors and the actuators are mp, ms, mc and ma respectively. The dynamic equations are
written in the following.

For the end-effector, one has

mpẍ = 2f3p − 2f4p + fex, (7.40)

mpÿ = 2f1p − 2f2p + fey, (7.41)

where fip, i = 1, . . . , 4, is the cable force between the slider Si and the end-effector P , i.e., the
cable forces in the assist loops. Referring to Figure 7.1, f1p and f2p are the forces in the solid black
loop, while f3p and f4p are the forces in the dashed black loop.

For the connectors Ci, i = 1, . . . , 4, one has

C1 : −mcẍ = f3p + fc1A1 − fc1s1 − f4p, (7.42)

C2 : −mcẍ = f3p + fc2s1 − fc2s2 − f4p, (7.43)

C3 : −mcÿ = f1p + fc3s3 − fc3A2 − f2p, (7.44)

C4 : −mcÿ = f1p + fc4s4 − fc4s3 − f2p, (7.45)

where fc2s1, fc2s2, fc1s1 and fc1A1 are respectively the cable forces on the dashed gray loop be-
tween the connector C2 and the slider S1, C2 and S2, C1 and S1, between C1 and the actuator
A1. Similarly, fc4s4, fc4s3, fc3s3 and fc3A2 are the cable forces in the solid gray loop between the
connector C4 and the slider S4, C4 and S3, C3 and S3, between the connector C3 and the actuator
A2, respectively.

For the sliders Si, i = 1, . . . , 4, we have

S1 : msẍ = fc2s1 − fc1s1, (7.46)

S2 : msẍ = fA1s2 − fc2s2, (7.47)

S3 : msÿ = fc3s3 − fc4s3, (7.48)

S4 : msÿ = fc4s4 − fA2s4, (7.49)

where fA1s2 and fA2s4 are the cable forces in the gray dashed cable segment A1S2 and the gray
solid cable segment A2S4 respectively.
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For the actuators Ai, i = 1, 2, one has

A1 : maẍ = fa1 + fc1A1 − fA1s2, (7.50)

A2 : maÿ = fa2 + fA2s4 − fc3A2, (7.51)

Eq. (7.40) and Eq. (7.41) can be rewritten as

f3p − f4p = 1
2(mpẍ− fex), (7.52)

f1p − f2p = 1
2(mpÿ − fey). (7.53)

Substituting Eq. (7.52) into Eq. (7.44) and Eq. (7.45), substituting Eq. (7.53) into Eq. (7.42) and
Eq. (7.43), one obtains

fc1A1 − fc1s1 = fc2s1 − fc2s2 = −(mc + 1
2mp)ẍ+ 1

2fex, (7.54)

fc3s3 − fc3A2 = fc4s4 − fc4s3 = −(mc + 1
2mp)ÿ + 1

2fey. (7.55)

Adding Eq. (7.46) with Eq. (7.47), Eq. (7.48) with Eq. (7.49), and substituting Eq. (7.54) and
Eq. (7.55) into them respectively, one has

fA1s2 − fc1A1 = (2ms + 2mc +mp)ẍ− fex, (7.56)

fc3A2 − fA2s4 = (2ms + 2mc +mp)ÿ − fey. (7.57)

Then, substituting Eq. (7.56) and Eq. (7.57) into Eq. (7.50) and Eq. (7.51) respectively, yields

fa1 = (ma + 2ms + 2mc +mp)ẍ− fex, (7.58)

fa2 = (ma + 2ms + 2mc +mp)ÿ − fey. (7.59)

The latter two equations can be combined as

Mp̈ = fa + fe, (7.60)

where

M =
 ma + 2ms + 2mc +mp 0

0 ma + 2ms + 2mc +mp

 .

Since the structure of the mechanism is designed to be decoupled, the dynamic equations are
also concise and decoupled.
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Figure 7.4: The positive directions and the stiffnesses, the dampings of the cable segments.

7.2.3 Dynamic Model Considering Cable Compliance

From the stiffness analysis, it can be observed that the motions in the x and y directions are
decoupled. Therefore, the vibrations in the x and y directions can be analyzed separately. In the
following, the y direction is used for the analysis.

Suppose the displacements of the connectors, sliders and actuator are yc4, yc3, ys4, ys4, ya2,
the velocities are ẏc4, ẏc3, ẏs4, ẏs3, ẏa2 and the accelerations are ÿc4, ÿc3, ÿs4, ÿs3, ÿa2 when the
end-effector undergoes a displacement, velocity and acceleration of y, ẏ and ÿ in the y direction.
The positive directions of motion are shown in Figure 7.4.

With the velocities and the displacements of the end-effector, the connectors, the sliders and
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the actuator, the cable forces of each cable segments can be written as

fs1p = fo2 + k2(yc4 + yc3 − y) + c2(ẏc4 + ẏc3 − ẏ), (7.61)

fs2p = fo2 − k2(yc4 + yc3 − y)− c2(ẏc4 + ẏc3 − ẏ), (7.62)

fA2s4 = fo1 + ky1(ys4 − ya2) + cy1(ẏs4 − ẏa2), (7.63)

fc4s4 = fo1 + ky2(yc4 − ys4) + cy2(ẏc4 − ẏs4), (7.64)

fc4s3 = fo1 + ky3(ys3 − yc4) + cy3(ẏs3 − ẏc4), (7.65)

fc3s3 = fo1 + ky4(yc3 − ys3) + cy4(ẏc3 − ẏs3), (7.66)

fc3A2 = fo1 + ky5(ya2 − yc3) + cy5(ẏa2 − ẏc3). (7.67)

where kyi, k2, cyi,and c2, i = 1, . . . , 5, are the stiffness and the dampings of the corresponding
cable segments as shown in Figure 7.4.

The dynamic equations for the end-effector, the connectors, the sliders can be found as

P : mpÿ = 2f1p − 2f2p, (7.68)

C4 : mcÿc4 = fc4s3 + f2p − f1p − fc4s4, (7.69)

C3 : mcÿc3 = fc3A2 + f2p − f1p − fc3s3, (7.70)

S4 : msÿs4 = fc4s4 − fA2s4, (7.71)

S3 : msÿs3 = fc3s3 − fc4s3. (7.72)

Substituting the cable forces into Eq. (7.68) to Eq. (7.72), we have

P : 4k2(yc4 + yc3 − y) + 4c2(ẏc4 + ẏc3 − ẏ)−mpÿ = 0, (7.73)

C4 :
(−ky3 − ky2 − 2k2)yc4 + ky3ys3 + ky2ys4 − 2k2yc3 + 2k2y

− (cy3 + cy2 + 2c2)ẏc4 + cy3ẏs3 + cy2ẏs4 − 2c2ẏc3 + 2c2ẏ −mcÿc4 = 0
(7.74)

C3 :
(−ky5 − ky4 − 2k2)yc3 + ky5ya2 + ky4ys3 − 2k2yc4 + 2k2y

− (cy5 + cy4 + 2c2)ẏc3 + cy5ẏa2 + cy4ẏs3 − 2c2ẏc4 + 2c2ẏ −mcÿc3 = 0
(7.75)

S4 :
(−ky2 − ky1)ys4 + ky2yc4 + ky1ya2

+ (−cy2 − cy1)ẏs4 + cy2ẏc4 + cy1ẏa2 −msÿs4 = 0
(7.76)

S3 :
(−ky4 − ky3)ys3 + ky4yc3 + ky3yc4

+ (−cy4 − cy3)ẏs3 + cy4ẏc3 + cy3ẏc4 −msÿs3 = 0
(7.77)

Then, the motions of the connectors, the sliders and the actuator can be determined using
the latter equations. The actuating force fa2 can be calculated using the dynamic equation of the
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actuator:
A2 : maÿa2 = fa2 + fa2s4 − fc3a2 (7.78)

That is to say, the actuating force is given by

fa2 = (−ky1 − ky5)ya2 + ky1ys4 + ky5yc3 + (−cy1 − cy5)ẏa2 + cy1ẏs4 + cy5ẏc3 −maÿa2. (7.79)

If the motion of the actuator and the actuating force are known, the motions of the end-effector,
the connectors, the sliders can also be solved using the equations derived above.

7.2.4 Simulation

7.2.4.1 Cables with Compliance and without Damping

Neglecting the damping in the cables, it is assumed that the motion of the end-effector in the
y direction is given by

y = ypo sin(ωt), ÿ = −ypoω2 sin(ωt). (7.80)

In the steady state, the motion of Ci, Si, i = 3, 4, A2 should also be a sine function without phase
difference. Hence, we can write the following:

ya2 = ya2o sin(ωt), ÿa2 = −ω2ya2o sin(ωt)

yc4 = yc4o sin(ωt), ÿc4 = −ω2yc4o sin(ωt)

yc3 = yc3o sin(ωt), ÿc3 = −ω2yc3o sin(ωt)

ys4 = ys4o sin(ωt), ÿs4 = −ω2ys4o sin(ωt)

ys3 = ys3o sin(ωt), ÿs3 = −ω2ys3o sin(ωt)

Then, Eq. (7.73) to Eq. (7.77) can be rewritten as

Dy = yd (7.81)

where

y =



ya2o

ys4o

yc4o

ys3o

yc3o


, yd = ypo



4k2 −mpω
2

−2k2

−2k2

0
0


, D =



dT1
dT2
dT3
dT4
dT5


,
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and

d1 =



0
0

4k2

0
4k2


, d2 =



0
ky2

−ky3 − ky2 − 2k2 +mcω
2

ky3

−2k2


, d3 =



ky5

0
−2k2

ky4

−ky5 − ky4 − 2k2 +mcω
2


,

d4 =



ky1

−ky2 − ky1 +msω
2

ky2

0
0


, d5 =



0
0
ky3

−ky4 − ky3 +msω
2

ky4


.

The amplitude of motion of the actuator, the sliders and the connectors can be calculated as

y = D−1yd. (7.82)

The required actuating force should be

fa2 =
[
(−ky1 − ky5)ya2o + ky1ys4o + ky5yc3o +maya2oω

2
]
sin(ωt). (7.83)

If the stiffness of the springs is large enough, the motions of the actuator, the connectors
and the sliders are almost the same for the given trajectory of the end-effector, as shown in
Figure 7.5. In order to have an intuitive impression of the corresponding motions of the ac-
tuator, the connectors and the sliders, it is assumed that the stiffness of the cable segments is
k2 = ky1 = ky5 = ky2 = ky4 = ky3 = 300N/m, which is much lower than the stiffness that can be
expected in practice. Then the plots for the displacements of Ci, Si, i = 3, 4, A2 are shown in
Figure 7.6 and the required actuating force is shown in Figure 7.7.

7.2.4.2 Cables with Compliance and Damping

If besides the compliance, the cables have significant damping, the displacement of the actuator,
the connectors and the sliders will include a phase shift. Suppose the motion of the end-effector is

y = ypo sin(ωt),

ẏ = ypoω cos(ωt),

ÿ = −ypoω2 sin(ωt).
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Figure 7.5: The motions of the masses in the mechanism (yp = sin(2ωt)m, the stiffness of all the
cable segments are 104N/m and the masses are mp = mc = ms = ma = 1Kg).
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The corresponding displacements of A2 and Ci, Si, i = 3, 4, are

ya2 = ya2o sin(ωt+ φa2),

ys4 = ys4o sin(ωt+ φs4),

yc4 = yc4o sin(ωt+ φc4),

ys3 = ys3o sin(ωt+ φs3),

yc3 = yc3o sin(ωt+ φc3).

where the five amplitudes and the five phases are the unknowns.

Substituting yc4 and yc3 into Eq. (7.73) and expanding the trigonometric functions, two equa-
tions are obtained for the coefficients for sin(ωt) and cos(ωt). That is to say

−4c2ωSc4 + 4k2Cc4 − 4c2ωSc3 + 4k2Cc3 = 4k2ypo −mpω
2ypo

4k2Sc4 + 4c2ωCc4 + 4k2Sc3 + 4c2ωCc3 = 4c2ωypo

where Sc4 = yc4o sinφc4, Cc4 = yc4o cosφc4, Sc3 = yc3o sinφc3 and Cc3 = yc3o cosφc3. Using the same
approach, eight other equations can be built. Assembling these ten equations, one obtains

[
Ms Mc

]  vs
vc

 =
 us

uc

 , (7.84)

where

vs =



ya2o sinφa2
yc4o sinφc4
yc3o sinφc3
ys4o sinφs4
ys3o sinφs3


, vc =



ya2o cosφa2
yc4o cosφc4
yc3o cosφc3
ys4o cosφs4
ys3o cosφs3


,

us =



−mpypoω
2 + 4k2ypo

−2k2ypo

−2k2ypo

0
0


, uc =



4c2ωypo
−2c2ωypo
−2c2ωypo

0
0


,

Ms =


mT

s1

mT
s2
...

mT
s10,

 , Mc =


mT

c1

mT
c2
...

mT
c10,

 ,
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and

ms1 = −mc2 = ω



0
−4c2
−4c2

0
0


, ms2 = mc1 =



0
4k2

4k2

0
0


,
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
.

Then, the ten unknowns can be solved for. From Eq. (7.84), vectors vs and vc can be obtained
and the amplitude and the phase for the actuator, the connectors and the sliders can be found.
Taking A2 as an example, one has

ya2o =
√
v2
s1 + v2

c1, φs2 = arctan(vs1, vc1),

where vs1 and vc1 are the first element of vector vs and vc respectively. With ya2, ys4 and yc3, the
required actuating force can be obtained using Eq. (7.79).
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Figure 7.8: The motions of the masses in the mechanism when cables have compliance and damp-
ing.

0 0.5 1 1.5 2
−1000

−500

0

500

1000

Time(s)

f s2
(N

)

Figure 7.9: The required actuating force.



151

In order to see the influence of the damping and compared with Figure 7.6, it is assumed that
the trajectory of the end-effector in the y direction is yp = sin(2πt)m, the stiffness of the cable seg-
ments is k2 = kyi = 300N/m, the damping of the cable segments is c2 = cyi = 1Ns/m, i = 1, . . . , 5,
and the masses are mp = mc = ms = ma = 1kg. Then the plots for the displacements of Ci, Si,
i = 3, 4, and A2 are shown in Figure 7.8. The required actuating force is shown in Figure 7.9.

7.3 Conclusion

A novel structure of 2-DOF decoupled cable-loop slider-driven parallel mechanism is introduced
in this chapter. The displacement in two directions can be controlled separately by the combined
cable-routings. The kinematic and static equations of this mechanism are very simple because of
the decoupling. The stiffness of the mechanism is analyzed: it can be observed that the mechanism
has a excellent stiffness. If the cable compliance is neglected in the dynamic analysis, the dynamic
equations are also simple. Considering the compliance and the damping of the cables, though the
dynamic equations are complex, the motion of the actuator, the sliders and the connectors and
the required actuating force can be found.
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Chapter 8

Conclusions

8.1 Summary and Contributions of the Thesis

In order to avoid the cable-spool system and eliminate actuation redundancy in cable-driven par-
allel mechanisms, the concept of using cable loops in the cable-driven parallel mechanisms has
been proposed in this thesis. Several architectures of cable-loop mechanisms are developed and
the basic studies for these mechanisms are given. Variations that improve the properties of the
mechanisms are proposed gradually. First, the cable-spool system is replaced with a cable-loop
slider-driven system: the motion of the end-effector can be controlled by the displacement of the
slider. However, the mechanism is redundantly actuated. Then, springs are introduced in the
cable loops. The mechanisms eliminate actuation redundancy since the force closure conditions
can be established by the compliance of the springs. The characteristics of the mechanisms, for
example the workspace and the force capabilities, are influenced by the parameters of the springs.
Finally, the planar decoupled non-redundant cable-loop-driven parallel mechanism is presented.
The two degrees of freedom of the mechanism are decoupled and only two actuators are needed
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to control the motion. The mechanism does not require actuation redundancy and it does not
include a rigid-link translational mechanism or the compliance provided by springs. Therefore, it
retains the advantages of cable-spool mechanisms while alleviating their drawbacks.

The redundantly actuated planar cable-loop driven mechanisms proposed in Chapter 2 is in-
tended to avoid the cable-spool system. By replacing the cable and spool arrangement with closed
cable loops which are free to move around a set of pulleys, the difficulties of measuring the ex-
tension of the cables are alleviated. The inverse kinematics, the Jacobian matrices and the static
equations for these mechanisms are obtained. The workspace of the mechanisms are also studied.
Since the position of the end-effector is the intersection of several ellipses, the boundary of the
force-closed workspace is determined from geometric reasoning. Compared with the surface of the
polygon determined by the fixed pulleys, the workspace of the mechanism is quite large. It is
shown that the concept of cable loop can be used in cable-driven parallel mechanisms.

Planar and spatial spring-loaded cable-loop-driven parallel mechanisms are proposed subse-
quently. By attaching springs to the cable loops, the cable-loop-driven mechanisms require only
N actuators to control N -DOF motion. The spring-loaded cable-loop models are first applied
to planar mechanisms. From the workspace analysis, it can be observed that the mechanism in
which the compliance is symmetric on both sides of the actuator has better characterics than the
non-symmetric mechanism in which the compliance is just on one side of the actuator. There-
fore, the mechanism with symmetric compliance is extended to a spatial mechanism. The inverse
kinematic equations and the static equations for these mechanisms are given. It is shown that
the mechanisms have significantly large workspaces with proper springs. It is observed that the
spring-loaded mechanisms have force capabilities that are not as good as those of the conventional
cable-driven mechanisms with the same geometries since there are fewer actuators. Nevertheless,
the analysis of the force capabilities of the mechanisms show that the spring-loaded cable-loop-
driven parallel mechanisms can provide very good force capabilities while being more efficient and
cost-effective. It should be noticed that the minimum cable force has a significant impact on the
spring-loaded mechanisms due to the coupled compliance on each side of the actuators. Then,
it is essential to minimise the friction in the practical design. The natural frequencies and the
corresponding ratio of the amplitudes for these two mechanisms are also found. They can provide
an estimation of the acceleration boundary which guarantees that the mechanisms do not undergo
undesirable vibrations and that the cables do not become slack.

The actuation redundancy is replaced with passive redundancy realized by springs in spring-
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loaded mechanisms. However, the requirement of using extension springs limits their force ca-
pabilities. Therefore, a planar decoupled non-redundant cable-loop-driven parallel mechanism is
proposed. The mechanism does not require the use of a bridge and trolley structure: only cables
are connected to the end-effector. The displacements in two directions can be controlled sepa-
rately by combined cable-routings. The kinematic and static equations of this mechanism are very
simple due to the simple geometric design. The workspace is essentially equal to the footprint
of the mechanism and there are not singularities. The mechanism has an excellent stiffness. If
the cable compliance is neglected in the dynamic analysis, the dynamic equations are very sim-
ple. Considering the compliance and the damping of the cables, a more complex model is obtained.

The mechanisms proposed in this thesis have many kinds of architectures. However, for all of
them, motion is realized with cable loops. The objectives of avoiding the cable-spool systems and
eliminating actuation redundancy are achieved.

8.2 Directions for Future Work

Many cable-loop-driven parallel mechanisms are proposed in this thesis. It can be seen that the
mechanisms can complete the tasks of displacing the end-effector in a planar or spatial space.
However, it is difficult to find mechanisms which can produce torques at the end-effector. It was
intended to find a 6-DOF spring-loaded cable-loop-driven mechanism and a 3-DOF decoupled
non-redundant cable-loop-driven parallel mechanism. However, such architectures could not be
found. Perhaps such mechanisms can be developed in the future.

Due to the geometry of the mechanisms, almost all the equations contain many different square
roots which have the variables associated with the end-effectors’ position as their denominators.
The analysis for such equations is difficult, since derivations using polar coordinates or spherical
coordinates makes the expressions become even more complex. Alternative mathematical frame-
works could be investigated in order to reduce the mathematical complexity and provide insight.

Simplifying assumptions are used for the analysis. Therefore, the dynamic equations for the
planar and spatial spring-loaded cable-loop-driven mechanisms are simplified models which only
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consider the mass of the actuators and the end-effector. More complete and accurate models
could be established in the future. Also, the introduction of friction terms in the models could be
important for some applications.

The architectures proposed in this thesis avoid the cable-spool system and may lead to better
accuracy. In the future, the spring-loaded cable-loop-driven mechanisms can be used in situations
for which the force capabilities are not an important and the mechanisms need to be more eco-
nomically viable.
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Appendix A

Inequalities for all Cable Forces of the
Planar Mechanism Considering the

External Force

Since the cable forces fai, fbi, i = 1, 2, should be positive within the workspace, using the cable
force equations, the following inequalities can be found

(ysb2 − ysa2)fex − (xsb2 − xsa2)fey < fB1, (A.1)

−(ysb1 − ysa1)fex + (xsb1 − xsa1)fey < fB2, (A.2)

(ysa2 − ysb2)fex − (xsa2 − xsb2)fey < fA1, (A.3)

−(ysa1 − ysb1)fex + (xsa1 − xsb1)fey < fA2, (A.4)

where xsai, ysai, xsbi, ysbi are the corresponding components of vectors sai, sbi, i = 1, 2, and

fB1 =
{
k

8 [xsa1(na1 + nb1) + xsa2(na2 + nb2)] + fo
2 (xsa1 + xsa2)

}
(ysb2 − ysa2)

−
{
k

8 [ysa1(na1 + nb1) + ysa2(na2 + nb2)] + fo
2 (ysa1 + ysa2)

}
(xsb2 − xsa2),
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fex

fey fbi

fai

O

O

Figure A.1: Linear relationships between external force and cable forces.

fB2 = −
{
k

8 [xsa1(na1 + nb1) + xsa2(na2 + nb2)] + fo
2 (xsa1 + xsa2)

}
(ysb1 − ysa1)

+
{
k

8 [ysa1(na1 + nb1) + ysa2(na2 + nb2)] + fo
2 (ysa1 + ysa2)

}
(xsb1 − xsa1),

fA1 =
{
k

8 [xsb1(na1 + nb1) + xsb2(na2 + nb2)] + fo
2 (xsb1 + xsb2)

}
(ysa2 − ysb2)

−
{
k

8 [ysb1(na1 + nb1) + ysb2(na2 + nb2)] + fo
2 (ysb1 + ysb2)

}
(xsa2 − xsb2),

fA2 = −
{
k

8 [xsb1(na1 + nb1) + xsb2(na2 + nb2)] + fo
2 (xsb1 + xsb2)

}
(ysa1 − ysb1)

+
{
k

8 [ysb1(na1 + nb1) + ysb2(na2 + nb2)] + fo
2 (ysb1 + ysb2)

}
(xsa1 − xsb1).

Suppose that the external force applied on the end-effector is |fex| ≤ a, |fey| ≤ b(a > 0,
b > 0). For a given position of the end-effector, the external force and the cable forces have a
linear relationship shown in Figure A.1. All the vertices of the intersection of fbi and fai should
be in the first quadrant if the end-effector is within the workspace. So the workspace can be found
by checking the four following conditions (1) fex = a and fey = b, (2) fex = −a and fey = b, (3)
fex = −a and fey = −b, (4) fex = a and fey = −b.
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A.1 fo 6= 0, k = 0 and fe 6= 0

When the springs are constant force springs, the four cable force equations can be written as

∆ · fa1 = fax(ysa2 − ysb2)− fay(xsa2 − xsb2)

= fex(ysa2 − ysb2)− fey(xsa2 − xsb2)

− 1
2fo(xsb1ysa2 − xsb1ysb2 + xsb2ysa2 − xsa2ysb1 + xsb2ysb1 − xsa2ysb2)

(A.5)

∆ · fb1 = fbx(ysb2 − ysa2)− fby(xsb2 − xsa2)

= fex(ysb2 − ysa2)− fey(xsb2 − xsa2)

− 1
2fo(xsa1ysb2 − xsa1ysa2 + xsa2ysb2 − xsb2ysa1 + xsa2ysa1 − xsb2ysa2)

(A.6)

∆ · fa2 = −fax(ysa1 − ysb1) + fay(xsa1 − xsb1)

= fex(ysb1 − ysa1) + fey(xsa1 − xsb1)

− 1
2fo(xsb2ysb1 − xsb1ysa1 − xsb2ysa1 + xsa1ysb1 + xsa1ysb2 − xsb1ysb2)

(A.7)

∆ · fb2 = −fbx(ysb1 − ysa1) + fby(xsb1 − xsa1)

= fex(ysa1 − ysb1) + fey(xsb1 − xsa1)

− 1
2fo(xsa2ysa1 − xsa1ysb1 − xsa2ysb1 + xsb1ysa1 + xsb1ysa2 − xsa1ysa2)

(A.8)

As stated in Chapter 3, ∆ is always negative within the rectangle formed by A1A2B1B2. Since
the four cable forces should be positive, the workspace is the region within which Eqs. (A.5) to
(A.8) are negative.

• For fa1, since ysa2 − ysb2 is negative and −(xsa22 − xsb22) is positive, it can be seen that the
worst situation is fex < 0 and fey > 0 from Eq. (A.5);

• For fb1, since ysb22 − ysa22 is positive and −(xsb22 − xsa22) is negative, it can be seen that the
worst situation is fex > 0 and fey < 0 from Eq. (A.6);

• For fa2, since ysb1−ysa12 and xsa12−xsb12 are positive, it can be seen that the worst situation
is fex > 0 and fey > 0 from Eq. (A.7);
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• For fb2, since ysa12−ysb12 and xsb12−xsa12 are negative, it can be seen that the worst situation
is fex < 0 and fey < 0 from Eq. (A.8).

Assuming the external force space is |fex| ≤ kfefo, |fey| ≤ kfefo, then the four inequalities
should be satisfied within the workspace:

fa1 : kfe

[
(x+ y)

√
B12(

√
B22 −

√
A22) + (xb22 + yb22)

√
B12(

√
B22 +

√
A22)

]
− yb22(x+ xb22)

√
B22 + (−yb22x+ xb22y)

√
B12 + xb22(y − yb22)

√
A22 ≤ 0

(A.9)

fa2 : kfe

[
(x− y)

√
B22(

√
A12 −

√
B12) + (xb22 + yb22)

√
B22(

√
A12 +

√
B12)

]
+ xb22(y − yb22)

√
A12 + (yb22x+ xb22y)

√
B22 + yb22(x− xb22)

√
B12 ≤ 0

(A.10)

fb1 : kfe

[
(x+ y)

√
A12(

√
B22 −

√
A22) + (xb22 + yb22)

√
A12(

√
A22 +

√
B22)

]
+ yb22(x− xb22)

√
A22 + (yb22x− xb22y)

√
A12 − xb22(y + yb22)

√
B22 ≤ 0

(A.11)

fb2 : kfe

[
(x− y)

√
A22(

√
A12 −

√
B12) + (xb22 + yb22)

√
A22(

√
A12 +

√
B12)

]
− xb22(y + yb22)

√
B12 − (yb22x+ xb22y)

√
A22 − yb22(x+ xb22)

√
A12 ≤ 0

(A.12)

where Ai2 = (xai2 − x)2 + (yai2 − y)2, Bi2 = (xbi2 − x)2 + (ybi2 − y)2, i = 1, 2.

In order to find the boundary point on the diagonals, assume that the quadrilateral formed
by the four fixed pulleys is a square, that is to say xb2 = yb2. From the simulation presented in
Chapter 3, it can be seen that fa2 and fb2 determine the workspace boundary on the diagonal
x = y and fa1 and fb1 determine the workspace boundary on the opposite diagonal x = −y.
Substituting y = x, y = −x into Eqs. (A.10) and (A.11) respectively, they can be written as

2
√

2kfe
√
x2 + x2

b22 −
√
x2 + x2

b22 + x = 0. (A.13)

Substituting y = x, y = −x into Eqs. (A.12) and (A.9) respectively, they can be written as

2
√

2kfe
√
x2 + x2

b22 −
√
x2 + x2

b22 − x = 0 (A.14)
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A.2 fo 6= 0, k 6= 0 and fe 6= 0

If the springs in the mechanism have non zero stiffness, the cable force equations become very
complicated. In order to simplify the analysis, suppose the rectangle is square with the half side
length a unit.

1. For fa1, let y = −x, fex = −kfef0 and fey = kfef0, we obtain

f0

(
2
√

2kfe√
x2 + 1

− 1√
x2 + 1

− x

1 + x2

)
−
√

2
2 k

x(
√
x2 + 1− 1)
x2 + 1 ≤ 0. (A.15)

2. For fa2, let y = x, fex = kfef0 and fey = kfef0, we obtain

f0

(
2
√

2kfe√
x2 + 1

− 1√
x2 + 1

+ x

1 + x2

)
+
√

2
2 k

x(
√
x2 + 1− 1)
x2 + 1 ≤ 0. (A.16)

3. For fb1, let y = −x, fex = kfef0 and fey = −kfef0, we get the same inequality as Eq. (A.16).

4. For fb2, let y = x, fex = −kfef0 and fey = −kfef0, we get the same inequality as Eq. (A.15).
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Appendix B

Determinants of the Matrices Ai and Bi

for the Spatial Mechanism

B.1 fo 6= 0, k = 0 and fe = 0

fbe = 1
2fo



a+ x

Xa

+ x

Ya
+ x

Za
y

Xa

+ a+ y

Ya
+ y

Za
z

Xa

+ z

Ya
+ a+ z

Za

 , (B.1)

where
Xa = |PA1| =

√
(a+ x)2 + y2 + z2, Xb = |PB1| =

√
(a− x)2 + y2 + z2,

Ya = |PA2| =
√
x2 + (a+ y)2 + z2, Yb = |PB2| =

√
x2 + (a− y)2 + z2,

Za = |PA3| =
√
x2 + y2 + (a+ z)2, Zb = |PB3| =

√
x2 + y2 + (a− z)2.
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Then, the determinants of Bi, i = 1, 2, 3, are

det(B1)fo = foa
2

2XaYaYbZaZb
[(x+ a)(Ya + Yb)(Za + Zb)− y(Ya − Yb)(Za + Zb)

−z(Ya + Yb)(Za − Zb) + 2xXa(Ya + Yb + Za + Zb)] ,
(B.2)

det(B2)fo = foa
2

2XaXbYaZaZb
[(y + a)(Xa +Xb)(Za + Zb)− x(Xa −Xb)(Za + Zb)

−z(Xa +Xb)(Za − Zb) + 2yYa(Xa +Xb + Za + Zb)] ,
(B.3)

det(B3)fo = foa
2

2XaXbYaYbZa
[(z + a)(Xa +Xb)(Ya + Yb)− x(Xa −Xb)(Ya + Yb)

−y(Xa +Xb)(Ya − Yb) + 2zZa(Xa +Xb + Ya + Yb)] .
(B.4)

fae = 1
2fo



x− a
Xb

+ x

Yb
+ x

Zb
y

Xb

+ y − a
Yb

+ y

Zb
z

Xb

+ z

Yb
+ z − a

Zb

 . (B.5)

The determinants of matrices Ai, i = 1, 2, 3, are

det(A1)fo = − foa
2

2XbYaYbZaZb
[(a− x)(Ya + Yb)(Za + Zb)− y(Ya − Yb)(Za + Zb)

−z(Ya + Yb)(Za − Zb)− 2xXb(Ya + Yb + Za + Zb)] ,
(B.6)

det(A2)fo = − foa
2

2XaXbYbZaZb
[(a− y)(Xa +Xb)(Za + Zb)− x(Xa −Xb)(Za + Zb)

−z(Xa +Xb)(Za − Zb)− 2yYb(Xa +Xb + Za + Zb)] ,
(B.7)

det(A3)fo = − foa
2

2XaXbYaYbZb
[(a− z)(Xa +Xb)(Ya + Yb)− x(Xa −Xb)(Ya + Yb)

−y(Xa +Xb)(Ya − Yb)− 2zZb(Xa +Xb + Ya + Yb)] .
(B.8)

Using the spherical coordinates (α, β, r), the position of the end-effector is

x = r sin β cosα, y = r sin β sinα, z = r cos β. (B.9)
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For a certain direction, the workspace boundary defined by r can been found by the cable force
equations. The workspace boundary for different ranges of α and β can be determined by the
corresponding cable force which is listed in the following:

fa1 : α ∈
[
0, π4

]⋃[
7π
4 , 2π

]
, β ∈

[
π

4 ,
3π
4

]
,

fa2 : α ∈
[
π

4 ,
3π
4

]
, β ∈

[
π

4 ,
3π
4

]
,

fa3 : α ∈ [0, 2π] , β ∈
[
0, π4

]
fb1 : α ∈

[3π
4 ,

5π
4

]
, β ∈

[
π

4 ,
3π
4

]
,

fb2 : α ∈
[
5π
4 ,

7π
4

]
, β ∈

[
π

4 ,
3π
4

]
,

fb3 : α ∈ [0, 2π] , β ∈
[3π

4 , π
]
.

B.2 fo = 0, k 6= 0 and fe = 0

When fo = 0, k 6= 0 and fe = 0, fbe and fae are

fbe = k

8


a+ 3x+ a+ x

Xa

(Xb − 2a) + x

Ya
(Yb − 2a) + x

Za
(Zb − 2a)

a+ 3y + y

Xa

(Xb − 2a) + a+ y

Ya
(Yb − 2a) + y

Za
(Zb − 2a)

a+ 3z + z

Xa

(Xb − 2a) + z

Ya
(Yb − 2a) + a+ z

Za
(Zb − 2a)

 , (B.10)

fae = k

8


3x− a+ x− a

Xb

(Xa − 2a) + x

Yb
(Ya − 2a) + x

Zb
(Za − 2a)

3y − a+ y

Xb

(Xa − 2a) + y − a
Yb

(Ya − 2a) + y

Zb
(Za − 2a)

3z − a+ z

Xb

(Xa − 2a) + z

Yb
(Ya − 2a) + z − a

Zb
(Za − 2a)

 . (B.11)

In this situation, the determinant of matrices Bi and Ai, i = 1, 2, 3, are

det(B1)k = ka2

8XaYaYbZaZb
[a(Xa +Xb)(Ya + Yb)(Za + Zb) + x(5Xa +Xb)(Ya + Yb)

(Za + Zb)− y(Xa +Xb)(Ya − Yb)(Za + Zb)− z(Xa +Xb)(Ya + Yb)(Za − Zb)

− 2a(x+ a)(Ya + Yb)(Za + Zb) + 2ay(Ya − Yb)(Za + Zb)

+2az(Ya + Yb)(Za − Zb)− 4axXa(Ya + Yb + Za + Zb)] ,

(B.12)
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det(B2)k = ka2

8XaXbYaZaZb
[a(Xa +Xb)(Ya + Yb)(Za + Zb)− x(Xa −Xb)(Ya + Yb)

(Za + Zb) + y(Xa +Xb)(5Ya + Yb)(Za + Zb)− z(Xa +Xb)(Ya + Yb)(Za − Zb)

+ 2ax(Xa −Xb)(Za + Zb)− 2a(y + a)(Xa +Xb)(Za + Zb)

+2az(Xa +Xb)(Za − Zb)− 4ayYa(Xa +Xb + Za + Zb)] ,

(B.13)

det(B3)k = ka2

8XaXbYaYbZa
[a(Xa +Xb)(Ya + Yb)(Za + Zb)− x(Xa −Xb)(Ya + Yb)

(Za + Zb)− y(Xa +Xb)(Ya − Yb)(Za + Zb) + z(Xa +Xb)(Ya + Yb)(5Za + Zb)

+ 2ax(Xa −Xb)(Ya + Yb) + 2ay(Xa +Xb)(Ya − Yb)

−2a(z + a)(Xa +Xb)(Ya + Yb)− 4azZa(Xa +Xb + Ya + Yb)] ,

(B.14)

det(A1)k = − ka2

8XbYaYbZaZb
[a(Xa +Xb)(Ya + Yb)(Za + Zb)− x(Xa + 5Xb)(Ya + Yb)

(Za + Zb)− y(Xa +Xb)(Ya − Yb)(Za + Zb)− z(Xa +Xb)(Ya + Yb)(Za − Zb)

− 2a(a− x)(Ya + Yb)(Za + Zb) + 2ay(Ya − Yb)(Za + Zb)

+2az(Ya + Yb)(Za − Zb) + 4axXb(Ya + Yb + Za + Zb)] ,

(B.15)

det(A2)k = − ka2

8XaXbYbZaZb
[a(Xa +Xb)(Ya + Yb)(Za + Zb)− x(Xa −Xb)(Ya + Yb)

(Za + Zb)− y(Xa +Xb)(Ya + 5Yb)(Za + Zb)− z(Xa +Xb)(Ya + Yb)(Za − Zb)

+ 2ax(Xa −Xb)(Za + Zb)− 2a(a− y)(Xa +Xb)(Za + Zb)

+2az(Xa +Xb)(Za − Zb) + 4ayYa(Xa +Xb + Za + Zb)] ,

(B.16)

det(A3)k = − ka2

8XaXbYaYbZb
[a(Xa +Xb)(Ya + Yb)(Za + Zb)− x(Xa −Xb)(Ya + Yb)

(Za + Zb)− y(Xa +Xb)(Ya − Yb)(Za + Zb)− z(Xa +Xb)(Ya + Yb)(Za + 5Zb)

+ 2ay(Xa +Xb)(Ya − Yb) + 2ax(Xa −Xb)(Ya + Yb)

−2a(a− z)(Xa +Xb)(Ya + Yb) + 4azZb(Xa +Xb + Ya + Yb)] .

(B.17)
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B.3 fo = 0, k = 0 and fe 6= 0

When fo = 0, k = 0 and fe 6= 0, we have fbe = fae = fe. The determinants of Bi and Ai, i = 1, 2, 3,
are

det(B1)fe = a

YaYbZaZb
[fxa(Ya + Yb)(Za + Zb)

+(fyx− fxy)(Ya − Yb)(Za + Zb) + (fzx− fxz)(Ya + Yb)(Za − Zb)] ,
(B.18)

det(B2)fe = a

XaXbZaZb
[fya(Xa +Xb)(Za + Zb)

+(fxy − fyx)(Xa −Xb)(Za + Zb) + (fzy − fyz)(Xa +Xb)(Za − Zb)] ,
(B.19)

det(B3)fe = a

XaXbYaYb
[fza(Xa +Xb)(Ya + Yb)

+(fxz − fzx)(Xa −Xb)(Ya + Yb) + (fyz − fzy)(Xa +Xb)(Ya − Yb)] ,
(B.20)

and
det(Ai)fe = det(Bi)fe , i = 1, 2, 3. (B.21)


