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Abstract

The primary objective of this dissertation is to demonstrate the incontestable effective-

ness of geometric methods to the design and analysis of parallel mechanisms. To this

end, it is shown how geometry brings deep insight into the principles of motion, much

better than algebraic or numerical methods. Furthermore, this thesis is expected to

prove that geometry develops creativity and intuition, abilities much needed for the

proper synthesis and study of complex mechanisms.

The extensive use of basic geometry in this thesis uncovers the unseen properties

of well-known parallel mechanisms. In addition, common misconceptions are examined

and refuted. Through detailed comparisons and explanations, it is attempted to foster

the reliance on the geometric approach. Finally, two promising research directions are

identified and recommended.

This thesis is divided into three main parts. While the progress through these parts

goes from the plane to three and then six degrees of freedom in space, the complexity

does not follow the same advance. On the other hand, the focus goes from the general

survey of all 3-DOF planar parallel mechanisms, to the analysis of a class of 3-DOF

spatial parallel mechanisms, to the study of a single architecture of a 6-DOF parallel

mechanism.

Firstly, the singularities of all 3-DOF planar parallel mechanisms are fully analysed.

The velocity equations are derived by using both screw theory and differentiation with

respect to time. For this purpose, a considerable attention is paid to explaining the

not-so-well-known use of screw theory in the plane. Once these velocity equations are

set up, an exhaustive study on the various types of singularities of these mechanisms
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is performed. Several new designs are identified, having few or no singularities at all.

Finally, a new research path emerges through an in-depth discussion on the problem of

workspace segmentation, working modes, and assembly modes.

Next, the investigation leaves the plane and starts with a comprehensive discourse on

the complex issue of orientation representation via the relatively unknown Tilt & Tor-

sion angles. Numerous advantages of these angles are shown. Then, using the Tilt & Tor-

sion angles, several 3-DOF spatial parallel mechanisms with one translational and two

rotational degrees of freedom are analysed. The relationships between the three con-

strained and three feasible degrees of freedom are derived and it is shown clearly that

the mechanisms belong to a special class of constrained mechanisms that have zero

torsion of the platform.

Finally, the focus is shifted to the kinematic analysis of 6-DOF six-legged spatial

parallel mechanisms with base-mounted revolute actuators and fixed-length struts. In

the first section, a geometric method for the computation of the edges of the constant-

orientation workspace is elaborated. In the second section, another geometric algorithm

is described for the computation of the constant-orientation workspace. This new

algorithm computes not only the edges of the workspace but its cross-sections as well.

In the last section, the study is limited to a special parallel mechanism of this class, with

pair-wise coincident spherical joints and six centres of the universal joints moving along

the same circular track. This particular design allows the illustration in the spatial case

of the problem of workspace segmentation by working modes. Geometric algorithms are

proposed for the computation of the horizontal cross-sections of the singularity surface

and constant-orientation workspace.

Ilian Alexandrov Bonev Clément M. Gosselin
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Résumé

Le principal objectif de cette dissertation est de démontrer l’efficacité incontestable des

méthodes géométriques pour la conception et l’analyse des mécanismes parallèles à plu-

sieurs degrés de liberté (ddl). Dans ce but, ce travail montre comment la géométrie per-

met d’analyser en profondeur les principes du mouvement, bien mieux que les méthodes

algébriques ou numériques. En outre, cette thèse montre que l’utilisation de la géométrie

développe la créativité et l’intuition, des aptitudes nécessaires pour la synthèse appro-

priée et l’étude des mécanismes complexes.

L’utilisation des outils géométriques de base dans cet ouvrage nous fait découvrir

de nouvelles propriétés sur des mécanismes parallèles pourtant bien connus. En outre,

de fausses idées sont examinées et réfutées. Par des comparaisons et des explications, le

choix de l’approche géométrique est renforcé. Finalement, deux directions prometteuses

de recherche sont identifiées et recommandées.

Cette thèse est divisée en trois parties principales, couvrant d’abord l’analyse de

mécanismes plans, puis de mécanismes spatiaux à trois et six ddl. Il est à noter que

la complexité de l’étude ne suit pas nécessairement le même ordre que la complexité

des mécanismes. D’autre part, l’attention va de l’étude générale de tous les mécanismes

parallèles plans à 3 ddl, à l’analyse d’une classe des mécanismes parallèles spatiaux à 3

ddl, à une architecture simple d’un mécanisme parallèle à 6 ddl.

Premièrement, l’ensemble des singularités de tous les mécanismes parallèles plans à

3 ddl sont analysées. Les équations de vitesse sont dérivées en employant la théorie des

visseurs et la différentiation par rapport au temps. À cette fin, l’utilisation de la théorie

des visseurs dans le plan est expliquée de façon approfondie. Une fois les équations de

iii



vitesse dérivées, une étude approfondie est réalisée sur les divers types de singularités

de ces mécanismes. Plusieurs nouvelles géometries ayant peu ou aucune singularité

sont identifiées. Finalement, une nouvelle direction de recherche est identifiée à travers

une discussion sur les problèmes de segmentation de l’espace de travail, des modes de

fonctionnement et des modes d’assemblage.

Par la suite, la recherche sort du plan et commence par une revue complète sur

la question de représentation de l’orientation avec les angles relativement inconnus

Tilt & Torsion. De nombreux avantages de ces angles sont montrés. Puis, en utilisant

les angles Tilt & Torsion, plusieurs mécanismes parallèles spatiaux avec un degré de

liberté en translation et deux en rotation sont analysés. Les relations entre les trois

degrés de liberté contraints et les trois degrés de liberté non-contraints sont dérivées

et il est clairement montré que ces mécanismes appartiennent à une classe spéciale des

mécanismes contraints qui ont une torsion nulle.

Finalement, l’étude est portée sur l’analyse cinématique des mécanismes parallèles

spatiaux à 6 ddl avec six pattes et des actionneurs rotöıdes montés sur la base. Dans la

première section, une méthode géométrique pour le calcul des arêtes de l’espace de tra-

vail à orientation constante est élaborée. Dans la deuxième section, un autre algorithme

géométrique est décrit pour le calcul de l’espace de travail à orientation constante. Ce

nouvel algorithme calcule non seulement les arêtes de l’espace de travail mais également

les coupes. Dans la dernière section, l’étude est consacrée à un mécanisme parallèle

spécial de cette classe, dont les liaisons rotules sont cöıncidentes par paires et les six

centres des joints de cardans se déplacent le long de la même voie circulaire. Cette

géometrie particulière permet d’illustrer, dans le cas spatial, le problème de segmenta-

tion de l’espace de travail en modes de fonctionnement. Des algorithmes géométriques

sont proposés pour le calcul des coupes horizontales de la surface de singularité et de

l’espace de travail à orientation constante.

Ilian Alexandrov Bonev Clément M. Gosselin
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Résumé iii

Foreword v

Contents vii

List of Tables xi

List of Figures xii

1 Introduction 1

1.1 Kinematic Geometry of Mechanisms . . . . . . . . . . . . . . . . . . . . 1

1.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Objectives and Contributions of the Thesis . . . . . . . . . . . . . . . . 6

1.4 Overview of the Results . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Singularity Analysis of 3-DOF Planar Parallel Mechanisms 10

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Planar Instantaneous Kinematics via Screw Theory . . . . . . . . . . . 12

2.2.1 Screw Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.2 Planar Twists and Wrenches . . . . . . . . . . . . . . . . . . . . 12

2.3 Planar Instantaneous Kinematics of PPMs . . . . . . . . . . . . . . . . 14

2.3.1 The Input-Output Velocity Equation . . . . . . . . . . . . . . . 14

2.3.2 Possible Reciprocal Screws for PPMs . . . . . . . . . . . . . . . 15

2.3.3 Obtaining the Velocity Equation for Each PPM . . . . . . . . . 17

vii



2.3.4 Types of Singularities . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Singularity Analysis of PPMs . . . . . . . . . . . . . . . . . . . . . . . 19

2.4.1 Singularity Analysis of 3-RPR PPMs . . . . . . . . . . . . . . . 20

2.4.1.1 Solving the Inverse Kinematic Problem . . . . . . . . . 21

2.4.1.2 Obtaining the Velocity Equation . . . . . . . . . . . . 22

2.4.1.3 Obtaining the Singularity Loci . . . . . . . . . . . . . 23

2.4.1.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4.2 Singularity Analysis of 3-RPR PPMs . . . . . . . . . . . . . . . 26

2.4.2.1 Solving the Inverse Kinematic Problem . . . . . . . . . 26

2.4.2.2 Obtaining the Velocity Equation . . . . . . . . . . . . 27

2.4.2.3 Obtaining the Singularity Loci . . . . . . . . . . . . . 28

2.4.2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4.3 Singularity Analysis of 3-RRR PPMs . . . . . . . . . . . . . . . 31

2.4.3.1 Solving the Inverse Kinematic Problem . . . . . . . . . 32

2.4.3.2 Obtaining the Velocity Equation . . . . . . . . . . . . 32

2.4.3.3 Obtaining the Singularity Loci . . . . . . . . . . . . . 33

2.4.3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.4.4 Singularity Analysis of 3-RRR PPMs . . . . . . . . . . . . . . . 34

2.4.4.1 Solving the Inverse Kinematic Problem . . . . . . . . . 35

2.4.4.2 Obtaining the Velocity Equation . . . . . . . . . . . . 36

2.4.4.3 Obtaining the Singularity Loci . . . . . . . . . . . . . 37

2.4.4.4 3-RRR PPMs with Two Coincident Platform Joints . . 40

2.4.4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.4.5 Singularity Analysis of 3-PRR PPMs . . . . . . . . . . . . . . . 45

2.4.5.1 Solving the Inverse Kinematic Problem . . . . . . . . . 46

2.4.5.2 Obtaining the Velocity Equation . . . . . . . . . . . . 47

2.4.5.3 Obtaining the Singularity Loci . . . . . . . . . . . . . 48

2.4.5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.4.6 Singularity Analysis of 3-PRR PPMs . . . . . . . . . . . . . . . 50

2.4.6.1 Solving the Inverse Kinematic Problem . . . . . . . . . 50

2.4.6.2 Obtaining the Velocity Equation . . . . . . . . . . . . 50

2.4.6.3 Obtaining the Singularity Loci . . . . . . . . . . . . . 51

2.4.6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.4.7 Singularity Analysis of 3-RPP and 3-RPP PPMs . . . . . . . . 53

2.4.7.1 Solving the Inverse Kinematic Problem . . . . . . . . . 54

2.4.7.2 Obtaining the Velocity Equation . . . . . . . . . . . . 54

viii



2.4.7.3 Obtaining the Singularity Loci . . . . . . . . . . . . . 55

2.4.7.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.4.8 Singularity Analysis of 3-RRP PPMs . . . . . . . . . . . . . . . 56

2.4.8.1 Solving the Inverse Kinematic Problem . . . . . . . . . 57

2.4.8.2 Obtaining the Velocity Equation . . . . . . . . . . . . 58

2.4.8.3 Obtaining the Singularity Loci . . . . . . . . . . . . . 59

2.4.8.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . 61

2.4.9 Singularity Analysis of 3-PRP PPMs . . . . . . . . . . . . . . . 61

2.4.9.1 Solving the Inverse Kinematic Problem . . . . . . . . . 61

2.4.9.2 Obtaining the Velocity Equation . . . . . . . . . . . . 63

2.4.9.3 Obtaining the Singularity Loci . . . . . . . . . . . . . 64

2.4.9.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . 65

2.5 Further Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

2.5.1 Parameterisation and Polynomial Derivation . . . . . . . . . . . 66

2.5.2 PPMs with Mixed Legs . . . . . . . . . . . . . . . . . . . . . . . 67

2.5.3 The Missing “Type 3” Singularities . . . . . . . . . . . . . . . . 68

2.5.4 PPMs with Parallelograms . . . . . . . . . . . . . . . . . . . . . 68

2.5.5 Workspace Segmentation, Working Modes, and Assembly Modes 69

2.5.5.1 Workspace Segmentation Upon Mechanical Limits . . 70

2.5.5.2 Optimising Trajectory Through Change of Working Mode 71

2.5.5.3 Practical Implications of Changing a Working Mode . 72

2.5.5.4 Changing Working Modes Leads to Type 2 Singularities? 73

3 Constraint Analysis of 3-DOF Spatial Parallel Mechanisms 75

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.2 The Tilt-and-Torsion Angles . . . . . . . . . . . . . . . . . . . . . . . . 78

3.3 Representations of the Orientation Workspace . . . . . . . . . . . . . . 81

3.4 Zero-Torsion 3-DOF Spatial Parallel Mechanisms . . . . . . . . . . . . 84

3.4.1 3-RSR 3-DOF Spatial Parallel Mechanisms . . . . . . . . . . . . 86

3.4.2 3-[PP]S 3-DOF Spatial Parallel Mechanisms . . . . . . . . . . . 88

3.4.3 3-PSP 3-DOF Spatial Parallel Mechanisms . . . . . . . . . . . . 93

4 Kinematic Analysis of 6-DOF 6-RUS Parallel Mechanisms 98

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.2 Computing the Edges of the Constant-Orientation Workspace of General

6-RUS Parallel Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . 103

4.2.1 Solving the Inverse Kinematic Problem . . . . . . . . . . . . . . 104

ix



4.2.2 Geometric Modelling of the Constant-Orientation Workspace . . 106

4.2.2.1 Distal Link’s Length . . . . . . . . . . . . . . . . . . . 107

4.2.2.2 Leg Singularity . . . . . . . . . . . . . . . . . . . . . . 107

4.2.2.3 Mechanical Limits on the Passive Joints . . . . . . . . 107

4.2.2.4 Proximal Link’s Length . . . . . . . . . . . . . . . . . 109

4.2.3 Intersecting a Cyclide with a Circle . . . . . . . . . . . . . . . . 110

4.2.3.1 Algebraic Approach . . . . . . . . . . . . . . . . . . . 111

4.2.3.2 Parametric Approach . . . . . . . . . . . . . . . . . . . 112

4.2.4 Implementation Procedure . . . . . . . . . . . . . . . . . . . . . 117

4.2.4.1 Procedure for the Vertex Spaces . . . . . . . . . . . . . 117

4.2.4.2 Procedure for the Constant-Orientation Workspace . . 118

4.2.5 Examples and Discussion . . . . . . . . . . . . . . . . . . . . . . 119

4.3 Computing the Horizontal Cross-Sections of the Constant-Orientation

Workspace of General 6-RUS Parallel Mechanisms . . . . . . . . . . . . 122

4.3.1 Algebraic Equation of a Toric Section . . . . . . . . . . . . . . . 124

4.3.2 Intersection Between two Toric Sections . . . . . . . . . . . . . 125

4.3.3 Polygonisation of the Toric Section . . . . . . . . . . . . . . . . 128

4.3.4 Intersection of All Six Polygonised Toric Sections . . . . . . . . 133

4.3.5 Examples and Discussion . . . . . . . . . . . . . . . . . . . . . . 135

4.4 Computing the Horizontal Cross-Sections of the Constant-Orientation

Workspace and Singularity Surface of the Rotobot . . . . . . . . . . . . 138

4.4.1 Singularity Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . 141

4.4.1.1 Type 1 Singularity Surfaces . . . . . . . . . . . . . . . 143

4.4.1.2 Type 2 Singularities . . . . . . . . . . . . . . . . . . . 144

4.4.2 Constant-Orientation Workspace . . . . . . . . . . . . . . . . . 147

4.4.2.1 Order of the U Joints Along the Track . . . . . . . . . 148

4.4.2.2 Geometric Model for the U Joint Interference . . . . . 150

4.4.2.3 Procedure for Computing the Workspace . . . . . . . . 153

4.4.3 Examples and Discussion . . . . . . . . . . . . . . . . . . . . . . 154

5 Conclusions 158

5.1 Summary and Contributions of the Thesis . . . . . . . . . . . . . . . . 160

5.2 Directions for Future Work . . . . . . . . . . . . . . . . . . . . . . . . . 162

5.2.1 Workspace Segmentation, Working Modes, and Assembly Modes 163

5.2.2 Zero-Torsion 3-DOF Spatial Parallel Mechanisms . . . . . . . . 164

Bibliography 166

x



List of Tables

2.1 All possible 3-DOF serial chains (legs). . . . . . . . . . . . . . . . . . . 11

4.1 Geometry of the 6-RUS parallel mechanism. . . . . . . . . . . . . . . . 119

xi



List of Figures

2.1 The basic 3-DOF PPMs with identical legs. . . . . . . . . . . . . . . . 11

2.2 Reciprocal screw for (a) two passive R joints and (b) one passive R joint

and one passive P joint. . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 (a) A 3-DOF PPM of type 3-RPR and (b) the two branches of a leg. . 21

2.4 Example for the singularity loci of a 3-RPR PPM. . . . . . . . . . . . . 25

2.5 (a) A 3-DOF PPM of type 3-RPR and (b) the two branches of a leg. . 27

2.6 Example for the singularity loci of a 3-RPR PPM with ` = 0. . . . . . 29

2.7 Example for the singularity loci of a 3-RPR PPM with ` 6= 0. . . . . . 30

2.8 (a) A 3-DOF PPM of type 3-RRR and (b) the two branches of a leg. . 31

2.9 (a) A 3-DOF PPM of type 3-RRR and (b) the two branches of a leg. . 35

2.10 Example for the singularity loci of a 3-RRR PPM with `1 = `2. . . . . 40

2.11 Example for the singularity loci of a 3-RRR PPM with `1 6= `2. . . . . 41

2.12 A special 3-RRR PPM with two coincident platform joints. . . . . . . . 42

2.13 Example for the singularity loci of a 3-RRR PPM with B1 ≡ B2. . . . . 44

2.14 A 3-DOF PPM of type 3-PRR. . . . . . . . . . . . . . . . . . . . . . . 46

2.15 Example for the singularity loci of a 3-PRR PPM. . . . . . . . . . . . . 48

2.16 A 3-DOF PPM of type 3-PRR. . . . . . . . . . . . . . . . . . . . . . . 50

2.17 A 3-DOF PPM of type 3-RPP or 3-RPP. . . . . . . . . . . . . . . . . . 53

2.18 A 3-DOF PPM of type 3-RRP. . . . . . . . . . . . . . . . . . . . . . . 57

2.19 Example for the singularity loci of a 3-RRP PPM. . . . . . . . . . . . . 60

2.20 A special 3-RRP PPM with two parallel P joints. . . . . . . . . . . . . 60

2.21 A 3-DOF PPM of type 3-PRP. . . . . . . . . . . . . . . . . . . . . . . 62

xii



2.22 The double triangular manipulator (a) at a nonsingular configuration

and (b) at a combined Type 1 and Type 2 singularity. . . . . . . . . . . 65

2.23 An example showing (a) a RPaR serial chain and (b) its kinematically

equivalent RRR chain. . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

2.24 Workspace segmentation by working modes in case of mechanical limits

on the active joints. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

2.25 Workspace segmentation by working modes for a special 3-RRR PPM. 71

2.26 Passing through a Type 1 singularity by (a) changing or (b) keeping the

branch index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

2.27 Workspace of a PRRRP PPM in (a) {+,−} and (b) {−,−} working

modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.1 The successive rotations that define the ZYZ Euler angles: (a) precession

and nutation, (b) spin. . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.2 The successive rotations that define the T&T angles: (a) tilt, (b) torsion. 80

3.3 Example for the orientation workspace of a 6-PUS parallel manipulator. 82

3.4 Example for the approximated projected orientation workspace. . . . . 83

3.5 The human eye is a zero-torsion spherical parallel mechanism actuated

by tendons (illustration courtesy of Patrick J. Lynch, Yale University

School of Medicine). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.6 (a) A 3-RSR 3-DOF spatial symmetrical parallel mechanism and (b) its

kinematic geometry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.7 Horizontal offset as function of orientation for 3-RSR mechanisms. . . . 87

3.8 (a) A 3-PRS 3-DOF spatial parallel mechanism and (b) the kinematic

geometry of a general 3-[PP]S parallel mechanism. . . . . . . . . . . . 88

3.9 Constraint singularities of a 3-[PP]S parallel mechanism. . . . . . . . . 91

3.10 Horizontal offset as function of orientation for 3-[PP]S mechanisms. . . 92

3.11 (a) A 3-PSP 3-DOF spatial parallel mechanism and (b) its kinematic

geometry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.12 Constraint singularities of a 3-PSP parallel mechanism. . . . . . . . . . 95

3.13 Horizontal offset as function of orientation for 3-PSP mechanisms. . . . 96

4.1 An example of a 6-RUS parallel kinematic machine (photo courtesy of

Prof. Yukio Takeda, Tokyo Institute of Technology). . . . . . . . . . . . 100

4.2 An example of a 6-RUS personal motion system (photo courtesy of Ser-

vos & Simulation, Inc.). . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.3 Leg i of a 6-RUS parallel mechanism. . . . . . . . . . . . . . . . . . . 104

xiii



4.4 Ranges of motion of the passive joints. . . . . . . . . . . . . . . . . . . 108

4.5 The allowable spherical region. . . . . . . . . . . . . . . . . . . . . . . . 109

4.6 Vertex space i. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.7 Intersection curve between two cyclides. . . . . . . . . . . . . . . . . . 111

4.8 (a) Tracing the cyclide and (b) several possible diametral sections. . . . 112

4.9 Intersection points between a cyclide and a circle. . . . . . . . . . . . . 114

4.10 Constant-orientation workspace for the reference orientation. . . . . . . 120

4.11 Constant-orientation workspace for φ = σ = 0◦ and θ = 10◦. . . . . . . 120

4.12 Constant-orientation workspace for φ = 50◦, θ = 25◦, and σ = 10◦. . . . 121

4.13 Cross-section of a torus. . . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.14 Cutaways of the three types of tori: (a) ring torus, (b) horn torus, and

(c) spindle torus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

4.15 Various cross-sections of a spindle torus. . . . . . . . . . . . . . . . . . 129

4.16 Examples of polygonisation of a toric section. . . . . . . . . . . . . . . 132

4.17 Example for the cross-section of the constant-orientation workspace show-

ing four distinct areas. . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

4.18 Example for the cross-section of the constant-orientation workspace hav-

ing a complex shape. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

4.19 Constant-orientation workspace for the reference orientation. . . . . . . 136

4.20 Constant-orientation workspace for φ = −150◦, θ = σ = 0◦. . . . . . . . 136

4.21 Constant-orientation workspace for (a) φ = θ = 0◦, σ = 25◦ and (b) φ =

σ = 0◦, θ = 30◦. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

4.22 CAD model of the Rotobot. . . . . . . . . . . . . . . . . . . . . . . . . . 138

4.23 Schematic and notation of the Rotobot. . . . . . . . . . . . . . . . . . . 139

4.24 The types of shapes of the singularity loci (bicircular quartic). . . . . . 147

4.25 Four valid arrangements of the U joint centres. . . . . . . . . . . . . . . 149

4.26 The lower half of a Bohemian dome surface. . . . . . . . . . . . . . . . 151

4.27 The lower halves of a Bohemian dome and the corresponding vertex spaces.152

4.28 Cross-sections of a Bohemian dome and the corresponding vertex spaces. 152

4.29 Constant-orientation workspace and singularity loci for a Rotobot design. 155

4.30 Constant-orientation workspace and singularity loci for a Rotobot design. 156

4.31 Constant-orientation workspace and singularity loci for a Rotobot design. 157

xiv



Chapter 1

Introduction

1.1 Kinematic Geometry of Mechanisms

The publication of Lagrange’s masterwork Mécanique Analytique in 1788 marked a new

analytic era in dynamics. Indeed, his revolutionary achievement was to transform the

study of rigid body movement into a branch of calculus. Prior to that, due to the

rudimentary development of analytic tools, mechanics was, perforce, a geometric art.

On ne trouvera point de figures dans cet ouvrage. Les méthodes que j’y

expose ne demandent ni constructions, ni raisonnements géométriques ou

mécaniques, mais seulement des opérations algébriques, assujetties à une

marche régulière et uniforme.1

1The reader will find no figures in this work. The methods which I set forth do not require either
constructions or geometrical or mechanical reasonings: but only algebraic operations, subject to a
regular and uniform rule of procedure. (Excerpt from Mécanique Analytique by J.L. Lagrange, 1788)

1
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Basic geometry was developed by the ancient Greeks and Euclid’s Elements was

written as early as 300 BC. The foundations of algebra as we know it, on the other

hand, were laid down much later—in the third century AD—and it was only after the

development of calculus in the 17th century that the analytical study of mechanics

became possible. The arguable preference of the algebraic over the geometric approach

is not an issue of the past. The recent advent of the computer brought a revolution in

mechanical design. While certainly the computer proved to be of great assistance to the

engineer, it has also had negative effects on the readiness to seek deeper understanding

of the principles of mechanical motion. This trend was quickly noticed and eloquently

described by the two most famous advocates of kinematic geometry:

With a computer at his elbow an engineer is often tempted to pay little if

any attention to principles, but rather plunge into a particular problem of

synthesis without considering either the fundamental theory or the criteria

that limit the performance of the devices he aims to produce. [...] But

more importantly [...] the geometric principles reveal a map of a terrain,

regions within which can then be explored in greater detail by analytical or

graphical methods... If the map shows that there are inaccessible regions

on the terrain, if it warns of hazards and dangerous frontiers, and if it can

guide the explorer along safe paths by which he can reach his goal quickly

with simple transport, then it should have some value. (Hunt, 1978)

The digital computer demands on the part of its machine-designing users

a ruthless competence in the algebraic processes needed for the manipula-

tion of mechanical information and its numerical analysis. It is accordingly

fashionable just now in the field of the theory of machines not so much to

denigrate as simply to ignore the main bases in actual mechanical motion

from which these algebraic processes grow. The main bases are essentially

pictorial, geometrical. They arise from natural philosophy. Students in

the mechanical sciences are becoming increasingly unable to contemplate

a piece of ordinary reality in machinery accordingly, and to extract from

that reality the geometric essence of it. It is of course true that without

algebra there can be no programme, no numerical data, and no numerical

result; but without an underlying geometry of the reality there can be no

applicable algebra. Without a diagram we cannot write an equation. But

without geometry we cannot even begin to draw. (Phillips, 1984)
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So well have Profs. Kenneth Hunt and Jack Phillips warned against the treacherous

trend of over-dependence on computer-based solutions. However, it was only recently

that the advances in computer algebra systems such as MapleTM and MathematicaTM

has critically worsened the situation. Students and even researchers are relying entirely

on such mathematical packages without even mastering these tricky systems. While

the powerful programs for symbolic computations are undoubtedly helpful in design,

they should be used only with complete understanding of their limitations (e.g., when

dealing with trigonometric expressions).

Paradoxically, it is exactly the development of the computer that has made geom-

etry important again. As computers and automatic control algorithms have become

more powerful, designs of increasingly complicated mechanisms have become practical.

If prior to that, analytic methods were sufficient for the study of mechanisms, this

was because these mechanisms were of outstanding simplicity. However, the complex

spatial machines of nowadays can no longer be completely analysed by purely ana-

lytic or numerical methods. While most researchers were occupied developing or using

computer-aided engineering tools, the two Australian professors, Kenneth Hunt and

Jack Phillips, were among the few who realised the need for a revival of the geometric

methods.

Kinematic geometry is the first and simplest segment of kinematics that deals ex-

clusively with displacements (Hunt, 1978). Time, as a variable, is usually not required

to be brought into account. Indeed, the use of screw theory eliminates that need com-

pletely. Yet for convenience, velocity may sometimes be introduced in the study of

the special, so-called singular, configurations of mechanisms. The main subject of this

thesis is the displacements of parallel mechanisms or the geometry of two relatively

moving bodies connected by a multitude of kinematic chains.

1.2 Preliminaries

The geometric approach used in this thesis as well as many of the results in it have a

wide application. Apart from parallel mechanisms, some results may also be applied

to the study of serial robots or biomechanical systems, to computer animation, and

to many other fields. However, we are addressing chiefly a specialised audience which

is already acquainted with the basic principles of parallel mechanisms. Therefore, one

will not find here any of the often seen pro/con comparisons between serial and parallel
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robots, nor a vague attempt for extensive literature review on parallel robots in general,

nor the commonly seen photos of flight simulators. The field of parallel robots, despite

the scarcity of specialised textbooks, is already too advanced to allow us to review it

on a couple of pages. If the reader is, however, looking for a quick free overview of

the field, we suggest a visit to the on-line Parallel Mechanisms Information Center at

http://www.parallemic.org.

What we are obliged to do is to present a brief overview of the terminology and

nomenclature used in this thesis together with the corresponding definitions. This

is because, unfortunately, there exist no well-established terminology in the field of

parallel mechanisms. Or, should we say parallel robots?

The most controversial term relates to the very focus of our thesis—the parallel

mechanism. A plethora of loose synonyms may be found in the literature such as Stewart

platform, Gough platform, hexapod, parallel robot, parallel manipulator, or closed-loop

kinematic chain. Sometimes, these terms are properly used based on their connota-

tions, but most frequently, they are not. For example, according to the terminology for

the Theory of Machines and Mechanisms defined by IFToMM, a robot is a mechanical

system under automatic control that performs operations such as handling and automa-

tion, while a kinematic chain is simply an assemblage of links and joints. This thesis

studies parallel kinematic chains which are sometimes actuated (as in Chapters 2 and

4), sometimes not (as in Chapter 3). However, we are always exclusively interested in

the relative motion between the mobile platform and the base. Hence, the use of the

term parallel mechanism throughout this thesis.

An n-DOF (n-degree-of-freedom) fully-parallel mechanism is composed of n inde-

pendent legs connecting the mobile platform to the base. Each of these legs is a serial

kinematic chain that hosts one and only one motor which actuates, directly or indi-

rectly, one of the joints. The variables that describe the actuated joints will be referred

to as the input variables or also as the active joint variables. Other authors refer to the

same variables as articular coordinates. On the other hand, the variables that describe

fully the pose of the mobile platform (the end-effector) will be referred to as output

variables. In other works, the same variables are referred to as generalised coordinates.

In our thesis, we will deal mainly with fully-parallel mechanisms, each having iden-

tical legs. Our investigation will cover 3-DOF planar fully-parallel mechanisms, 3-DOF

parallel mechanisms, and 6-DOF spatial fully-parallel mechanisms. Most of the results

may be extended to other parallel mechanisms as well. For example, in Chapter 3, we

http://www.parallemic.org
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do not even mention actuators—all results remain valid even if two actuators are used

per leg. In fact, a mechanism which is not covered by the above definition of fully-

parallel mechanism is sometimes called a hybrid mechanism. Anyway, we will loosely

use the term parallel mechanism to refer mostly to fully-parallel mechanisms but, in

some cases, to hybrid mechanisms as well.

The configuration of an n-DOF parallel mechanism is not simply defined by the

pose of its mobile platform. In general, for a given pose, i.e., for a given set of output

variables, there are several valid sets of input variables. The task of computing the

input variables out of the output variables will be referred to as the inverse kinematic

problem (IKP). The (typically) two solutions to the inverse kinematics of a single chain

will be identified by a branch index. The solutions to the inverse kinematics of the whole

parallel mechanism will be called the working modes (Chablat and Wenger, 1998) or

branch sets. When the inverse kinematic problem of a chain degenerates, we will talk

about a Type 1 singularity (Gosselin and Angeles, 1990). These singularities are also

referred to as Redundant Input (RI) singularities (Zlatanov et al., 1994b).

The configuration of an n-DOF parallel mechanism is not defined by its input vari-

ables either. The task of finding the valid set of output variables corresponding to a

set of input variables, referred to as the direct kinematic problem, has usually a mul-

titude of solutions, referred to as assembly modes. In fact, some mechanisms allow an

infinite number of solutions to their direct kinematics—a situation referred to as self

motion (Karger and Husty, 1996). More precisely, self motion means a finite mobility

from some points of the workspace, whereas the confusingly similar term architecture

singularity refers to a singularity in every point of the workspace (Ma and Angeles,

1992). When two, or more, of the assembly modes are coinciding, we say that there

is a Type 2 singularity (Gosselin and Angeles, 1990). These are also referred to as

Redundant Output (RO) singularities (Zlatanov et al., 1994b).

The configuration of an n-DOF parallel mechanism is not even defined by both the

input and output variables. Indeed, some mechanisms exist which will allow passive

motion even when the motors and the mobile platform are fixed. Such particular

singularities are called Redundant Passive Motion (RPM) singularities (Zlatanov et al.,

1994b). The configuration of a parallel mechanism is defined by all its joint variables.

The set of all feasible sets of joint variable values will be referred to as the configuration

space. When a singularity exists in the configuration space of a parallel mechanism, an

Increased Instantaneous Mobility (IIM) occurs (Zlatanov et al., 1994b). If the increased

mobility involves the platform, a constraint singularity appears (Zlatanov et al., 2002a).
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Most frequently, however, the user and the designer of a parallel mechanism will

be interested only in the set of feasible output variables which we will refer to as

the complete workspace. The complete workspace of a 6-DOF parallel manipulator

is a six-dimensional highly coupled entity which is practically impossible to visualise.

Therefore, the complete workspace of such mechanisms is studied only through its

different subsets. Most of these are also defined for parallel mechanisms with less than

six degrees of freedom.

The most common subset of the complete workspace is the constant-orientation

workspace (Merlet, 1994) which is the set of permissible positions for the centre of the

mobile platform while the platform is kept at a constant orientation. Conversely, the

orientation workspace is the set of permissible orientations of the mobile platform, while

the platform centre is held fixed.

We will use the standard character-based notation for the different architectures

of n-DOF fully-parallel mechanisms with identical legs. We will use the letters R,

P, U, and S to denote respectively revolute, prismatic, universal, and spherical joints.

When a joint is actuated, its corresponding letter will be underlined. Thus, the chain of

letters (one of which is underlined) designating the joints in a leg, ordered consecutively

from the base to the mobile platform, will be used to denote the leg. The sequence

of characters, preceded by “n−,” will be used to denote the architecture of an n-DOF

fully-parallel mechanism with n such legs.

Finally, Oxy or Oxyz will denote the base frame in a parallel mechanism, i.e., the

coordinate frame which is attached to the base. Similarly, Cx′y′ or Cx′y′z′ will always

be the mobile frame in a parallel mechanism, i.e., the coordinate frame which is attached

to the mobile platform. Further, we will usually denote the centres of the joints (in the

case of R, U, or S joints), by Oi, Ai, and Bi, starting from the base, where i will denote

the leg. In this thesis, i = 1, 2, 3, in Chapters 2 and 3, and i = 1, 2, . . . , 6, in Chapter 4.

Finally, we will often use the notation rAB to denote the vector connecting a point A

to a point B.

1.3 Objectives and Contributions of the Thesis

The principal goal of this thesis is to show how a geometric approach to the study

of the kinematics of well-known parallel mechanisms can reveal and correctly explain

numerous previously unknown properties. Our investigation was propelled by the desire
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to foster the reliance on such geometric methods. As we go through the kinematic

analysis of parallel mechanisms, we show how geometry brings an in-depth insight into

the very principles of motion, much better than the study of a mystifying algebraic

equation. If, after reading this thesis, a researcher starts visualising circles, spheres,

and tori, where earlier he or she saw nothing but quadratic or quartic equations, our

first goal would have been achieved.

Geometry develops creativity. It is not through the use of a computer algebra system

that one will come up with a new design or architecture. It is unlikely that a genetic

algorithm will automatically generate an innovative optimal design. It is intuition and

a confident grasp of the principles of motion that will lead to ingenious mechanical

solutions.

In trying to convert the reader to a more geometry-aware approach, we also show

concern for the weary readers of lengthy scientific papers. Numerous are the examples of

papers with arrays of lengthy equations or obscure graphical results, struggling with the

width limits of the common double-column format. The ancient Chinese proverb that

“a picture is worth a thousand words” is very true in the field of mechanical design.

Who would argue that a Bohemian dome is best understood through its geometric

definition and an intelligent cutaway drawing (Fig. 4.26, page 151) rather than via

studying its complicated algebraic equation? Who would dispute the advantage of a

nicely-shaped closed surface (Fig. 3.3, page 82) over a dispersed cloud of points for the

interpretation of the orientation workspace of a mechanism? It is geometry that allows

for the most compact description and interpretation of results.

The second objective of this thesis is to uncover the hidden properties of well-known

parallel mechanisms. Thus, our intention is to assist the numerous designers and users

of these popular architectures. It should be noted that the mechanisms that we analyse

were not specially chosen. We simply selected all 3-DOF planar parallel mechanisms,

several popular 3-DOF spatial parallel mechanisms with mixed degrees of freedom,

and the least-studied yet popular 6-DOF parallel mechanism with revolute actuators.

Dozens of prototypes exist for nearly all of the mechanisms that we study, many of

which are even commercially available.

While the revelations of our investigation would certainly not lead to product recalls,

they will help better understand and explain the properties of these mechanisms, and,

therefore, allow the optimal use of existing devices and the creation of new and improved

designs. For example, manufacturers can stop saying that their mechanisms have pitch
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and roll capabilities but instead simply state that there is no torsion. They can improve

their control systems in order to make better use of the already small workspace of a

parallel mechanism. They can adopt new designs with few or no singularities at all.

Our last aim is to suggest topics and avenues of further research. Two particular

directions are identified in this thesis and detailed in the last chapter. While these

directions call for a sophisticated immersion in the theory of kinematic geometry, the

fruits of the research will not only be of theoretical but also of practical value.

1.4 Overview of the Results

Our work is presented in three main parts—Chapters 2, 3, and 4. While the progress

through the chapters leads us from the planar movement to three, and then six degrees

of freedom in space, the complexity does not necessarily follow the same progression.

In fact, it is probably Chapter 3 that is easiest to read and understand. On the other

hand, we go from the general study of all 3-DOF planar parallel mechanisms, to the

analysis of a class of 3-DOF spatial parallel mechanisms, to a single architecture of a

6-DOF parallel mechanism.

In Chapter 2, we analyse the singularities of all 3-DOF planar parallel mechanisms.

The velocity equations for all mechanisms are derived by using both screw theory

and the conventional approach of differentiating with respect to time the constraint

equations governing the motion of the mechanism. Therefore, a substantial part of the

chapter is dedicated to explaining the use of screw theory in the plane. Once these

velocity equations are set up, an exhaustive study on the various types of singularities

of these mechanisms is performed. Several new designs are identified that have few or

no singularities at all. Chapter 2 ends with a detailed discussion on one of the proposed

directions for research—the problem of workspace segmentation, working modes, and

assembly modes. Several examples are given to illustrate these intricate concepts.

In Chapter 3, we leave the plane and start with a discussion on the problem of

orientation representation. We present a concise treatise on the relatively unknown

Tilt & Torsion angles to demonstrate their numerous advantages. Then, using these

angles, we analyse several 3-DOF spatial parallel mechanisms with one translational

and two rotational degrees of freedom. We derive the relationships between the three

constrained and three feasible degrees of freedom and show clearly that these mecha-

nisms belong to a special class of mechanisms with zero torsion of the mobile platform.
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In Chapter 4, we limit our investigation to the general 6-DOF 6-RUS parallel mech-

anism. In the first part of the chapter, we set up a geometric method for the computa-

tion of the edges of the constant-orientation workspace. Our method takes into account

the mechanical limits on the U joints. In the second part, we ignore those limits and

describe another geometric algorithm for the computation of the constant-orientation

workspace. This time, however, instead of computing only the edges, we also compute

the cross-sections of the workspace. In the final part of Chapter 4, we limit our study

to the special 6-RUS parallel mechanism with pair-wise coincident S joints and all six

centres of the U joints moving on the same circle. The Rotobot, as it is dubbed, allows

us to demonstrate once more the issue of workspace segmentation by working modes.

We propose geometric methods for the computation and representation of the hori-

zontal cross-sections of the singularity loci and constant-orientation workspace. One

interesting point relates to the astonishing geometric model of the constraint on the

circular order of the U joints.



Chapter 2

Singularity Analysis of 3-DOF

Planar Parallel Mechanisms

This chapter deals in an exhaustive way with the singularity analysis of all possible 3-DOF
planar parallel mechanisms with identical legs. The velocity equations are derived in both
the conventional manner, through differentiation of the inverse kinematic equations, and via
screw theory. For this purpose, planar screw theory is introduced in a rigorous manner.

For each mechanism, polynomial expressions for the singularities in the Cartesian space
are derived from the corresponding velocity equations. Then, for different designs, a plot is
produced of the singularity loci for a constant orientation of the mobile platform. Detailed
analyses of those loci are performed and numerous important observations are made.

Finally, some remarks are made, particularly on planar parallel mechanisms with mixed
legs, the missing “Type 3” singularities, and on planar parallel mechanisms with parallelo-
grams. To conclude the chapter, a greater attention is paid to workspace segmentation in the
presence of assembly modes and kinematically different working modes.

10
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2.1 Introduction

The direct kinematic problem has been studied in detail for all 3-DOF planar parallel

mechanisms (PPMs) (Merlet, 1996; Hayes, 1999). In a similar fashion, the singularity

configurations of all 3-DOF PPMs have been studied by Mohammadi Daniali et al.

(1995). However, the authors have only presented a general approach for setting up the

velocity equations and identifying all singular configurations, by dividing all PPMs into

two classes. This chapter, on the other hand, provides a detailed investigation of the

singular configurations and the singularity loci of each and every PPM. Such a detailed

study yields valuable theoretical insight into the kinematics of PPMs. In practice, the

presented results can be very useful in the selection of the optimal architecture for a

given task. Furthermore, we point out several novel designs with valuable properties.

Since we are interested only in 3-DOF fully-parallel planar mechanisms, each of the

three legs will be composed of one active and two passive joints. There are 21 3-DOF

serial chains (legs) in total (Table 2.1). Three of them (marked with ×) cannot yield

3-DOF PPMs since they lead to mechanisms with only one controllable DOF. There

are also eight pairs of symmetrical chains, where each pair leads to two kinematically

equivalent PPMs. Therefore, we can eliminate eight more chains (the ones marked

with ∼) which leaves us with only ten architectures to examine (Fig. 2.1).

RRR RPR RPP× PRR PRP PPR RRP

RRR RPR RPP PRR PRP× PPR∼ RRP∼

RRR∼ RPR∼ RPP∼ PRR∼ PRP∼ PPR× RRP∼

Table 2.1: All possible 3-DOF serial chains (legs).
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Figure 2.1: The basic 3-DOF PPMs with identical legs.
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2.2 Planar Instantaneous Kinematics

via Screw Theory

The conventional process of deriving the input-output velocity equation for a parallel

mechanism consists of differentiating the inverse kinematic equation. Generally, the

process is tedious and leads to possible parameterisation errors. A much better ap-

proach is the use of reciprocal screws. They provide a better geometrical insight into

the problem and allow the precise and complete description of singularity types.

2.2.1 Screw Methods

Singularity analysis using reciprocal screws has already been described in the literature

(Mohammed and Duffy, 1984; Kumar, 1992; Tsai, 1999; Zlatanov et al., 1994b). There

are, however, two subtler aspects of the method that are not widely known, but are

relevant to the analysis of planar parallel mechanisms.

Firstly, any screw-based approach needs to be modified when applied to mechanisms

with n < 6 DOFs. In such cases, it is desirable to treat the twists (instantaneous

motions) and wrenches (forces and moments) involved in the velocity and singularity

analysis as n-dimensional so that the matrices involved are n×n (Zlatanov et al., 1994b;

Hunt, 2000). Velocity analysis in such cases amounts to an n-dimensional version of

screw calculus. However, screws and reciprocal screws (i.e., twists and wrenches) have

different sets of n coordinates. Unlike the general 6-DOF case, screws and reciprocal

screws can no longer be thought of as elements of the same vector space. Three-

dimensional planar screws will be the focus of Section 2.2.2.

Secondly, for the analysis to remain valid in all configurations, it is important to

always find a maximal set of (independent) reciprocal screws. Otherwise, the method

can misinterpret or even fail to detect certain singularities (Zlatanov et al., 1994b).

That issue will be discussed in Section 2.3.1.

2.2.2 Planar Twists and Wrenches

We assume that for all admissible reference frames the origin as well as the x and

y axes are in the chosen plane of motion. For every given Cartesian frame in space

we associate a standard basis, {%x,%y,%z, τ x, τ y, τ z}, in the six-dimensional space of

twists, S. The elements of this basis are the three rotations about and three translations
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along the frame axes. The elements of S can be also interpreted as wrenches, the basis

vectors being the pure forces along and the moments about the coordinate axes. In

fact, wrenches comprise the dual vector space S∗, i.e., they are linear forms defined on

S. The action of a wrench on a twist is the instantaneous work rate contributed by

the wrench during the motion along the twist and defines the reciprocal screw product

of the underlying elements of S. When a wrench applies no power on a twist, their

reciprocal product is zero, and it is said that the two are reciprocal.

The coordinates of a twist in the standard basis will be denoted by ξ = [ωT ,vT ]T =

[ωx, ωy, ωz, vx, vy, vz]
T . When an element of S is seen as a wrench, its coordinates in the

standard basis are given by ζ = [fT ,mT ] = [fx, fy, fz,mx,my,mz]
T . As is customary in

the literature, we will use the term screw to refer to a normalised1 element of S, twist

or wrench (Hunt, 1978).

For planar mechanisms, all instantaneous motions (or twists) are part of the three-

dimensional screw system of instantaneous planar motion. The planar screw system is,

in fact, E = Span (%z, τ x, τ y). A planar twist will always have three of its coordinates,

ωx, ωy, vz, equal to zero. Hence, we will write the planar twists as three-dimensional

vectors, ξ = [ωz, vx, vy]
T .

The reciprocal screws used in singularity analysis are reciprocal to some but not all

joint twists. Physically, they represent wrenches which, when applied to the output

link can be resisted by (i.e., do no work on) the mechanism at certain conditions

(when some active joints are locked), but not always. In other words, these screws

never belong to the reciprocal system of the screw system of the mechanism twists.

Indeed, screws reciprocal to all mechanism twists would be of no interest. For planar

mechanisms, the reciprocal system, E⊥, is identical to E itself. Therefore, we can assume

that the reciprocal screws are all in a 3-system complementary to E , for example, in

W = Span (%x,%y, τ z). The elements of W are pure forces in the xy plane as well as the

pure moment about the z axis. Hence, we will write the wrenches as three-dimensional

vectors, ζ = [fx, fy,mz]
T .

Thus, the reciprocal product of a wrench ζ = [fT ,m]T = [fx, fy,m]T and a twist

ξ = [ω,vT ]T = [ω, vx, vy]
T is defined as:

ζ ◦ ξ = mω + fTv = mω + fxvx + fyvy . (2.1)

1A twist (or wrench) is normalised when its ω (or f) component is either (1) a unit vector or (2) a
zero vector while the v (or m) component is a unit vector.
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2.3 Planar Instantaneous Kinematics of PPMs

We will use the characters O, A, and B as superscripts to label the three joints in the

i-th leg (i = 1, 2, 3) starting from the base. When a joint is revolute, its character

index, with a subscript i, will also be used to denote the centre point of that joint, Oi,

Ai or Bi (see Figs. 2.3(a), 2.5(a), 2.8(a), 2.9(a), etc.). In addition, let Oxy and Cx′y′

be the base and platform frames, respectively.

2.3.1 The Input-Output Velocity Equation

The relationship between the instantaneous motion of the platform, the output twist

ξ = [ω, vx, vy]
T , and the nine joint rates θ̇J

i (J =O, A, B; i = 1, 2, 3) is given by the

twist equations of the legs

ξ = θ̇O
i ξO

i + θ̇A
i ξA

i + θ̇B
i ξB

i , i = 1, 2, 3. (2.2)

Equation (2.2) is a necessary and sufficient condition for the twist ξ and the joint

velocities θ̇J
i about the joint screws ξJ

i to be feasible at a given configuration.

To eliminate the passive joint velocities from Eq. (2.2) and obtain an input-output

velocity equation each of the three twist equations in Eq. (2.2) is multiplied (via the

reciprocal screw product) with a screw, ζi, reciprocal to all passive joint twists in the

i-th leg. This is a wrench which, if applied to the platform, can be resisted using only

the actuator of the leg. As a result, three scalar equations are obtained:

ζi ◦ ξ = ζi ◦ ξa
i θ̇a

i , i = 1, 2, 3, (2.3)

where the superscript a ∈ {O,A,B} denotes the active joint.

Equations (2.3) are equivalent to Eqs. (2.2) only if each three-dimensional reciprocal

wrench, ζi, is unique, i.e., if there are no other wrenches reciprocal to both passive-

joint screws in the i-th leg (Zlatanov et al., 1994b). This is so if, and only if, the two

passive-joint screws are linearly independent. If they are linearly dependent, there will

be two reciprocal wrenches, ζ ′i and ζ ′′i , and the corresponding input-output velocity

relationship in Eqs. (2.3) obtained from ζi will need to be replaced by two equations:

ζ ′i ◦ ξ = ζ ′i ◦ ξa
i θ̇a

i

ζ ′′i ◦ ξ = ζ ′′i ◦ ξa
i θ̇a

i ,
(2.4)
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which the input and output velocities must satisfy in addition to Eqs. (2.3) for the

remaining values of i. An accurate velocity and singularity analysis must take Eqs. (2.4)

into account.

Thus, for each of the PPMs, we expect to derive an input-output velocity equation

of the type  ζ1◦
ζ2◦
ζ3◦


 ω

vx

vy

=

 ζ1 ◦ ξa
1 0 0

0 ζ2 ◦ ξa
2 0

0 0 ζ3 ◦ ξa
3


 θ̇

a
1

θ̇a
2

θ̇a
3

 , (2.5)

where ζ◦ is a shorthand for the row vector obtained from ζ by writing the moment

before the force coordinates, ζ◦ = [m, fx, fy]. For some PPMs there will be configura-

tions where one or more of the equations will need to be replaced by pairs of equations

like Eqs. (2.4) in order to accurately describe the relationships between the input and

output velocities.

We will denote the matrices multiplying the platform twist and the active joint rates

with Z and Λ, respectively. Thus, for every configuration of every PPM, there is an

equation

Zξ = Λθ̇ , (2.6)

which completely describes the velocity kinematics of the mechanism. These two ma-

trices are usually referred to as Jacobian matrices although this is not correct in the

strictest mathematical sense. The matrices are 3× 3 almost everywhere in the configu-

ration space, but for some PPMs there are configurations where these matrices become

rectangular.

2.3.2 Possible Reciprocal Screws for PPMs

Let us consider the nature of the reciprocal screws ζi for the different PPMs. The screw

ζi will depend on the two passive joint screws in the i-th leg. We will also examine in

what cases there can be configurations where the reciprocal screws for the leg form a

2-system, Span (ζ ′i, ζ
′′
i ).

If the two passive joints are revolute, the reciprocal screw is a zero-pitch screw (i.e.,

a pure force) with an axis lying in the xy plane and intersecting the centres of the two
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ζi ζi

(a) (b)

Figure 2.2: Reciprocal screw for (a) two passive R joints and (b) one passive R joint

and one passive P joint.

passive R joints (Fig. 2.2). The two R-joint screws can become linearly dependent only

when the passive joints are the extremal joints of the leg (i.e., joint A is active) and the

constant link parameters have special values allowing the two joint centres to coincide.

More precisely, in an RRR chain this will mean that the distal and proximal links must

have equal lengths, while for an RPR leg a zero offset between the two R joints will be

needed. If the passive joint centres do coincide, there is a 2-system of reciprocal screws,

namely a planar pencil of zero-pitch screws lying in the xy plane and passing through

the common centre of the coinciding joints. As a result, the leg will generate two scalar

input-output equations, and the two reciprocal screws ζ ′i and ζ ′′i can be taken as any

two different forces through the common joint centre.

When one of the passive joints is revolute and the other is prismatic, they will

always remain linearly independent and the uniquely defined reciprocal screw is a pure

force passing through the R-joint centre and perpendicular to the direction of the P

joint (Fig. 2.2).

Finally, let us consider the possibility of two passive prismatic joints. The active

remaining joint must be revolute since a planar PPP chain would have only 2 DOFs

and cannot be used as a leg of a 3-DOF PPM. Let us assume that the leg is nonsingular

and hence the two passive-joint translations are distinct. Then, the unique reciprocal

screw is the pure moment about the z axis, i.e., τ z. Note that this wrench does not

depend on the actual configuration or the link parameters. Therefore, if all three legs

are with two passive P joints, then the three reciprocal screws ζi will be identical. This

means that the left-hand sides of the three Eqs. (2.3) will be identical and all three

rows of the matrix multiplying the output twist in Eq. (2.5) will be [1, 0, 0]. Hence,

the linear velocity of the platform can be arbitrary and cannot be controlled by the

actuators. If only two legs have a pair of passive P joints there will still be a pair of

equations which will not contain linear velocity terms and therefore there will be an

uncontrollable translation of the end-effector. We can conclude that PPMs with two
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passive prismatic joints in each of at least two legs cannot provide controlled 3-DOF

planar motion.

However, a PPM can have a single leg with two passive P joints and one active

R joint, since the linear motion will be controlled by the other two legs. If the leg is

PRP, it can become singular when the translations in the P joints become parallel.

Then, there will be a 2-system which, apart from τ z, includes all pure forces with axes

perpendicular to the common direction of the P joints. A brief discussion of mechanisms

with one RPR chain appears in Section 2.5.2.

Since our main attention is directed to PPMs with identical joint sequences in all

legs, we can conclude that at least one of the passive joints in a leg is revolute and

therefore that the reciprocal screws ζi are all pure forces in the plane of motion as

shown in Fig. 2.2.

2.3.3 Obtaining the Velocity Equation for Each PPM

When analysing a specific PPM one needs to find the reciprocal screws ζi as expressions

of the chosen joint and link parameters and substitute them in Eq. (2.5). Matrix Z will

depend on the choice of the reference frame. However, Λ will be coordinate invariant

due to the invariance of the reciprocal product.

Since all reciprocal screws are pure forces, their coordinates will be of the type

[fT
i ,mi]

T , where fi = [fxi, fyi]
T is a unit vector parallel to the force andmi is the moment

of the force axis about the platform centre. These quantities will be expressed as

functions of the chosen parameters. Namely, in this chapter, we will use as parameters

the position of the platform centre C defined by vector p = [x, y]T , and the orientation

of the platform φ which will be assumed to be constant for the description of the

singularity loci. These functions will be continuous everywhere except in those special

configurations, where two passive joint screws become linearly dependent. For those

configurations, the input-output velocity equation needs to be defined separately with

four (or more) equations rather than three. The two reciprocal wrenches corresponding

to the leg with coinciding passive revolute joints can be taken as the two forces parallel

to the x and y axes and passing through the coinciding joint centre Oi, (xOOi
, yOOi

):

ζ ′i = [1, 0, −yCBi
]T , ζ ′′i = [0, 1, xCBi

]T , (2.7)
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where xCBi
and yCBi

are the coordinates of the platform revolute joints in an instanta-

neous frame with origin at the mobile platform frame centre and axes parallel to those

of the base frame.

The reciprocal products on the diagonal of Λ will be:

ζi ◦ ξa
i = λi =

{
(ra

i × fi)z if joint a is revolute

fT
i πa

i if joint a is prismatic
(2.8)

where ra
i is any vector originating at the centre of the active R joint and ending on the

axis of ζi, and πa
i is the unit vector defining the direction of the active P joint. When

the active joint is revolute, the scalar λi is the moment of the reciprocal force with

respect to the centre of the active R joint. When the actuator is prismatic, λi is the

projection of the force onto the direction of the actuated translation. The expression

(·)z stands for the z component of the vector argument.

Thus, to write the input-output Eq. (2.6) for any configuration we need to express

the quantities fxi, fyi, mi, and λi as functions of x and y and the design parameters.

2.3.4 Types of Singularities

Equation (2.6), where the matrices Z and Λ are occasionally non-square, completely

describes the instantaneous kinematics of a parallel manipulator and hence can be used

to fully describe and classify the singular configurations of the mechanism (Zlatanov et

al., 1994b).

An input-output velocity equation was first used for the purposes of singularity

classification of parallel mechanisms by Gosselin and Angeles (1990). In that paper,

two main singularity types were defined. The first, or Type 1, occurs when matrix Λ

is singular, while Type 2 corresponds to configurations where Z is singular.

Later, Zlatanov et al. (1994a) introduced a more detailed classification (for arbitrary

mechanisms), based on six singularity types. The six types are: Redundant/Impossible

Input/Output (RI, II, RO, IO); Redundant Passive Motion (RPM); and Increased

Instantaneous Mobility (IIM). As it was shown in (Zlatanov et al., 1994b) (Theorems

2 and 3), the two basic types described in (Gosselin and Angeles, 1990) are, in fact,

the types RI and RO. Namely, Z is rank deficient (Type 2) if, and only if, there is

Redundant Output, i.e., an uncontrollable motion of the mobile platform when the
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actuators are locked; and matrix Λ is rank deficient (Type 1) if, and only if, there is

Redundant Input, i.e., a non-zero instantaneous motion in the active joints when the

mobile platform is fixed.

If we consider only “usual” configurations, where the matrices Z and Λ are square,

Type 1 singularities are identical with Impossible Output (IO) singularities, i.e., con-

figurations where the platform loses a degree of freedom because the serial chain of one

of the legs is singular (the three joint screws in the leg are linearly dependent).

In the special configurations where Z and Λ are not square, a leg is always singular

and IO (reduced freedom of the platform) is always present. However, this is not neces-

sarily accompanied by the rank deficiency of the rectangular matrix Λ or (equivalently)

by a Redundant Input motion. Instead, in such configurations, there always exists a

Redundant Passive Motion (RPM), i.e., a motion of the mechanism involving only the

passive joints and leaving the platform fixed. Moreover, RPM singularities will usually

be Impossible Input (II) singularities as well, which means that the input velocities

cannot be chosen independently.

For all configurations, a Type 2 (or RO) singularity, where an uncontrollable motion

of the platform occurs, is present if, and only if, the reciprocal screws ζi, possibly

including ζ ′i and ζ ′′i for some i, span at most a two-system rather than the whole

wrench space W = Span (%x,%y, τ z).

Any redundant motion (RO, RI, or RPM) can be either infinitesimal or finite. In

the latter case, it is said that there is a (finite) self motion of the manipulator (Karger

and Husty, 1996). When, the singularity is of Type 2 (RO), it is usually referred to as

an architecture singularity (Ma and Angeles, 1992). In general, whether the motion is

infinitesimal or finite cannot be detected by studying only Eq. (2.6) for a single given

configuration.

2.4 Singularity Analysis of PPMs

This section presents the principal part of the present chapter, namely, the results from

the singularity analysis of all ten PPMs. These results are obtained both by using the

powerful tools of planar screw theory described in the last two sections and through a

conventional approach. Two are the main contributions of the present section.
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Firstly, we derive the expressions for fi, mi, and λi as functions of x, y and the

design parameters. As we will see, this task is not always trivial. The derivation of

these expressions, in essence, amounts to solving the IKP. However, we do not always

need to explicitly obtain the IKP solution. In fact, for some PPMs with active P joints,

we will not even define the active joint variables.

Our second contribution is the study of the singularities for each PPM. The singu-

larity loci of Type 1 and Type 2 are determined for a constant orientation of the mobile

platform. Note that the derivation of the minimal-degree polynomial corresponding to

Type 2 singularity loci for some PPMs is a delicate task. Those derivations cannot be

performed simply by using a brute force approach with a computer algebra system such

as Maple. The most difficult derivation is for 3-RRR PPMs and was already presented

in a conference paper (Bonev and Gosselin, 2001). The singularity loci of Type 2 are

generally obtained by a discretisation method.

2.4.1 Singularity Analysis of 3-RPR PPMs

As a so-to-speak planar equivalent of the Stewart platform (a 6-UPS parallel mecha-

nism), the 3-RPR PPM is expected to share the same popularity. Yet, it is neither

the PPM with the simplest kinematics, as we will see later, nor the most practical

mechanism. Only a few 3-RPR PPMs have been constructed, and most usually, with

a linear base and platform (Satya et al., 1995; Du Plesssis et al., 2000). The reason

is that the mobile part of the manipulator hosts the heavy and cumbersome actuators

which increases the inertia of the mechanism and the link interference.

Referring to Fig. 2.3(a), we denote with Oi and Bi the centres of the base and

platform R joints, respectively. Point Ai is at the intersection of a line through Oi with

the direction of the P joint, and a line through Bi and perpendicular to the first line.

The directed distance between Oi and Ai along the direction of prismatic actuator i is

ρi, which is the active joint variable, and the length of AiBi is `, which is referred to as

the offset. As mentioned before, the components of the vectors rOOi
along OOi (which

are constant) and rCBi
along CBi (which are constant for a constant orientation) in the

base frame are (xOOi
, yOOi

) and (xCBi
, yCBi

), respectively. Without loss of generality,

we set xOO1 = yOO1 = xCB1 = yCB1 = yOO2 = 0. Finally, as defined before, the vector

along OC is designated by p, where p = [x, y]T .
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Figure 2.3: (a) A 3-DOF PPM of type 3-RPR and (b) the two branches of a leg.

2.4.1.1 Solving the Inverse Kinematic Problem

We will first consider the task of computing the input variables (ρ1, ρ2, ρ3) from the

set of output variables (x, y, φ), i.e., solve the inverse kinematic problem. Geometrically,

for the i-th leg, the problem can be seen as the one of finding the distance between

points Oi and Bi, and then computing the resultant value of ρA
i . We have

rOiBi
= p + rCBi

− rOOi
. (2.9)

Squaring both sides of the above equation gives us:

%2
i = rT

OiBi
(p + rCBi

− rOOi
) = x̄2

i + ȳ2
i , (2.10)

where %i is the distance between points Oi and Bi and

x̄i = x+ xCBi
− xOOi

, ȳi = y + yCBi
− yOOi

. (2.11)

On the other hand, from the rectangular triangle OiAiBi, we finally have:

ρi = δi

√
%2

i − `2 = δi

√
x̄2

i + ȳ2
i − `2 (2.12)
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where δi = ±1 is the so-called branch index. Indeed, as shown schematically on

Fig. 2.3(b), there are two solutions for the IKP of each leg—one with a positive and

one with a negative ρi. Hence, there is a total of eight solutions to the IKP of a 3-PRP

planar parallel mechanism. Each of these solutions is called a branch set or a working

mode (Chablat and Wenger, 1998). As we will see in this chapter and in Chapter 4, the

issue of working modes is of great importance. Yet, there have been only a few works

on this problem.

2.4.1.2 Obtaining the Velocity Equation

(a) Using differentiation

Differentiating Eq. (2.10) with respect to time, leads to

%i%̇i = rT
OiBi

(v + ωr⊥CBi
), (2.13)

where ω = φ̇ is the angular velocity of the mobile platform, v = [ẋ, ẏ]T is its linear

velocity, and r⊥CBi
= [−yCBi

, xCBi
]T . Substituting in the above equation rOiBi

= %if̂i,

where f̂i is a unit vector, and %i%̇i = ρiρ̇i, we obtain:[
f̂T
i r⊥CBi

, f̂T
i

] [ ω
v

]
=
ρi

%i

ρ̇i. (2.14)

Finally, we write the above equation in the Zξ = Λρ̇ matrix form: f̂T
1 r⊥CB1

f̂T
1

f̂T
2 r⊥CB2

f̂T
2

f̂T
3 r⊥CB3

f̂T
3

ξ = diag

(
ρ1

%1

,
ρ2

%2

,
ρ3

%3

)
ρ̇. (2.15)

(b) Using screw theory

If Oi 6≡ Bi, the reciprocal screws ζi, i = 1, 2, 3, are the screws passing through the two

R joints in each leg. Hence, their direction is along the already defined unit vector f̂i,

i.e., fi = f̂i, and their moment mi is:

mi = (rCBi
× fi)z = fT

i r⊥CBi
. (2.16)

If, again, Oi 6≡ Bi, the diagonal elements of Λ (see Eq. 2.8), are

λi = fT
i πi =

ρi

%i

, (2.17)
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where πi is the unit vector along the direction of the active P joint. Note that this

vector is always defined, even when ρi = 0.

The first studied mechanism, the 3-RPR PPM, does not clearly show the superi-

ority of the reciprocal screw method as for the length of computations. However, it

pinpoints one very common and representative mistake that is made when conventional

procedures are used to obtain the velocity equations in the very common ` = 0 case.

When ` = 0, one usually writes the matrix velocity equation as in what one obtains

by multiplying each side of Eq. (2.15) by the matrix diag(ρ1, ρ2, ρ3). Therefore, one may

wrongly assume that at ρi = 0, there is an ordinary Type 1 singularity. Sefrioui and

Gosselin (1995) have done this, but have omitted to notice that at such configurations,

their matrix Z will also be singular. So is this a Type 2 singularity as well? We will

discuss this problem at the end of Section 2.4.1.3.

2.4.1.3 Obtaining the Singularity Loci

As we already mentioned, Eq. (2.12) represents the solution to the IKP and has real

solutions only within the corresponding vertex space i which is the exterior of a circle

of radius `, centred at (xOOi
− xCBi

, yOOi
− yCBi

). Vertex space i is defined as the area

where the platform centre, C, is constrained to lie taking into account the kinematic

constraint imposed by only leg i and the constant orientation of the platform. Hence,

the form of each vertex space is constant for a given PPM, while its position changes

as a function of the platform orientation. Note that the constant-orientation workspace

(COW) is the intersection of all three vertex spaces.

Type 2 singularities occur when the three screw axes intersect or are parallel, i.e.,

when detZ = 0. This determinant consists of a fraction whose denominator is %1%2%3,

while its numerator is the following quadratic polynomial:

ℵ(x, y) = q1x
2 + q2xy + q3y

2 + q4x+ q5y, (2.18)

where

q1 = −yOO3yCB2 ,

q2 = −xOO2yCB3 + yOO3xCB2 + xOO3yCB2 ,

q3 = −xOO3xCB2 + xOO2xCB3 ,

q4 = −yCB2 (−xOO2yOO3 − xOO3yCB3 + yOO3xOO3 + xOO2yCB3) ,

q5 = −xOO3 (xOO2yCB2 − xOO2yCB3 + xCB2yCB3)

+xCB3 (yOO3xCB2 − xOO2yOO3 + xOO2yCB2) .
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Note that the quadratic polynomial does not depend on `. When ` 6= 0, %i can

never be zero and, hence, detZ = 0 exclusively along the entire conic defined by

ℵ(x, y), Eq. (2.18). The shape of that conic as function of the design parameters has

been already studied in detail (Sefrioui and Gosselin, 1995). We would only add the

interesting fact that the conic always passes through the three vertex space centres, i.e.,

ℵ(xOOi
− xCBi

, yOOi
− yCBi

) = 0. For some designs though, with congruent base and

platform, there is an orientation at which the PPM is singular for any position. Thus,

the singularity loci of Type 2 are those parts of the conic that are within all vertex

spaces or the whole constant-orientation workspace.

An algebraic curve has little utility in the development of a CAD software for

3-RPR PPMs. The only way to plot such a curve is by time-consuming discretisation

(Sefrioui and Gosselin, 1995). Fortunately, however, any quadratic (algebraic) curve

can be written in parametric form—a fact that seems to be often ignored in robotics. A

parametric curve can be quickly and accurately drawn. Our conic ℵ(x, y), Eq. (2.18),

may be written in parametric form as:


x = − q4 cosϑ+ q5 sinϑ

q1 cos2 ϑ+ q2 cosϑ sinϑ+ q3 sin2 ϑ
cosϑ

y = − q4 cosϑ+ q5 sinϑ

q1 cos2 ϑ+ q2 cosϑ sinϑ+ q3 sin2 ϑ
sinϑ

0 ≤ ϑ ≤ π. (2.19)

To draw the above conic, one should not simply evaluate and plot x and y at equal

increments of ϑ, but rather adjust each increment so that the distance between the

new and old point is constant. Note, however, that points for sequential values of ϑ are

not necessarily neighbouring and may even belong to different branches in the case of

a hyperbola or two intersecting lines.

An example of the singularity loci of a 3-RPR PPM for which ` = 100, xOO2 =

−238.6, xCB2 = −27.6, yCB2 = 27.6, xOO3 = −119.3, yOO3 = −206.7, xCB3 = −91.9,

and yCB3 = −18.4 is presented in Fig. 2.4. Each of the vertex spaces is the exterior of a

circle (drawn in black). The centres of those three circles are marked by the • symbol.

The constant-orientation workspace is the intersection of those three vertex spaces.

Hence, the Type 1 singularity loci are the parts (drawn in thick dash-dot line) of the

the vertex space boundaries (the three circles) that are within the constant-orientation

workspace. The conic corresponding to detZ = 0 in this example happens to be an

ellipse (drawn in red). Similarly, the Type 2 singularity loci are those parts of the

ellipse (drawn in thick solid line) that lie in the constant-orientation workspace.
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singularity loci
of Type 1

singularity loci
of Type 2

Figure 2.4: Example for the singularity loci of a 3-RPR PPM.

Now let us analyse the special case when ` = 0. If ` = 0, i.e. Oi ≡ Bi, there are two

linearly independent reciprocal screws for the degenerate serial chain and fi 6= f̂i. This

singularity allows an uncontrollable passive motion (RPM type) and the three input

velocities cannot be chosen independently (II type) (Zlatanov et al., 1994b). This

redundant motion is full-cycle rather than infinitesimal. Note that, although there is a

loss of a degree of freedom of the mobile platform (IO type), strictly speaking, this is

not a Type 1 singularity since Λ is not singular.

For deeper analysis into the kinematics of RPR PPMs we refer the reader to the

works of Husty (1996) and Hayes and Husty (2000) that treat the computation of the

complete workspace, and the work of Husty et al. (1999) that focuses on the general

singularity surface.

2.4.1.4 Summary

Since we have simple parametric equations for the singularity loci of a general 3-RPR

PPM as a function of its design parameters and platform orientation, we may easily

obtain the intersection between the singularity curves and plot only those sections that

are inside the COW. We may thus plot the complete workspace as an array of horizontal

cross-sections for the whole range of values of the platform orientation φ.

Let us also revisit the problem of working modes. We said that 3-RPR PPMs have

eight working modes. Kinematically, however, they are all the same. In other words,

no matter what working mode we choose, the singularities are all the same. It should

only be noted that a working mode may be changed simply by passing over a Type 1

singularity (no disassembling is required).
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Finally, here is a brief summary regarding the kinematics of 3-RPR PPMs:

✓ there are eight working modes, but they are all kinematically the same;

✓ for φ = const, Type 1 singularity loci are 3 circles (or arcs) of radius `;

✓ for φ = const, Type 2 singularity loci are (parts of) a conic or the COW;

✓ the conic passes through the centres of the three circles;

✓ the conic does not depend on `;

✓ when ` = 0 and some ρi = 0, there is a full-cycle uncontrollable passive motion

which is neither a Type 1 nor a Type 2 singularity;

✓ when ∆O1O2O3 and ∆B1B2B3 are congruent and ρ1 = ρ2 = ρ3, there is a self-

motion.

2.4.2 Singularity Analysis of 3-RPR PPMs

Referring to Fig. 2.5(a), we have exactly the same notation as the one used for the

3-RPR PPMs. The only new notation is for the active joint variables which in this case

are the angles θi, defined as the angles between the x-axis and the direction of the P

joint as shown in Fig. 2.5(b). As we are about to see, this new actuation scheme will

render the kinematic analysis of the parallel mechanism much more complicated.

2.4.2.1 Solving the Inverse Kinematic Problem

We will first consider the task of computing the input variables (θ1, θ2, θ3) from the

set of output variables (x, y, φ). Let rOiAi
be the vector along OiAi and f̌i be the unit

vector along AiBi. Then we can write

f̌i =
1

`
(rOiBi

− rOiAi
) =

1

`

[
x̄i − ρi cos θi

ȳi − ρi sin θi

]
. (2.20)

Now, note that AiBi ⊥ OiAi and that according to the definition of the input

variables θi the following is true for any branch:

f̌i =

[
− sin θi

cos θi

]
. (2.21)

Setting the right-hand sides of Eqs. (2.20) and (2.21) equal and solving, we obtain:
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Figure 2.5: (a) A 3-DOF PPM of type 3-RPR and (b) the two branches of a leg.

cos θi =
1

ρ2
i + `2

(`ȳi + ρix̄i), sin θi = − 1

ρ2
i + `2

(`x̄i − ρiȳi) (2.22)

which defines uniquely the solutions to the inverse kinematic problem. The two branches

for each leg are defined by the same branch index as for 3-RPR PPMs. However, as

we will see later, unless ` = 0 the singularities of Type 2 for 3-RPR PPMs are strictly

dependent on the particular working mode.

Finally, substituting the expressions from Eq. (2.22) into Eq. (2.21) yields:

f̌i =
1

ρ2
i + `2

[
`x̄i − ρiȳi

`ȳi + ρix̄i

]
. (2.23)

2.4.2.2 Obtaining the Velocity Equation

(a) Using differentiation

Multiplying the right-hand sides of Eqs. (2.21) and (2.20) and differentiating the result

with respect to time yields

−θ̇i

[
cos θi

sin θi

]T[
x̄i − ρi cos θi

ȳi − ρi sin θi

]
+

[
− sin θi

cos θi

]T([
˙̄xi

˙̄yi

]
−ρ̇i

[
cos θi

sin θi

]
−ρiθ̇i

[
− sin θi

cos θi

])
= 0.

(2.24)
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Expanding the above equation, noticing that the first and third terms are both equal

to zero, and recalling that ṙOiBi
= [ ˙̄xi, ˙̄yi]

T = v + ωr⊥CBi
, we obtain

f̌T
i

(
v + ωr⊥CBi

)
= ρiθ̇i. (2.25)

Finally, we write the above equation in the Zξ = Λθ̇ matrix form: f̌T
1 r⊥CB1

f̌T
1

f̌T
2 r⊥CB2

f̌T
2

f̌T
3 r⊥CB3

f̌T
3

ξ = diag(ρ1, ρ2, ρ3)θ̇. (2.26)

(b) Using screw theory

The reciprocal screws ζi, i = 1, 2, 3, are the screws passing through the platform R

joints and normal to the direction of the corresponding P joint. Hence, their direction

is along the already defined unit vector f̌i, i.e., fi = f̌i, and their moment mi is the same

as for 3-RPR PPMs defined in Eq. (2.16). Note, however, that if ` = 0 and Oi ≡ Bi,

Eq. (2.23) is not valid and fi is defined by Eq. (2.21).

The diagonal elements of Λ (see Eq. 2.8), are

λi = (rOiAi
× fi)z = ρi. (2.27)

2.4.2.3 Obtaining the Singularity Loci

Type 1 singularities occur for the same configurations as in 3-RPR PPMs. For this

mechanism, however, when ρi = 0 and ` = 0 (i.e., Oi ≡ Bi), there is a generic Type 1

(RI) singularity, where the input velocities are indeterminate. This redundant input

(RI) motion is full-cycle.

When ` = 0, the determinant of Z consists of a fraction whose numerator is again

a quadratic polynomial (generally a different one, though) and whose denominator is

ρ1ρ2ρ3. Again, the corresponding conic defining Type 2 singularities always passes

through the centres of the vertex spaces. Those three centres, however, do not neces-

sarily correspond to Type 2 singularities. The equation for the quadratic polynomial

will not be given here since it may be easily obtained and since 3-RPR PPMs and

not very useful in practice. We will present an example of the singularity loci for the

same design parameters as the ones used for Fig. 2.4, except for ` = 0. The result is

presented in Fig. 2.6, where we see that the conic is a hyperbola.
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of Type 1

(and possibly Type 2)

Figure 2.6: Example for the singularity loci of a 3-RPR PPM with ` = 0.

While the Type 2 singularity loci for both 3-RPR and 3-RPR PPMs in the case

` = 0 are the same for all working modes, they differ in the case of 3-RPR PPMs with

` 6= 0. When ` 6= 0, the singularities of Type 2 for 3-RPR PPMs are completely different

from the case ` = 0. The numerator of detZ is no longer a polynomial but contains

radicals (the variables ρi), and is, hence, dependent on the given working mode. If we

manipulate properly that expression and raise it to square three times, we may obtain

a polynomial of degree 16 in x and y. This polynomial will correspond to all working

modes. The polynomial will not be presented here due to its huge coefficients nor shall

we discuss in detail its derivation. A similar, yet much more intricate derivation will,

however, be discussed in the case of 3-RRR PPMs in Section 2.4.4.

An example of the singularity loci for a 3-RPR PPM for all working modes is

presented in Fig. 2.7. For this PPM ` = 50, xOO1 = yOO1 = xCB1 = yCB1 = 0,

xOO2 = −255.6, yOO2 = 0, xCB2 = −110.8, yCB2 = 0, xOO3 = −127.8, yOO3 = −221.4,

xCB3 = −55.4, and yCB3 = −95.9. Note that this time the resulting curves are obtained

through discretisation—the only way to obtain them. In fact, the “curve” for the Type 2

singularity loci, shown in the figure, corresponding to all working modes and defined

by the polynomial of degree 16 is nothing but discrete points. To plot those points,

we have swept a sufficiently large rectangular area, both horizontally and vertically, for

each one of the eight working modes, and checked the determinant of Z at each point.

To illustrate the issue of working modes, we have plotted the Type 2 singularity

curve portion for the {−,−,−} branch set in green, while the portion for the {+,+,−}
branch set is in blue. The portions for the other six working modes are drawn in red.
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Figure 2.7: Example for the singularity loci of a 3-RPR PPM with ` 6= 0.

2.4.2.4 Summary

As it may be seen from the last and other examples, each of the points of contact

between the two types of singularity loci correspond to a change of branch index.

Furthermore, the curve of degree 16 corresponds exactly to the Type 2 singularity loci

for all working modes and is, hence, inside all vertex spaces. The reason for this fact is

that the polynomial of degree 16 is directly obtained from the numerator of detZ which

is an expression containing the radicals ρi defined by Eq. (2.12). And this expression

is obviously not defined outside the vertex spaces (recall that for 3-RPR and 3-RPR

PPMs, each vertex space is defined by x̄2
i + ȳi > `2).

In fact, the same reasoning applies for all PPMs with branches and reciprocal screws

dependent on the chosen branch. Their Type 2 singularity loci are usually within

the intersection of all vertex spaces, i.e., within the constant-orientation workspace.

However, Type 2 singularity loci are always within the union of the three vertex spaces.

Finally, here is a brief summary regarding the kinematics of 3-RPR PPMs:

Case 1: ` = 0

✓ there are eight working modes, but they are all kinematically the same;

✓ for φ = const, Type 1 singularity loci are three points;

✓ for φ = const, Type 2 singularity loci are a conic or the COW;

✓ the conic passes through the three Type 1 singularity points;

✓ the three points correspond to generic Type 1 (RI) singularities but not neces-

sarily to Type 2 singularities.
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Case 2: ` 6= 0

✓ there are eight working modes that are all kinematically different;

✓ for φ = const, Type 1 singularity loci are three circles (or arcs) of radius `;

✓ the Type 2 singularity loci for all working modes is a curve of order 16;

✓ the Type 2 singularity curve is inside all vertex spaces;

✓ the Type 2 singularity curve is segmented into portions corresponding to the eight

working modes at the points of contact between the curve and the three circles.

2.4.3 Singularity Analysis of 3-RRR PPMs

Referring to Fig. 2.8(a), we denote with Oi, Ai, and Bi the centres of the base, inter-

mediate, and platform R joints, respectively. The links attached to the base will be

referred to as the proximal links and the links attached to the mobile platform will be

called the distal links. The lengths of the proximal and distal links will be denoted

by `1 and `2, respectively. Active joint variable i is denoted by θA
i and defined as the

angle, measured counter-clockwise, between the proximal and distal links in leg i, as

shown in Fig. 2.3(b). For convenience, θA
i will be defined in the range [−π, π]. All other

notations and assumptions remain the same as for the two previous manipulators.
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i
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Figure 2.8: (a) A 3-DOF PPM of type 3-RRR and (b) the two branches of a leg.
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2.4.3.1 Solving the Inverse Kinematic Problem

Obviously, 3-RRR PPMs are almost kinematically identical to 3-RPR PPMs with

zero offset (` = 0). Thus, if %i is the distance between Oi and Bi, i.e., %i =
√
x̄2

i + ȳ2
i ,

the angle between the proximal and distal links can be uniquely defined. In other

words, as long as a leg is not fully stretched or fully folded, in both PPMs we simply

drive in a direct manner the distance between the base and platform R joint centres.

Applying the law of cosines for the triangle OiAiBi we have

%2
i = `21 + `22 − 2`1`2 cos θA

i . (2.28)

Solving the above equation gives us the two values of θA
i as:

θA
i = δi cos−1

(
`21 + `22 − %2

i

2`1`2

)
, (2.29)

where again δi = ±1 is the branch index that defines the branch of the leg as shown in

Fig. 2.8(b).

2.4.3.2 Obtaining the Velocity Equation

(a) Using differentiation

The first part of the derivation process should be the same as the one presented in

Section 2.4.1.2 for 3-RPR PPMs but simplified by setting ρi = %i. Hence, we may

directly rewrite Eq. (2.15) as  f̂T
1 r⊥CB1

f̂T
1

f̂T
2 r⊥CB2

f̂T
2

f̂T
3 r⊥CB3

f̂T
3

ξ = %̇. (2.30)

where again f̂i is the unit vector along OiBi.

Differentiating Eq. (2.28) with respect to time leads us to

%̇i =
`1`2 sin θA

i

%i

˙θA
i =

δi`1`2|sin θA
i |

%i

˙θA
i =

δi2Υi

%i

˙θA
i , (2.31)

where Υi = `1`2|sin θA
i |/2 is the area of the triangle OiAiBi. We may now make use of

that old formula taught in school, called the Heron’s formula, which after some trivial

manipulation, states that
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Υi =
1

4

√
(%i + `1 + `2)(%i − `1 + `2)(%i + `1 − `2)(−%i + `1 + `2). (2.32)

Therefore, the final matrix velocity equation for 3-RRR PPMs is f̂T
1 r⊥CB1

f̂T
1

f̂T
2 r⊥CB2

f̂T
2

f̂T
3 r⊥CB3

f̂T
3

ξ = diag

(
2δ1Υ1

%1

,
2δ2Υ2

%2

,
2δ3Υ3

%3

)
θ̇. (2.33)

(b) Using screw theory

If Oi 6≡ Bi, the reciprocal screws ζi, i = 1, 2, 3, are the screws passing through the two

passive R joints in each leg. Hence, their direction is along the already defined unit

vector f̂i, i.e., fi = f̂i. Their moment mi is also the same as for 3-RPR PPMs defined

in Eq. (2.16).

If, again, Oi 6≡ Bi, the diagonal elements of Λ (see Eq. 2.8), are the moments of

the reciprocal forces with respect to the centre of the corresponding active R joints.

Therefore, |λi| is equal to the altitude of the triangle AiOiBi to the side OiBi, i.e.,

|λi| = 2Υi/%i. Noticing in Fig. 2.8(b) that this moment has the same sign as the

branch index δi, we may write without any computations:

λi =
2δiΥi

%i

. (2.34)

2.4.3.3 Obtaining the Singularity Loci

As we already suggested, and as clearly seen from the velocity equations of 3-RPR

and 3-RRR PPMs, i.e., Eqs. (2.15) and (2.33), respectively, the Type 2 singularities of

those two PPMs are the same. Type 1 singularities, on the other hand, occur when

the area of the triangle AiOiBi is zero, or in other words, when the proximal and

distal links in a leg are aligned. Therefore, the Type 1 singularity loci for a constant

orientation correspond to pairs of concentric circles of radius |`1±`2|, centred at (xOOi
−

xCBi
, yOOi

− yCBi
). The area between a pair od circles is vertex space i and is defined

by the inequality |`1 − `2| ≥ %i ≥ `1 + `2.

When the links are of equal lengths (`1 = `2) and are overlapping, i.e., Oi ≡ Bi,

there is a singularity of the same class (RPM, II, IO) as in 3-RPR PPMs and not a

Type 1 singularity.
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2.4.3.4 Summary

Note that a 3-RRR PPM has eight working modes, but its singularities do not

depend on the particular working mode unlike a 3-RRR PPM, as we will see next. And

once again, its Type 1 and Type 2 singularity loci are independent except for the fact

that the conic, whose portions are the Type 1 singularity loci, pass through the three

vertex space centres.

Finally, here is a brief summary regarding the kinematics of 3-RRR PPMs:

✓ there are eight working modes, but they are all kinematically the same;

✓ for φ = const, Type 1 singularity loci are 3 pairs of concentric circles (or arcs) of

radii |`1 ± `2|;

✓ vertex space i is the area between the two corresponding concentric circles;

✓ for φ = const, Type 2 singularity loci are (parts of) a conic or the COW;

✓ the conic passes through the centres of the three vertex spaces;

✓ the conic does not depend on `1 and `2;

✓ when ` = 0 and some %i = 0, there is a full-cycle uncontrollable passive motion

which is neither a Type 1 nor a Type 2 singularity.

2.4.4 Singularity Analysis of 3-RRR PPMs

Undoubtedly, the most common architecture for a 3-DOF PPM is the 3-RRR one. The

reason is mostly practical—these PPMs are easiest to build. Even more than a decade

ago, a 100 µm-link 3-RRR PPM was possible to build (Behi et al., 1990). The fact

that the actuators are fixed to the base allows the use of inexpensive DC drives and

reduces the weight of the mobile equipment. In addition, the links can be made of thin

rods and even be curved (Schönherr, 1998) to decrease significantly link interference.

Finally, revolute joints have virtually no mechanical limits which, together with the

previously mentioned feature, maximises considerably the workspace of 3-RRR PPMs.

Referring to Fig. 2.9(a), we have exactly the same notation as the one used for the

3-RRR PPMs. The only new notation is for the active joint variables which in this

case are the angles θO
i , defined as the angles between the x-axis and the proximal link

as shown in Fig. 2.9(b). As we are about to see, this new actuation scheme will render

the kinematic analysis of the parallel mechanism much more complicated.
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Figure 2.9: (a) A 3-DOF PPM of type 3-RRR and (b) the two branches of a leg.

2.4.4.1 Solving the Inverse Kinematic Problem

We will now consider the task of computing the set of input variables (θO
1 , θO

2 , θO
3 )

from the output variables (x, y, φ). Geometrically, for the i-th leg, the IKP can be

seen as the problem of finding the intersection point(s) between a circle of radius `1 and

centre Oi and a circle of radius `2 and centre Bi. Clearly, depending on the position

of point Bi, this problem may have two real solutions, a single one, or none at all. If

`1 = `2, the problem may even have an infinite number of solutions.

We may write the following equation for the distal link vector:

rAiBi
= p + rCBi

− rOiAi
− rOOi

. (2.35)

Squaring both sides of this equation gives us

`22 = rT
AiBi

(p + rCBi
− rOiAi

− rOOi
) , (2.36)

`22 = %2
i + `21 − 2rT

OiBi
rOOi

, (2.37)
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where %i is, as previously defined, the distance betweenOi andBi, i.e., %i = ||rOiBi
||, and

rOiBi
= [x̄i, ȳi]

T . In addition, we obviously have rOiAi
= `1[cos θO

i , sin θ
O
i ]T . Therefore,

Eq. (2.36) may be written as

x̄i cos θO
i + ȳi sin θ

O
i =

%2
i + `21 − `22

2`1
≡ pi = %i cos γi. (2.38)

where γi = ∠AiOiBi. In order to have a real solution to the above equation, the

following inequality should hold true:

%2
i − p2

i = %2
i sin2 γi ≡ Γi ≥ 0. (2.39)

Therefore,
√

Γi is the altitude of the triangle AiOiBi to the side OiAi. Unless Γi = 0,

there exist two real solutions to Eq. (2.38), determined uniquely from:

sin θO
i =

piȳi + x̄iδi
√

Γi

%2
i

, cos θO
i =

pix̄i − ȳiδi
√

Γi

%2
i

, (2.40)

where δi is the same branch index as the one for 3-RRR PPMs. Note that Eq. (2.40)

is not valid when %i = 0, which may occur only if `1 = `2 and Bi ≡ Oi.

2.4.4.2 Obtaining the Velocity Equation

(a) Using differentiation

Having resolved the inverse kinematic problem, we may now proceed to obtaining the

velocity equation by differentiating Eq. (2.36) with respect to time, leading to

`2f̌
T
i

(
v + ωr⊥CBi

− `1θ̇
O
i

[
− sin θO

i

cos θO
i

])
= 0, (2.41)

where f̌i = rAiBi
/`2. The above equation may be written in the following vector form:

[
f̌T
i r⊥CBi

, f̌T
i

] [ ω
v

]
= `1f̌

T
i

[
− sin θO

i

cos θO
i

]
θ̇O

i , (2.42)

where

f̌i =
1

`2

[
x̄i − `1 cos θO

i

ȳi − `1 sin θO
i

]
. (2.43)

Using that equality and the expressions from Eq. (2.40), Eq. (2.42) is simplified to
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[
f̌T
i r⊥CBi

, f̌T
i

] [ ω
v

]
= −`1

`2
δi
√

Γiθ̇
O
i . (2.44)

Finally, the above equation may be written in the Zξ = Λθ̇ matrix form: f̌T
1 r⊥CB1

, f̌T
1

f̌T
2 r⊥CB2

, f̌T
2

f̌T
3 r⊥CB3

, f̌T
3

 ξ = −`1
`2

diag
(
δ1
√

Γ1, δ2
√

Γ2, δ3
√

Γ3

)
θ̇. (2.45)

(b) Using screw theory

The reciprocal screws ζi, are the screws passing through the two passive R joints in

each leg. Hence, their direction is along the already defined unit vector f̌i, i.e., fi = f̌i.

Their moment mi is also the same as for 3-RPR PPMs defined in Eq. (2.16).

The diagonal elements of Λ (see Eq. 2.8), are the moments of the reciprocal forces

with respect to the centre of the corresponding active R joints. Therefore, |λi| is equal

to the altitude of the triangle AiOiBi to the side AiBi, and λi is negative for the positive

branch index, and positive for the negative branch index. Hence,

λi = −2δiΥi

`2
= −

δi
(
`1
√

Γi

)
`2

= −`1
`2
δi
√

Γi. (2.46)

Note that the conventional approach does not require any geometric interpretation

but pure algebraic computations. On the other hand, the reciprocal screw method calls

for a complete understanding of the geometry of the mechanism. Such an understand-

ing does not only reduces the chances for errors but also brings an insight into the

kinematics of the mechanism.

2.4.4.3 Obtaining the Singularity Loci

The singularity loci of Type 1 and, hence, the vertex spaces and the constant-

orientation workspace of 3-RRR PPMs are the same as for 3-RRR PPMs. The only

difference is that when `1 = `2 and Bi = Oi, there is a Type 1 singularity.

Type 2 singularity loci are, however, much more complicated to determine due to

the existence of the terms
√

Γi in detZ. To our best knowledge, the first attempt to

resolve this problem has been reported in (Gosselin and Wang, 1997). In that work, the

authors have concluded that the resulting polynomial is of degree 64 in y and 48 in x

even though they have only considered a simplified 3-RRR PPM design with collinear
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base and platform joints. Their remark that the reason for the high degree is the fact

that the singularity loci are for all working modes and not only for a single one as well

as the high degree itself has motivated our research in that area. Subsequently, we have

recently reported our results (Bonev and Gosselin, 2001).

If the fact that the actual degree of the polynomial is 42 is not of great immediate

importance, the process of derivation of this minimum polynomial reveals essential

facts. The most significant of these facts is that no polynomial exists that corresponds

to only a single working mode. Indeed, to eliminate all radicals in the equation detZ,

the latter should be rearranged and squared three times. The equation resulting after

each such operation loses the information for a branch index.

We will now outline the procedure used for obtaining the minimal polynomial of

degree 42 that corresponds to the singularity loci of Type 2 for all working modes. Two

cases will be investigated depending on the relationship between `1 and `2.

(a) Special case: proximal and distal links of equal lengths

Let us first consider the special case when `1 = `2. The reason is that in this case, we

may obtain the polynomial in symbolic form. We render our problem dimensionless

and set `1 = `2 = 1. Once the matrix Z is expressed in the variables x, y, and the

parameters xOOi
, yOOi

, xCBi
, yCBi

, and %i, we follow the procedure described below:

S1 Substitute the expressions δi
√

Γi with the parameters ∆i.

S2 Obtain detZ. The denominator of this determinant is 8%1%2%3. Indeed, Z is not

defined when Bi ≡ Oi, i.e., when %i = 0. Eliminating these possibilities, we consider

further only the numerator, E . This numerator is a function of x and y that cannot

be generally factored and contains the three radicals δi
√

Γi (actually the parameters

∆i) and the parameters %i. Note, that this is the only expression that corresponds

to the singularity loci for the given working mode.

S3 Eliminate the radical in
√

Γ1. Rewrite E in the form C1∆1 = C2, where C1 and C2

do not contain ∆i. Next, raise to square leading to C2
1Γ1 = C2

2 . Both Γ1 and C2
2 are

multiples of %1 which can be cancelled. Our new expression, E1 = C2
1(Γ1/ρ1)−C2

2/ρ1,

does not contain δ1 and, hence, corresponds to two working modes.

S4 Split E1 and substitute the terms ∆2
2 and ∆2

3 with respectively Γ2 and Γ3. Note, that

if we attempt to perform this substitution directly in E1, the resulting expression

becomes too large to allow to be handled symbolically. Thus, E1 is written in parts:

E1 = E1,1 + E1,2∆3 + E1,3∆2 + E1,4∆2∆3 + E1,5 + E1,6 + E1,7∆2 + E1,8∆3 + E1,9
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E1,1 = C0,0/(%2%3) E1,4 = C1,1/(%2%3) E1,7 =
(
C1,2/%2

)
(Γ3/%3)

E1,2 = C0,1/(ρ2ρ3) E1,5 =
(
C0,2/%2

)
Γ3/%3 E1,8 =

(
C2,1/%3

)
(Γ2/%2)

E1,3 = C1,0/(%2%3) E1,6 =
(
C2,0/%3

)
Γ2/%2 E1,9 = C2,2(Γ2/%2)(Γ3/%3)

where Cj,k (j, k = 0, 1, 2) are coefficients that contain neither ∆2 nor ∆3. Further-

more, all the divisions can be performed exactly.

S5 Eliminate the radical in
√

Γ2:

E2 = E2
2,1Γ2 + E2

2,2Γ2Γ3 + 2E2,1E2,2Γ2∆3 − E2
2,3 − E2

2,4Γ3 − 2E2,3E2,4∆3

E2,1 = E1,3 + E1,7, E2,2 = E1,4, E2,3 = E1,1 + E1,5 + E1,6 + E1,9, E2,4 = E1,2 + E1,8

The new expression E2 does not contain δ1 or δ2 and, hence, corresponds to the

singularity loci of four working modes.

S6 Eliminate the radical in
√

Γ3:

E3 = (2E2,1E2,2Γ2 − 2E2,3E2,4)
2Γ3 − (E2

2,1Γ2 + E2
2,2Γ2Γ3 − E2

2,3 − E2
2,4Γ3)

2

Finally, we substitute the expressions for %i in E3, which becomes a polynomial

in the variables x and y but cannot be expanded in symbolic form. However, it can

quickly be verified to be of degree 48 using the Maple command coeff(E3,(x,y)).

Furthermore, if we use the same command to extract and simplify all the coefficients

of E3 corresponding to the terms of degree greater than 42, we can observe that they

are all zero. In addition, the coefficients of the terms of degree less than 8 are also zero

which makes E3 a fewnomial of degree 42.

Fig. 2.10 shows an example of the singularity loci of a 3-RRR PPM with proximal

and distal links of equal length. The mechanism parameters are `1 = `2 = 1, xOO2 =

1.741, xCB2 = 0.889, yCB2 = 0, xOO3 = 0.870, yOO3 = 1.508, xCB3 = 0.444, and

yCB3 = 0.770. The Type 2 singularity loci for all eight working modes are drawn in red.

Once again, all branch index changes are done at the vertex space boundaries, i.e., at

Type 1 singularities. Hence the Type 2 singularity loci for all branches pass through the

vertex space centres. Note, however, that those centres are Type 1 singularities, but not

necessarily Type 2 singularities. This is because, at these three points, the configuration

of the PPM is not uniquely determined by the pose of its mobile platform.

(b) General case

In the case when `1 6= `2, we set only `1 = 1 and follow a much simplified procedure.

Firstly, we assign random integer values to the coefficients xOOi
, yOOi

, xCBi
, yCBi

since
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Figure 2.10: Example for the singularity loci of a 3-RRR PPM with `1 = `2.

the procedure cannot be performed symbolically. Then, we eliminate the radical in
√

Γ1

and divide the resulting expression E1 by %1. Note that in this case Γi is not a multiple

of %i. Next, we substitute the terms ∆2
2 and ∆2

3 with respectively Γ2 and Γ3. Then, we

eliminate the radical in
√

Γ2, divide the resulting expression E2 by %2
2, and substitute

∆2
3 with Γ3. Finally, we eliminate the radical in

√
Γ3 and divide the resulting expression

E3 by %4
3. The polynomial E3 is again of degree 42, but this time the coefficients of all

possible terms are generally non-zero (except for the odd-power terms of degree 42).

Fig. 2.11 shows an example of the singularity loci of a general 3-RRR PPM. The

mechanism parameters for this example are `1 = 1, `2 = 1.350, xOO2 = 2.350, xCB2 =

1.200, yCB2 = 0, xOO3 = 1.175, yOO3 = 2.035, xCB3 = 0.600, and yCB3 = 1.039. Again,

the Type 2 singularity loci for all working modes are drawn in red.

2.4.4.4 3-RRR PPMs with Two Coincident Platform Joints

In general, the polynomial E3 cannot be factored. Special designs such as base and

platform being equilateral triangles or collinear do not lead to simplified results. One

particular case, however, simplifies greatly that polynomial and allows the singularity

loci to be geometrically described. This case also brings insight into the complex

relationship between branches and singularity loci. It shows the clear superiority of the

geometrical methods for finding the singularity loci without even having to set up the

velocity equations.
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Figure 2.11: Example for the singularity loci of a 3-RRR PPM with `1 6= `2.

The particular case of interest occurs simply when two platform joints are coincident,

e.g., when B1 ≡ B2 (Fig. 2.12). Using the parameterisation introduced previously, this

case implies that xOO1 = yOO1 = xCB1 = yCB1 = yOO1 = xCB2 = yCB2 = 0. Now,

we can either use the algebraic approach described in the last section or observe the

following and use a geometrical approach. As mentioned before, singularities of Type 2

occur when the lines associated with the distal links intersect at one point or are all

parallel. Since two of the lines always intersect at point C, we have only two possible

cases leading to singularities of Type 2:

Case 1: Points C, B3, and A3 are collinear.

This condition implies that f3 = ±[− sinφ, cosφ]T . Hence, the corresponding singular-

ity loci consist of two circles of radius `1 and centres at rOO3 + f3(`2 + ||rCB3||):

x+ xCB3 − xOO3 ±
`2xCB3√

x2
CB3

+ y2
CB3

2 +

y + yCB3 − yOO3 ±
`2yCB3√

x2
CB3

+ y2
CB3

2 = `21.

(2.47)

Note that each of the two circles is separated by lines parallel to f3 into semicircles

corresponding to the two possible branches of the third leg.
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Figure 2.12: A special 3-RRR PPM with two coincident platform joints.

Case 2: Points A1, C, and A2 are collinear.

This case has two sub-cases. In the first one, points A1 and A2 coincide which may

occur at two locations symmetric with respect to line O1O2. Thus, the corresponding

singularity loci are two circles:

(x− xOO2/2)2 +
(
y ±

√
`21 − x2

OO2
/4
)2

= `22. (2.48)

Again, each of the circles is divided into two semicircles by lines O1A1 and O2A2

distinguished respectively by the branch indices δ1 and δ2. Thus, each circle is divided

into four arcs corresponding to four different pairs of working modes.

The second sub-case requires that A1 6≡ A2. Thus, the singularity loci correspond

to the coupler curve of the four-bar mechanism O1A1A2O2, where A1A2 = 2`2 is the

coupler, defined by the following sextic (Hunt, 1978):

(x+ xOO2/2)2(x2 + xOO2x+ `22 − `21 + y2)2

+y2(x2 + xOO2x+ x2
OO2

/2 + `22 − `21 + y2)2 − `22x
2
OO2

y2 = 0.
(2.49)

This sextic, will also be divided in four parts, each corresponding to two working

modes defined by δ1 and δ2. Note that the sextic is symmetric with respect to the y-

axis and the line x = −xOO2/2. Indeed, the sextic can be represented by the following

parametric equation:
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{
x = ±% cosϑ− xOO2/2

y = ±% sinϑ
0 ≤ ϑ ≤ π/2 (2.50)

where

% =
1

2

√
4(`21 − `22)− x2

OO2
(1− 2 cos2 ϑ)± 2xOO2 sinϑ

√
4`22 − x2

OO2
cos2 ϑ, (2.51)

where % is the distance between point C and the centre of line O1O2, referred to as

point Oc, and ϑ is the angle between the x-axis and the line OcC.

Note, however, that the sextic described by Eq. (2.49) always passes through the

point (xOO2/2, 0), which in some cases may be an isolated point that is actually outside

the constant-orientation workspace, while if Eq. (2.51) has this point as a solution, the

point is not isolated.

In conclusion, for a given working mode, we have two semi-circles defined by δ3,

and a pair (symmetric with respect to line O1O2) of circular arcs and arcs from a sextic

defined by δ1 and δ2. The first two semi-circles, of radius `1, depend on the orientation of

the mobile platform, while the other circular arcs and arcs from a sextic are the same

for any platform orientation. All of these geometrical curves are parts of geometric

objects defined by parametric equations and constrained by limits on the parameters

that can easily be computed. Therefore, these curves can be promptly represented.

Note how well this example illustrates the advantage of the geometrical approach to

studying the kinematics of a mechanism. If we were to simply compute the determinant

of the matrix Z, we would have probably come to the same result but without any

understanding of the nature of these curves. Not to mention, that if we were simply

given the algebraic equation of the sextic, it would have not been obvious to find the

corresponding parametric equation.

The kinematic analysis of this simplified 3-RRR PPM is a perfect candidate for a

problem of the exam of a robot kinematics course. The PPM is also ideal for helping

understand the kinematics of PPMs as it allows the use of simple geometrical models

for representing its singularities.

Finally, Fig. 2.13 illustrates the singularity loci of a 3-RRR PPM with two coincident

platform joints. For this PPM, `1 = 40, `2 = 30, xOO2 = 50, xCB3 = 13, yCB3 = 17,
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Figure 2.13: Example for the singularity loci of a 3-RRR PPM with B1 ≡ B2.

xOO3 = 30, and yOO3 = 50. The two circles corresponding to the first case are drawn

in blue, the other two are in red, and the sextic is in green. Each of these curves is

separated into portions corresponding to different (groups of) working modes at the

points of tangency with the boundaries of the vertex spaces.

In addition, each curve is entirely enclosed within only the vertex space(s) corre-

sponding to the leg on which the curve depends. For example, the two circles from the

first case are always within the third vertex space, while the other two circles and the

sextic are always within the intersection of the first and second vertex spaces. This fact

is obvious from the geometric method with which the singularity curves were obtained.

Algebraically, this means that detZ can be factored into two—one part that contains

only
√

Γ3 and another that contains both
√

Γ1 and
√

Γ2.

2.4.4.5 Summary

Further examples of the singularity loci of 3-RRR PPM may be seen online at

http://www.parallemic.org/Reviews/Review001.html. A JavaScriptTM module allows the

user to see interactively the singularity loci for each one of the eight working modes—

individually and all together—as well as a schematic of the particular design.

Based on the detailed study of examples such as the ones presented herein and on the

procedure for obtaining the polynomial of degree 42, we may summarise the following

http://www.parallemic.org/Reviews/Review001.html
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list of observations for the singularity loci of 3-RRR planar parallel mechanisms for a

constant orientation:

✓ there are eight working modes that are all kinematically different;

✓ for φ = const, Type 1 singularity loci are three pairs of concentric circles (or arcs)

of radii |`1 ± `2|;

✓ vertex space i is the area between the two corresponding concentric circles;

✓ for φ = const, Type 2 singularity loci are a curve of order 42 or the COW;

✓ when ` = 0 and some Bi ≡ Oi, the three vertex space centres correspond to

generic Type 1 (RI) singularities and may or may not be Type 2 singularities too;

✓ no polynomial exists for the singularity loci of Type 2 for a single working mode;

✓ the singularity loci of Type 2 are inside the vertex spaces;

✓ at the points of contact, a change of a branch index occurs when the Type 2

singularity loci are inside the COW;

✓ if the singularity loci of Type 2 extend outside the COW, then there is a factori-

sation in the polynomial of degree 42;

✓ the singularity loci of Type 2 for a given working mode divide the COW into

separate regions, i.e., they are either closed curves or end at the COW boundaries.

2.4.5 Singularity Analysis of 3-PRR PPMs

The 3-PRR architecture (Fig. 2.4.5) was proposed in (Gosselin et al., 1996). A very

simplified design was also patented for machining applications (Zirn et al., 1999). For

that design, all three intermediate R joints move along the same line and two of the

platform R joints coincide. Finally, a micro-assembly robot with pseudo-elastic flexure

notch hinges has been recently developed by Hesselbach and Raatz (2000).

Let in each leg, the directed line through the intermediate R joint and along the

active translation be defined by its moment µi about the base frame centre, and its

angle αi measured from the x axis. Let also points Oi (not shown) be fixed somewhere

along the above-mentioned directed lines, and ρi be defined as the directed distance

between Oi and Ai. Without loss of generality, we assume that µ1 = 0 and α1 = 0.

3-RRR and 3-PRR planar parallel mechanisms, have exactly the same mobile part but

in the first, points Ai are driven on a circle, while in the second one, these points are

driven along a line.
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Figure 2.14: A 3-DOF PPM of type 3-PRR.

2.4.5.1 Solving the Inverse Kinematic Problem

Geometrically, the inverse kinematic problem for a PRR chain can be seen as the

problem of finding the points of intersection between a circle of radius ` and centre Bi

and the directed line i. Let, πi be the unit vector along that directed line. By definition,

(rOAi
× πi)z = −rT

OAi
π⊥

i = −(rOBi
− rAiBi

)T π⊥
i = µi. (2.52)

Substituting with the expressions rOBi
= [x+xCBi

, y+yCBi
]T , and π⊥

i = [− sinαi, cosαi]
T

in the above equation and rearranging, we obtain

`f̂T
i

[
− sinαi

cosαi

]
= µi − (x+ xCBi

) sinαi + (y + yCBi
) cosαi ≡ ηi, (2.53)

where f̂i = rAiBi
/` is the unit vector along AiBi. The new variable pi is the moment of

πi about Bi, or in other words, ηi is the distance from Bi to directed line i.

The solution to Eq. (2.53) is

f̂i =
1

`

[
− sinαiηi + cosαiδi

√
Γi

cosαiηi + sinαiδi
√

Γi

]
, (2.54)

where Γi = `2 − η2
i and δi = ±1 is the branch index. Finally, as we already know the

position of point Ai, rOAi
= rOBi

− `f̂i, ρi is readily available.
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2.4.5.2 Obtaining the Velocity Equation

(a) Using differentiation

Let us write the vector equation for rAiBi
:

p + rCBi
− rOOi

− rOiAi
= rAiBi

. (2.55)

Squaring this equation gives us

rT
AiBi

(p + rCBi
− rOOi

− rOiAi
) = `2. (2.56)

Differentiating Eq. (2.56) with respect to time leads to

rT
AiBi

(v + ωr⊥CBi
− ρ̇iπi) = 0. (2.57)

Substituting rAiBi
= `f̂i in the above equation and writing in vector format, we

obtain: [
f̂T
i r⊥CBi

, f̂T
i

] [ ω
v

]
= ρ̇if̂

T
i πi. (2.58)

Substituting the expression for f̂i from Eq. (2.54) in the right-hand side of Eq. (2.58),

one obtains easily

f̂T
i πi =

1

`
δi
√

Γi, (2.59)

which is, in fact, the cosine of the angle between directed line i and link i. Finally, we

write Eq. (2.58) in the Zξ = Λρ̇ matrix form: f̂T
1 r⊥CB1

f̂T
1

f̂T
2 r⊥CB2

f̂T
2

f̂T
3 r⊥CB3

f̂T
3

ξ =
1

`
diag

(
δ1
√

Γ1, δ2
√

Γ2, δ3
√

Γ3

)
ρ̇. (2.60)

(b) Using screw theory

The reciprocal screws ζi, i = 1, 2, 3, are the screws passing through the two passive R

joints in each leg. Hence, their direction is along the already defined unit vector f̂i, i.e.,

fi = f̂i. Their moment mi is also the same as for 3-RPR PPMs defined in Eq. (2.16).

The diagonal elements of Λ (see Eq. 2.8), are

λi = fT
i πi =

1

`
δi
√

Γi. (2.61)
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Figure 2.15: Example for the singularity loci of a 3-PRR PPM.

2.4.5.3 Obtaining the Singularity Loci

The inequality Γi ≥ 0 defines each vertex space which is the area between a pair of

lines parallel to the direction of P joint i and separated by a distance of 2`. Indeed,

Type 1 singularities occur when a link is normal to the P joint in a leg.

The Type 2 singularity loci for a constant orientation of the platform form a curve of

degree 20 that corresponds to all working modes. That curve is obtained symbolically in

a way similar to the one used for 3-RRR PPMs and described in detail in Section 2.4.4.3.

For that purpose, it is assumed, without loss of generality, that ` = 1, α1 = 0, µ1 = 0,

xCB1 = 0, and yCB1 = 0. With that assumption, the polynomial is actually of degree

16 in x, but of degree 20 in y and as a whole.

Fig. 2.15 shows an example of the singularity loci of a general 3-PRR PPM. The

mechanism parameters are ` = 130, α1 = 0, α2 = 2π/3, α3 = −2π/3, µ1 = µ3 = 0,

µ2 = −147.6, xCB1 = yCB1 = yCB2 = 0, xCB2 = −110.8, xCB3 = −55.4, and yCB3 =

−95.9. In this figure, the Type 2 singularity loci for all eight working modes are drawn

in red. Once again, all branch index changes are done at the vertex space boundaries,

i.e., at Type 1 singularities.

Even in the very simplified case, when the three directed lines are parallel, α1 =

α2 = α3 = 0, the polynomial, which in this case is in y only, is still of degree 18. The

same is true even if the three lines coincide, µ1 = µ2 = µ3 = 0. This means, that the

singularity loci of Type 2 may be up to 18 lines parallel to the directed lines. If the

three platform R joint centres are collinear, the polynomial is decreased to degree 16.
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If, however, two of the platform R joint centres coincide, the singularity loci be-

come suddenly quite simplified. Following the same geometrical approach as the one

described in Section 2.4.4.4, one may easily obtain that the corresponding loci of Type 2,

for all working modes, will be two parallel line segments, one (arc of a) circle, and one

(portion of an) ellipse (or a circle or a line). If the example with the simplified 3-RRR

planar parallel mechanism was too complicated for an exam problem, due to the sextic,

but simple enough for a homework assignment, the simplified 3-RRR planar parallel

mechanism is ideal for an exam.

2.4.5.4 Summary

Based on the detailed study of examples like the one presented herein and on the

procedure for obtaining the polynomial of degree 20, we may summarise the following

list of observations for the singularity loci of 3-PRR planar parallel mechanisms for a

constant orientation:

✓ there are eight working modes that are all kinematically different;

✓ for φ = const, Type 1 singularity loci are 3 pairs of parallel lines distanced at 2`;

✓ vertex space i is the area between the two corresponding parallel lines;

✓ for φ = const, the Type 2 singularity loci correspond to a curve of order 20 or up

to 18 parallel lines;

✓ for φ = const and if two of the platform joints coincide, the Type 2 singularity

loci correspond to two line segments, one arc of a circle, and one portion of an

ellipse (or a circle or a line).

✓ no polynomial exists for the singularity loci of Type 2 for a single working mode

(in general);

✓ the singularity loci of Type 2 are inside the vertex spaces;

✓ if the singularity loci of Type 2 extend outside the COW, then there is a factori-

sation in the polynomial of degree 20;

✓ at the points of contact, a change of a branch index occurs when the Type 2

singularities are inside the COW;

✓ the singularity loci of Type 2 for a given working mode divide the COW into

separate regions, i.e., the loci are either closed curves or end at the COW bound-

aries.
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Figure 2.16: A 3-DOF PPM of type 3-PRR.

2.4.6 Singularity Analysis of 3-PRR PPMs

Referring to Fig. 2.16, we denote by θi the active joint variables, which in this case

are the angles between the directed lines and the corresponding links. As we will see,

while this manipulator is probably not of great practical use, its kinematics is very

simple. This is especially true after having in hand the results from the analysis of

3-PRR PPMs from the last section.

2.4.6.1 Solving the Inverse Kinematic Problem

Let us imagine a right-hand reference frame attached at Ai such that its x axis is

along the directed line. From Eq. (2.54), we see that the unit vector along the link

AiBi expressed in the above mentioned reference frame is [δi
√

Γi, ηi]
T . Therefore,

θi = atan2
(
δi
√

Γi, ηi

)
. (2.62)

2.4.6.2 Obtaining the Velocity Equation

(a) Using differentiation

Let f̌i be the unit vector obtained by rotating the directed line vector πi at 90◦, i.e.,

f̌i = π⊥
i . The following is then true
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f̌T
i rOiAi

= f̌T
i (rOBi

− rAiBi
− rOAi

) = 0. (2.63)

Differentiating the above equation with respect to time leads to

f̌T
i (v − ωr⊥AiBi

− θ̇ir
⊥
OAi

) = 0, (2.64)

which after substituting f̌T
i r⊥OAi

= πT rOAi
= ` cos θi = δi

√
Γi, rearranging and writing

in matrix form gives

[
f̂T
i r⊥CBi

, f̂T
i

] [ ω
v

]
= δi

√
Γi. (2.65)

Note, that the same could have been obtained directly by differentiating the rela-

tionship ` sin θi = ηi. Finally, we write Eq. (2.65) in the Zξ = Λρ̇ matrix form: f̂T
1 r⊥CB1

f̂T
1

f̂T
2 r⊥CB2

f̂T
2

f̂T
3 r⊥CB3

f̂T
3

ξ = diag
(
δ1
√

Γ1, δ2
√

Γ2, δ3
√

Γ3

)
θ̇. (2.66)

(b) Using screw theory

The reciprocal screws ζi, i = 1, 2, 3, are the screws passing through the passive R

joint in each leg and normal to the direction of the corresponding P joint. Hence,

their direction is along the already defined unit vector f̌i, i.e., fi = f̂i = π⊥
i , which is

a constant vector. Their moment mi is also the same as for 3-RPR planar parallel

mechanisms defined in Eq. (2.16).

The diagonal elements of Λ (see Eq. 2.8), are

λi = (rAiBi
× fi)z = πT

i rAiBi
= ` cos θi = δi

√
Γi. (2.67)

2.4.6.3 Obtaining the Singularity Loci

The constant-orientation workspace, the vertex spaces, and the singularity loci of

Type 1 for 3-PRR PPMs are of course the same as for 3-PRR PPMs. As for the Type 2

singularities, we saw that the reciprocal screws for 3-PRR PPMs are constant, in the

mobile frame, for a constant orientation of the mobile platform. Therefore, for a given

orientation, a 3-PRR PPM is either at a Type 2 singularity for all positions or has no

Type 2 singularities at all.



52

Indeed, let us write out the coordinates of vectors rCBi
as functions of the platform

orientation angle φ:

xCBi
= x′CBi

cosφ− y′CBi
sinφ, (2.68)

yCBi
= x′CBi

sinφ+ y′CBi
cosφ, (2.69)

where x′CBi
and y′CBi

are the coordinates of vector rCBi
as expressed in the mobile frame.

Without loss of generality, we assume that α1 = 0, and xCB1 = yCB1 = yCB2 = 0.

Substituting the above expressions in the equation detZ = 0 and solving, gives the

following pair of distinct orientations:

φ =


− tan−1

(
xφ

yφ

)
+ kπ if yφ 6= 0

−π
2

+ kπ if yφ = 0

(2.70)

where k = 0, 1 and

xφ = y′CB3
sinα2 sinα3 + x′CB3

sinα2 cosα3 − x′CB2
sinα3 cosα2,

yφ = sinα2(x
′
CB3

sinα3 − y′CB3
cosα3 − x′CB2

sinα3).

Similarly to 3-RRR planar parallel mechanisms, the choice of working mode does

not influence the singularity loci of Type 2.

2.4.6.4 Summary

We summarise the following observations for the singularity loci of 3-PRR planar

parallel mechanisms:

✓ there are eight working modes, but they are all kinematically the same;

✓ for φ = const, Type 1 singularity loci correspond to three pairs of parallel lines

distanced at 2`;

✓ vertex space i is the area between the two corresponding parallel lines;

✓ there are four orientations at which there are Type 2 singularities, and they

happen to be the whole COW.
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2.4.7 Singularity Analysis of 3-RPP and 3-RPP PPMs

In this section, 3-RPP and 3-RPP planar parallel mechanisms (Fig. 2.4.7) will be

studied together due to their nearly identical kinematics. For that purpose, the notation

will be a bit more complicated. We denote by αA
i and αB

i the angles between the directed

lines along respectively the intermediate and platform P joints. Naturally, αA
i 6= αB

i .

The unit vectors defining these directed lines will be respectively denoted by πA
i and

πB
i , i.e., πA

i = [cosαA
i , sinαA

i ]T , and πB
i = [cosαB

i , sinαB
i ]T . The angle between the

each two corresponding directed lines will be denoted by γi, so that γi = αB
i − αA

i + π.

Obviously, the angles αA
i and αB

i are directly dependent on the orientation of the

mobile platform, φ. In fact, we may write αA
i = φ+βA

i and αB
i = φ+βB

i , where βA
i and

βB
i are some constant offset angles, set by the design of the planar parallel mechanism.

Let points Bi be arbitrary points on the mobile platform (not shown). Let points Ai

denote the intersection of the two corresponding directed lines passing through pointsOi

andBi. Let ρA
i and ρB

i denote the distances along the directed lines between respectively

Oi and Ai, and Ai and Bi. All of these notations are not shown on Fig. 2.4.7, because,

as we will see later, none of them plays any role in the determination of the singularities

of these two planar parallel mechanisms.

O ≡ O1

O2

O3

C

x

y
x′

y′

φ

γ1

γ2

γ3

ζB
1

ζA
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2

ζA
2

ζB
3

ζA
3

Figure 2.17: A 3-DOF PPM of type 3-RPP or 3-RPP.
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2.4.7.1 Solving the Inverse Kinematic Problem

For a given pose of the mobile platform, we know the positions of points Bi and

the direction lines. Hence, points Ai can be obtained in a unique manner. Once,

points Ai are obtained, the active joint variables ρA
i or ρB

i are readily obtainable. The

straightforward procedure will not be, however, presented herein since the values of the

active joint variables will not be of interest to us for our purposes. Note that 3-RPP

and 3-RPP PPMs are the only PPMs that have only one working mode.

2.4.7.2 Obtaining the Velocity Equation

(a) Using differentiation

These two PPMs provide the best example of the superiority of the reciprocal screw

method. Not only is the “conventional way” unobvious and tedious, but it also requires

the definition of numerous variables that disappear in the final result—the velocity

equation. The derivation procedure is identical for both PPMs. Hence, we will only

present it for the 3-RPP case.

Let (πB
i )⊥ be the unit vector obtained by rotating the direction vector πB

i at 90◦.

The following equation can, therefore, be written down:

(rOiC + rCBi
− rOiAi

)T (πB
i )⊥ = 0. (2.71)

Differentiating the above equation leads to

−ω(rOiC + rCBi
− rOiAi

)T πB
i +

(
v + ωr⊥CBi

− ρ̇A
i πA

i − ρA
i ω(πA

i )⊥
)T

(πB
i )⊥ = 0. (2.72)

Expanding the above expression and using the identities aTb⊥ = −bTa⊥ and (a⊥)Tb⊥ =

aTb where a and b are vectors, we obtain

−ω(r⊥OiC
)T (πB

i )⊥ − ω(r⊥CBi
)T (πB

i )⊥ + ωρB
i (πA

i )T πB
i

+vT (πB
i )⊥ + ω(r⊥CBi

)T (πB
i )⊥ − ρ̇A

i (πA
i )T (πB

i )⊥ − ωρA
i (πA

i )T πB
i = 0. (2.73)

After cancelling the identical terms, substituting (πA
i )T (πB

i )⊥ = − sin γi, and rear-

ranging, the above is summed up to

f̂T
i

(
v − ωr⊥OiC

)
= − sin γi ρ̇

A
i . (2.74)
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where f̂i = (πB
i )⊥. Finally, we write the above equation in the Zξ = Λρ̇ matrix form: −f̂T

1 r⊥O1C f̂T
1

−f̂T
2 r⊥O2C f̂T

2

−f̂T
3 r⊥O3C f̂T

3

ξ = −diag(sin γ1, sin γ2, sin γ3)ρ̇. (2.75)

In the case of a 3-RPP planar parallel mechanism, the velocity equation has the same

form, but the right-hand side has a positive sign rather than negative and f̂i = (πA
i )⊥.

(b) Using screw theory

The reciprocal screws ζi, i = 1, 2, 3, are the screws passing through the passive R joint

in each leg and normal to the direction of the corresponding passive P joint. Hence,

their direction is along the already defined unit vector f̌i, i.e.,

fi =



[
− sinαA

i

cosαA
i

]
, for 3-RPP PPMs

[
− sinαB

i

cosαB
i

]
, for 3-RPP PPMs

(2.76)

Their moment mi of fi about C is defined as

mi = −fT
i r⊥OiC

=

{
−(x− xOOi

) cosαA
i − (y − yOOi

) sinαA
i , for 3-RPP PPMs

−(x− xOOi
) cosαB

i − (y − yOOi
) sinαB

i , for 3-RPP PPMs

(2.77)

The diagonal elements of Λ (see Eq. 2.8), are

λi =

{
sin γi, for 3-RPP PPMs

− sin γi, for 3-RPP PPMs
(2.78)

2.4.7.3 Obtaining the Singularity Loci

Among all ten planar parallel mechanism designs, the 3-RPP and 3-RPP ones

are the only two that have no Type 1 singularities. Thus, their constant-orientation

workspace is the whole plane. Furthermore, the reciprocal screws for both the 3-RPP

and 3-RPP planar parallel mechanisms depend only on the orientation of the mobile

platform. Therefore, for a given orientation, a 3-RPP or 3-RPP planar parallel mech-

anism is either at a Type 2 singular configuration for all positions in the plane or has

no Type 2 singularities at all.
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Indeed, solving detZ = 0, gives the following pair of distinct orientations:

φ =


− tan−1

(
xφ

yφ

)
+ kπ if yφ 6= 0

−π
2

+ kπ if yφ = 0

(2.79)

where k = 0, 1 and

xφ = −xOO3 sin β2 cos β3 − yOO3 sin β2 sin β3 + xOO2 cos β2 sin β3,

yφ = sin β2(xOO3 sin β3 − yOO3 cos β3 − xOO2 sin β3).

In the above expressions, βi = βA
i for 3-RPP planar parallel mechanisms and βi =

βB
i for 3-RPP planar parallel mechanisms, where we have assumed without loss of

generality that β1 = 0.

Therefore, the complete workspace of 3-RPP and 3-RPP planar parallel mechanisms

is unrestricted with the exception of the two planes φ = const defined by Eq. (2.79).

2.4.7.4 Summary

We may summarise the following list of observations for the singularity loci of 3-RPP

and 3-RPP planar parallel mechanisms:

✓ there is only one working mode;

✓ there are no Type 1 singularities;

✓ there are only four orientations at which there are Type 2 singularities, and they

happen to be the whole plane.

2.4.8 Singularity Analysis of 3-RRP PPMs

Referring to Fig. 2.4.8, we denote by θi the active joint variables, which in this case are

the angles between the x axis and the proximal links OiAi. The length of the proximal

links is `. The angles defining the directed lines parallel to the directions of the P joint

are denoted, as usual, by αi, while the unit vectors along these lines are referred to

as πi. Furthermore, the directed lines passing through points Ai are defined by their

moments µi about the platform centre C.
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Figure 2.18: A 3-DOF PPM of type 3-RRP.

2.4.8.1 Solving the Inverse Kinematic Problem

Geometrically, the inverse kinematic problem for a PRR chain can be seen as the

problem of finding the points of intersection between a circle of radius ` and centre Oi

and the directed line i. By definition,

(πi × rAiC)z = rT
AiC

π⊥
i = (rOiC − rOiA)T

[
− sinαi

cosαi

]

=

([
x− xOOi

y − yOOi

]
− `

[
cos θi

sin θi

])T [
− sinαi

cosαi

]
= µi. (2.80)

Expanding Eq. (2.80) and rearranging leads to

` sinαi cos θi − ` cosαi sin θi = µi + (x− xOOi
) sinαi − (y − yOOi

) cosαi ≡ pi, (2.81)

where pi is the moment of πi about Oi. Solving Eq. (2.81) gives us

sin θi =
−pi cosαi + δi sinαi

√
Γi

`
, cos θi =

pi sinαi + δi cosαi

√
Γi

`
, (2.82)

where δi = ±1 is a branch index and Γi = `2 − p2
i .
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2.4.8.2 Obtaining the Velocity Equation

(a) Using differentiation

Differentiating Eq. (2.80) with respect to time leads to(
v − θ̇ir

⊥
OiA

)T

π⊥
i + rT

AiC
(−πi)ω = 0. (2.83)

Let f̂i = π⊥
i = [− sinαi, cosαi]

T . Therefore, we can write

f̂T
i v − f̂T

i r⊥AiC
ω = f̂T

i r⊥OiA
θ̇i. (2.84)

Using the identity sinαi sin θi + cosαi cos θi = δi
√

Γi/` we obtain

−f̂T
i r⊥AiC

= −πT
i rAiC = −(x− xOOi

) cosαi − (y − yOOi
) sinαi + δi

√
Γi, (2.85)

and

f̂T
i r⊥OiA

= δi
√

Γi. (2.86)

Finally, we write the above velocity equation in the Zξ = Λθ̇ matrix form: −f̂T
1 r⊥A1C f̂T

1

−f̂T
2 r⊥A2C f̂T

2

−f̂T
3 r⊥A3C f̂T

3

ξ = diag
(
δ1
√

Γ1, δ2
√

Γ2, δ3
√

Γ3

)
θ̇. (2.87)

(b) Using screw theory

The reciprocal screws ζi are the screws passing through the passive R joint in each leg

and normal to the direction of the corresponding passive P joint. Hence, their direction

is along the already defined unit vector f̂i, i.e., fi = f̂i = π⊥
i . Their moment about the

platform centre C is defined as

mi = (fi × rAiC)z = −rT
AiC

πi =

([
x− xOOi

y − yOOi

]
− `

[
cos θi

sin θi

])T [
− cosαi

− sinαi

]
= −(x− xOOi

) cosαi − (y − yOOi
) sinαi + δi

√
Γi. (2.88)

The diagonal elements of Λ are

λi = (rOiAi
× fi)z = fT

i r⊥OiAi
= δi

√
Γi. (2.89)
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2.4.8.3 Obtaining the Singularity Loci

Type 1 singularities of 3-RRP PPMs occur when a proximal link is normal to the

direction of its corresponding P joint, i.e., when Γi = 0. For a constant orientation

of the mobile platform, Type 1 singularities are, therefore, a pair of parallel lines at a

distance 2`. The vertex space of 3-RRP PPMs is the area between these two lines, just

like in 3-PRR and 3-PRR PPMs.

Type 2 singularities, on the other hand, are more complicated and depend on the

working mode of the mechanism. Let us assume without loss of generality that ` = 1,

α1 = 0, µ1 = 0, µ2 = 0, xOO1 = 0, yOO1 = 0, and yOO2 = 0. Then, Type 2 singularities

are defined by the following expression

detZ = sinα2 cosα3xOO3 − sinα3 cosα2xOO2 + sinα2 sinα3yOO3

+ sin(α3 − α2)δ1
√

Γ1 − sinα3δ2
√

Γ2 + sinα2δ3
√

Γ3 = 0.
(2.90)

The Type 2 singularity loci for a constant orientation of the platform form a curve

of degree 6 that corresponds to all working modes. In fact, the polynomial is of degree

4 in y, but of degree 6 in x and as a whole. The expression, however, is enormous and

will not be presented here. It is obtained symbolically by rearranging and raising to

square the above expression in a way similar to the one used for 3-RRR PPMs.

Fig. 2.19 shows an example of the singularity loci of a general 3-RRP PPM. The

mechanism parameters are ` = 130, α1 = 0, α2 = 2π/3, α3 = −2π/3, µ1 = µ2 = µ3 = 0,

xOO1 = yOO1 = yOO2 = 0, xOO2 = −76.7, xOO3 = −38.3, and yOO3 = −66.4. In this

figure, the Type 2 singularity loci for all eight working modes are drawn in red. Once

again, all branch index changes are done at the vertex space boundaries, i.e., at Type 1

singularities.

By inspecting the expression in Eq. (2.90) more carefully, we reach to the conclu-

sion that it can never be factored by separating one of the δi
√

Γi terms. Therefore,

the Type 2 singularities are always inside all vertex spaces, i.e., inside the constant-

orientation workspace. Furthermore, there is no polynomial that corresponds to a

single working mode. However, one of the δi
√

Γi terms can easily disappear if two of

the directed line angles are equal, i.e., if α2 = α1 = 0, or α3 = α1 = 0, or α2 = α3.

Instead of studying this interesting case algebraically, let us immediately analyse it

geometrically. The directions of the reciprocal screws in the mobile frame are fixed by

the design of the mechanism. If we build two of the P joints so that their directions
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Figure 2.19: Example for the singularity loci of a 3-RRP PPM.

are parallel they will always stay parallel. The third P joint should not, however, be

parallel to the first two. Therefore, the three reciprocal screws will never be dependent

except if the two screws with parallel axes coincide.

Such a simplified PPM will obviously be free of Type 2 singularities, as long as the

intermediate R joints in the legs with parallel P joints do not coincide. Or, in other

words, the distance between the base R joints in the legs with parallel P joints should

be greater that 2`. An example of such a simplified Type 2 singularity-free planar

parallel mechanism is shown in Fig. 2.20.

Note that Type 2 singularities may be eliminated in the same way for 3-RPP,

3-RPP , and 3-PRP planar parallel mechanisms.
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A1

A2

A3
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`
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Figure 2.20: A special 3-RRP PPM with two parallel P joints.
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2.4.8.4 Summary

We may summarise the following observations for the singularities of 3-RRP planar

parallel mechanisms:

✓ there are eight working modes that are all kinematically different;

✓ for φ = const, Type 1 singularity loci are 3 pairs of parallel lines distanced at 2`;

✓ vertex space i is the area between the two corresponding parallel lines;

✓ for φ = const, Type 2 singularity loci are curve of order 6;

✓ the singularity loci of Type 2 are inside the COW;

✓ at the points of contact, a change of a branch index occurs;

✓ if (only) two P joints are parallel, and the distance between the corresponding

two base R joints is greater than 2`, there are no Type 2 singularities.

2.4.9 Singularity Analysis of 3-PRP PPMs

A design of this type was proposed in (Daniali et al., 1993) under the name double-

triangular manipulator. In addition, a 3-PRP alignment stage, based on the just

previously mentioned singularity-free design concept is commercially available by the

Japanese company Hephaist Seiko (http://www.hephaist.co.jp).

Referring to Fig. 2.4.9, we denote by ρO
i the active joint variables. Let in each

leg, the directed line through the R joint and along the active (passive) translation be

defined by its moment µO
i (µB

i ) about the base (platform) frame centre, O (C), and

its angle αO
i (αB

i ) measured from the base x axis. As usual, the unit vectors along the

active (passive) translation will be denoted by πO
i (πB

i ).

2.4.9.1 Solving the Inverse Kinematic Problem

By definition,

(πB
i × rAiC)z = rT

AiC
(πB

i )⊥ = rT
AiC

[
− sinαB

i

cosαB
i

]
= µB

i , (2.91)

and

(πO
i × rAiO)z = (rAiC − p)T (πO

i )⊥ = (rAiC − p)T

[
− sinαO

i

cosαO
i

]
= µO

i . (2.92)

http://www.hephaist.co.jp
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Figure 2.21: A 3-DOF PPM of type 3-PRP.

Solving Eqs. (2.91) and (2.92) gives

rAiC =
1

sin(αO
i − αB

i )

[
cosαB

i sinαO
i x− cosαB

i cosαO
i y − cosαB

i µ
O
i + cosαO

i µ
B
i

sinαB
i sinαO

i x− sinαB
i cosαO

i y − sinαB
i µ

O
i + sinαO

i µ
B
i

]
.

(2.93)

On the other hand,

rAiC = p− rOOi
− ρO

i πO
i , (2.94)

where point Oi is fixed to the base somewhere on the directed line passing through Ai.

It is clear that a unique solution for ρO
i can be easily found by solving Eqs. (2.93) and

(2.94).

Note, however, that when sin(αO
i − αB

i ) = 0, i.e., when the directions of both P

joints in a leg are parallel, Eq. (2.93) is no longer valid, and ρO
i cannot be uniquely

defined.
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2.4.9.2 Obtaining the Velocity Equation

(a) Using differentiation

Differentiating Eq. (2.91) with respect to time leads to

(v − ρ̇O
i πO

i )T (πB
i )⊥ − rT

AiC
πB

i ω = (v − ρ̇O
i πO

i )T (πB
i )⊥ − (r⊥AiC

)T (πB
i )⊥ω = 0. (2.95)

Setting f̂i = (πB
i )⊥ and writing the above equation in matrix form gives us

[
−f̂T

i r⊥AiC
f̂T
i

] [ ω
v

]
=
(
f̂T
i πO

i

)
ρ̇O

i . (2.96)

If we use the expression found for rAiC , we have

f̂T
i rAiC = −µ

O
i − sinαO

i x+ cosαO
i y − cos(αO

i − αB
i )µB

i

sin(αO
i − αB

i )
(2.97)

and

f̂T
i πO

i =

[
− sinαB

i

cosαB
i

]T [
cosαO

i

sinαO
i

]
= sin(αO

i − αB
i ). (2.98)

Finally, we write the above velocity equation in the Zξ = Λθ̇ matrix form:

 −f̂T
1 r⊥A1C f̂T

1

−f̂T
2 r⊥A2C f̂T

2

−f̂T
3 r⊥A3C f̂T

3

ξ = diag
(
sin(αO

1 − αB
1 ), sin(αO

2 − αB
2 ), sin(αO

3 − αB
3 )
)
θ̇. (2.99)

(b) Using screw theory

The reciprocal screws ζi are the screws passing through the passive R joint in each

leg and normal to the direction of the corresponding passive P joint. Hence, their

direction is along the already defined unit vector f̂i, i.e., fi = f̂i. Their moment about

the platform centre C is defined as

mi = (fi × rAiC)z − fT
i rAiC =

µO
i − sinαO

i x+ cosαO
i y − cos(αO

i − αB
i )µB

i

sin(αO
i − αB

i )
. (2.100)

where rAiC is defined by Eq. (2.93), if the directions of both P joints in leg i are not

parallel, or otherwise by Eq. (2.94).
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As for the diagonal elements of Λ, they are

λi = fT
i πO

i = sin(αO
i − αB

i ). (2.101)

2.4.9.3 Obtaining the Singularity Loci

As we already mentioned, the 3-PRP PPM has only one working mode. Hence, the

vertex space and the COW for a given orientation are the whole plane. Yet, the 3-PRP

PPM is not free of Type 1 singularities. Such a singularity occurs when the directions

of both P joints in a leg coincide. Obviously, there are at most six orientations at which

this may occur. In other words, there are at most six lines corresponding to Type 1

singularities in the complete three-dimensional workspace. This refutes the common

misconception that Type 1 singularities are always the boundaries of the workspace.

The expression for the determinant of Z is a fraction of which the denominator is

sin(αO
1 − αB

1 ) sin(αO
2 − αB

2 ) sin(αO
3 − αB

3 ). Thus, let us first study the case when this

denominator is non-zero, i.e., when there is no Type 1 singularity. The numerator

of detZ is a linear polynomial in x and y whose coefficients are dependent on the

orientation of the mobile platform. Hence, in general, the Type 2 singularity loci for a

constant orientation of the platform correspond to a line.

If, however, αB
i = αO

i + φ for i = 1, 2, 3, as in the double-triangular manipulator

(Daniali et al., 1993), shown in Fig. 2.22, then the numerator of detZ is dependent

only on the platform orientation (does not contain x and y terms). In fact, in this

case, there are only two orientations at which the parallel mechanism is in a Type 2

singularity whatever its position:

φ = ± cos

(
µO

1 sin(αO
2 − αO

3 ) + µO
2 sin(αO

3 − αO
1 ) + µO

3 sin(αO
1 − αO

2 )

µB
1 sin(αO

2 − αO
3 ) + µB

2 sin(αO
3 − αO

1 ) + µB
3 sin(αO

1 − αO
2 )

)
. (2.102)

From the above expression, we may conclude that one possible way to eliminate

Type 2 singularities is to make the directed lines for the passive P joints pass through

one point. Choosing C to coincide with that point, translates to µB
1 = µB

2 = µB
3 = 0.

Another way to eliminate Type 2 singularities was already proposed at the end of

Section 2.4.8.3. To do this, it suffice to design the mechanism, so that two, and only

two, of the directed lines of the passive P joints be parallel.

Now, let us see what happens when leg i is in a Type 1 singularity. If the mechanism

is not constructed in the way just mentioned, then at a Type 1 singularity (and at any
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(a) (b)

Figure 2.22: The double triangular manipulator (a) at a nonsingular configuration and

(b) at a combined Type 1 and Type 2 singularity.

other configuration, in fact), the screw axes for the remaining two (non-singular) legs

intersect at one point. Since moving the actuator of the singular leg does not produce

any change in the pose of the mechanism but translates screw axis i, the latter can be

adjusted to pass through the intersection point of the other two screw axes. Therefore,

all Type 1 singularity loci may also correspond to Type 2 singularities (if Type 2

singularities exist at all).

Finally, note, that in a mechanism for which αB
i = αO

i + φ for i = 1, 2, 3, if it is

physically possible to have one leg in a Type 1 singularity, then the other two legs

will also be singular. (This may easily occur in the double-triangular manipulator, for

example.) Once such a mechanism enters a Type 1 singularity, the platform becomes

jammed and can no longer get away with the aid of the three actuators. What is more,

even external action cannot remove the platform from this pose unless the actuators

are arranged in such a way as to provoke a Type 2 singularity (Fig. 2.22).

2.4.9.4 Summary

We may summarise the following observations for the singularities of 3-PRP PPMs:

✓ there is only one working mode;

✓ at only six orientations, there are Type 1 singularity loci corresponding to a line;

✓ Type 1 singularity loci may also, in general, correspond to Type 2 singularities;

✓ in general, for φ = const, Type 2 singularity loci form a line;

✓ if the directed lines of the passive P joints are intersecting at one point, there are

only two orientations at which the PPM is at a Type 2 singularity everywhere.
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2.5 Further Remarks

Through the complete set of all possible planar parallel mechanisms with revolute

and/or prismatic joints, we have been able to show the beauty of the reciprocal screw

method. The velocity kinematic analysis of planar parallel mechanisms based on screw

theory is rigorous, compact, intuitive, and brings an insight into the robot kinematics.

This powerful geometric tool allows a designer to promptly identify ways of simpli-

fying the mechanical design in order to reduce or even eliminate singularities. The

method provides solid means for explaining some rather particular singular configura-

tions, which have otherwise been often wrongly described by other researchers.

However, the contribution of this chapter is not limited to the advocacy of the use of

reciprocal screws. Numerous important results have been outlined up to here. Namely,

new designs of planar parallel mechanisms with few or even no singularities have been

identified. It has been shown that Type 1 singularities do not always correspond to

the workspace boundaries. The issue of singularities in the presence of working modes

(branch sets) has been directly addressed. It has been shown how for some architectures

the singularities for all working modes correspond to one or several curves. These

singularity curves were shown to be separated by points of contact with the Type 1

singularity loci into segments corresponding to different working modes.

In addition to all that, we will comment next in greater detail on some of the issues

that were not fully explored up to here. Yet, some of these points will not be fully

investigated here either. Instead, we will lay the paths to new unexplored areas that

deserve the serious attention of detailed devoted studies.

2.5.1 Parameterisation and Polynomial Derivation

In this chapter, we have used the minimal and most intuitive parameterisation for all

ten planar parallel architectures. In the case of base and/or platform R joints, we used

the coordinates of vectors rOOi
and rCBi

expressed in the base frame, (xOOi
, yOOi

) and

(xCBi
, yCBi

), respectively. In the case of base and/or platform P joints, we used the

angle between the base x axis and the direction of the P joint, αi, and the moment,

µi, of the line directed along the P joint and through the neighbouring R joint about

the base and platform centres, respectively. In addition, we assumed without loss of

generality that some of the parameters are zeros.
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The described parameterisation was very useful for the elegant derivation of the

matrices Z and Λ. In most cases, we did not even have to define exactly the active

joint variables, when the active joints were prismatic. Consequently, we did not need

to present the complete solution to the inverse kinematic problem.

However, a slightly different parameterisation may be more convenient for the

derivation of the polynomial representing the Type 2 singularity loci of a planar paral-

lel mechanism with multiple working modes. For example, for 3-RRR planar parallel

mechanisms, instead of using xOOi
and yOOi

as parameters, xCBi
−xOOi

and yCBi
−yOOi

have been used (Bonev and Gosselin, 2001). The latter is essential in order to reduce

the number of terms in the final polynomial.

2.5.2 PPMs with Mixed Legs

Firstly, let us consider the case of a planar parallel mechanism with any combination of

three legs from the ten different studied previously. For such a mechanism, one should

simply write the scalar velocity equation for each leg as given before and then combine

all three to obtain the matrices Z and Λ. Note that one can easily reverse the order

of the joints (e.g., use an RRR chain and an RRR one) and still use our equations.

To obtain the singularity loci of Type 2, one should simply compute detZ in order to

obtain a polynomial in x and y.

Secondly, let us consider the case of a planar parallel mechanism with a leg having

two passive P joints and one active R joint (RPP, PRP, PPR) and any combination

of two legs from the ten different studied previously. As we already mentioned in

Section 2.3.2, the reciprocal screw of the leg with the two passive P joints is the moment

about the z axis. Hence, for the planar parallel mechanism to be in a Type 2 singular

configuration, the reciprocal screws of the two other legs, which are forces in the xy

plane, should be linearly dependent. So, we only need to obtain the expressions for f2

and f3, and check when their vector product vanishes.

In both cases, the corresponding Type 1 singular configurations can be deduced

directly from the diagonal elements of the matrix Λ. However, the singularity loci

can be determined in a much easier manner by a simple geometric method—the same

algorithm as the one used for the computation of the constant-orientation workspace

of the planar parallel mechanisms.
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2.5.3 The Missing “Type 3” Singularities

Some readers might ask why we have omitted the so-called Type 3 singularities. This

type was introduced in (Gosselin and Angeles, 1990) in conjunction with Type 1 and

Type 2 singularities. It was defined as the type of singularity configurations at which

matrices Z and Λ are both singular. Then, the type was erroneously associated with

architecture singularities. It was later claimed that Type 3 singularities are only a sub-

set of architecture singularities (Ma and Angeles, 1992). This inaccurate definition may

even be found in a recent textbook on robotics (Tsai, 1999). As we show, architecture

singularities, or finite self motions, are not related to the simultaneous degeneracy of

matrices Z and Λ.

Indeed, for a parallel mechanism, the singularity loci of Type 2 generally intersect

the vertex space boundary, i.e., the singularity loci of Type 1 and no special design

conditions are required for that. One obvious example is a 3-RPR planar parallel

mechanism, where, for a constant orientation, the intersection points of the Type 2

singularity loci (a conic) and Type 1 singularity loci (three circles) always exist for any

design with ` 6= 0. We have observed that configurations at which both matrices Z and

Λ are singular exist for the general designs of most 3-DOF planar parallel mechanisms.

However, generally, there is no finite uncontrollable motion in these configurations. In

conclusion, those special configurations (i) do not occur for particular designs only and

(ii) do not necessarily correspond to self motions.

2.5.4 PPMs with Parallelograms

A parallelogram is a four-bar mechanism whose opposing links are of equal length

(Fig. 2.23a). It has the property that at least a pair of opposing links remains parallel

at all times. The parallelogram is sometimes used in the construction of mechanisms as

a 1-DOF pair (denoted as Pa) in combination with P and R joints. However, we would

like to stress that the parallelogram is not a distinct kinematic pair in the strictest sense.

Indeed, an exhaustive study of 3-DOF chains based on one passive/active Pa joint

and any combination of P or R joints, placed in any order, shows that any such chain

has a kinematically equivalent serial 3-DOF chain with only three P and/or R joints.

In particular, for any 3-DOF planar parallel mechanism with identical legs that have

Pa joints, there is a kinematically equivalent 3-DOF planar parallel mechanism with

legs of type RRR, RRR, PRR, or PRR. By kinematically equivalent planar parallel
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Figure 2.23: An example showing (a) a RPaR serial chain and (b) its kinematically

equivalent RRR chain.

mechanism, we mean a mechanism that has the same input-output velocity equation

and the same singularities. For example, the 3-DOF 3-RPaR mechanism whose leg

is shown in Fig. 2.23 is kinematically equivalent to a 3-DOF 3-RRR planar parallel

mechanism. Basically, in all cases, the Pa joint is substituted by an R joint, but the

order of the three joints does not always remain the same (e.g., 3-PaPR planar parallel

mechanisms are kinematically equivalent to 3-PRR mechanisms). This is an interesting

fact, since, instantaneously, a Pa joint is equivalent to a translation.

Hence, the main reasons for using parallelograms in practice may be to avoid link

interference and to achieve static or even dynamic balancing, e.g., (Chung et al., 2001).

Of course, parallelograms are also ideal if legs with two actuators are needed, in which

case, both drives can be placed at the base.

2.5.5 Workspace Segmentation, Working Modes, and

Assembly Modes

We saw that the singularities of Type 2 for some planar parallel mechanisms (and this

also applies to some spatial parallel mechanisms) depend on the given working mode of

the parallel mechanism. We also observed that the Type 2 singularity loci divide the

workspace into segments. Typically, each of these segments corresponds to a different

assembly mode. Since Type 2 singularities should be avoided, the usable workspace of

such a parallel mechanism is limited to only one of these segments which also determines

the preferred assembly mode.
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Figure 2.24: Workspace segmentation by working modes in case of mechanical limits

on the active joints.

2.5.5.1 Workspace Segmentation Upon Mechanical Limits

In practice, the range of revolute and, especially, prismatic actuators is limited.

Therefore, the actual vertex space for a given leg may differ in form and shape. For

example, Fig. 2.24 shows the different vertex spaces for each working mode for an RRR

chain for which the range of the active R joint is only 90◦.

Similarly, in practice, mechanical interference may cause further limitation and

segmentation of the workspace. For example, Fig. 2.25 shows a particular 3-RRR planar

parallel mechanism with proximal and distal links of length `, three coinciding base R

joints, and two coinciding platform R joints. For clarity, the proximal links are not

shown, but instead the common circular track on which all three intermediate R joints

move is drawn in green dashed line. The initial assembly of the mechanism imposes

that the three intermediate R joints (1, 2, 3) be arranged in a counter-clockwise circular

order. The centre of the mobile platform is represented by the diamond symbol. For

the zero orientation, we have drawn the two vertex spaces, which are the large dash-dot

circles of radius `. Their centres are represented, as usual, by the dot symbol.

The two blue dash-dot-dot circles of radius ` correspond to the loci where two

adjacent intermediate R joints (1 and 3, or 2 and 3) coincide. The red circle or,

rather, parts of it represent the Type 2 singularity loci. The filled region, composed of

five subregions, is the part of the workspace where the counter-clockwise order of the
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Figure 2.25: Workspace segmentation by working modes for a special 3-RRR PPM.

intermediate R joints is preserved. Close inspection reveals that the four left regions

correspond to the {−,+,−} working mode, while the right-most region corresponds to

the {+,−,+} branch set.

Note that the constant-orientation workspace, and everything else, for a different

orientation φ of the mobile platform will be exactly the same as that for φ = 0 but

rotated about the centre of the base R-joints (marked with an “×”) at an angle φ.

Therefore, the complete 3D workspace is separated into five disconnected volumes, one

of which corresponds to a different working mode.

Thus, in order to augment the usable workspace of some parallel mechanisms, with-

out changing the design parameters, we should be able to operate the mechanism in

more than one working mode.

2.5.5.2 Optimising Trajectory Through Change of Working Mode

To change the working mode, the mechanism should pass through or bounce off a

Type 1 singularity. Indeed, without attempting to set any formal definition, passing

through a Type 1 singularity may occur when the centre of the platform R joint of a

RPR or RRR leg passes through the interior vertex space boundary. An example of

such a trajectory is presented for an RRR chain in Fig. 2.26. (Note that the proximal

and distal links may be of different lengths.) For such a trajectory, changing the branch
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Figure 2.26: Passing through a Type 1 singularity by (a) changing or (b) keeping the

branch index.

index of the leg ensures the minimum-energy sequence. In fact, for a given platform

motion, it may even be impossible to keep the branch index due to power limits in the

actuators. The same is true for some point-to-point trajectories, where passing through

a Type 1 singularity and changing a branch index is not obligatory but ensures the

optimal path. This provides yet another pro for changing working modes.

2.5.5.3 Practical Implications of Changing a Working Mode

In practice, though, changing a branch index in an automated manner is not a

trivial task. In fact, in some cases it is not even mechanically feasible due to the

limited range of the passive joints (e.g., the U joint in a 6-RUS parallel mechanism).

In planar parallel mechanisms, however, we may assume that this problem does not

exist, since passive R joints with no mechanical limits can be easily built. Thus, the

main problem is how to switch between two branch indices.

This problem has two implications: (1) how to mechanically force the leg to change

its configuration, and (2) how to control the mechanism while at or even close to a

Type 1 singularity. And all this should be done at a minimum cost. Thus, the straight-

forward solution of installing extra actuators at the passive joints is unacceptable.

Rather, the solution should be based on a mechanical principle such as the installation

of a mechanical device (e.g., a spring) or making use of inertia (Hesselbach et al., 2002).

To the best of our knowledge, however, no parallel mechanism that can automatically

switch working modes has yet been built.
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(b)(a)

Figure 2.27: Workspace of a PRRRP PPM in (a) {+,−} and (b) {−,−} working

modes.

2.5.5.4 Changing Working Modes Leads to Type 2 Singularities?

At a recent conference, Hesselbach et al. (2002) reported what seemed to be the first

practical implementation of a parallel mechanism that can indirectly switch working

modes in an automated manner. Their excellent example deserves a close look to

conclude our section on workspace segmentation. Yet, this example will only widen the

open questions left so far.

Hesselbach et al. (2002) constructed a 2-DOF PRRRP PPM such as the one shown

in Fig. 2.27. For this parallel mechanism, the axes of the P joints are parallel and the

ranges of the same are, naturally, limited. The mechanism has four working modes and

for each working mode, the workspace and the Type 2 singularity loci are different.

Figure 2.27 shows the workspace boundaries, i.e., the Type 1 singularities (in dash-dot

line), and the Type 2 singularity loci (in red solid line) for two of the working modes.

For the other two working modes, all entities are mirror images.

Note that Type 2 singularities (when the links are aligned) exist in only two of

the working modes ({+,+} and {−,−}). In these two working modes, the Type 2

singularity loci, a line segment, separates the workspace into two parts. Each of this

parts corresponds to one of the two assembly modes of the mechanism (Fig. 2.27b).

In order to make use of the complete workspace of this mechanism, one should be

able to switch among its working modes. In fact, it will be sufficient and necessary to be

able to operate in the {+,−} and {−,+} working modes. Indeed, being able to operate

in any other combination of up to three modes excluding the possibility of having both

the {+,−} and {−,+} ones does not lead to any important workspace augmentation.

Close inspection reveals, however, that it would be impossible to move from the {+,−}
to the {−,+} working modes without passing through a Type 2 singularity...
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This controversial condition is probably a requirement for many other planar parallel

mechanisms. We started the section stating that working mode change is advantageous

since Type 2 singularity loci are also changed and thus can be avoided for certain

trajectories. But now we conclude that to do this change, a Type 2 singularity should

be confronted... Of course, we also saw that there are a plethora of other obvious

advantages in the ability to switch working modes. But after all, is this possible at all?

Well, Hesselbach et al. (2002) have done it. And instead of changing branch index by

branch index and in the process pass through a Type 2 singularity, they have adopted

a completely different approach. Instead of fearing the Type 2 singularity, the authors

confront it directly using the inertia of the end-effector (at the middle R joint) to switch

between ... assembly modes.

With this final example, we will conclude our discussion on working modes. This

problematic is certainly of great theoretical and practical importance, yet it is largely

unexplored. We saw that the geometric approach based on a local-coordinate formu-

lation (x, y, φ) is very helpful for most situations. However, we should admit that a

thorough systematic analysis of this problem should be approached by studying the

configuration space of the parallel mechanism and relying on a more advanced mathe-

matical techniques such as differential geometric analysis.



Chapter 3

Constraint Analysis of 3-DOF

Spatial Parallel Mechanisms

An unorthodox set of rotation angles, referred to by us as the Tilt & Torsion (T&T) angles,
has been independently proposed by several authors for use in human body modelling and
parallel mechanism analysis. The T&T angles are similar to the ZYZ (φ, θ, ψ) Euler angles,
except that a fourth clockwise rotation about Z at an angle φ is added. These new angles are
easier to interpret geometrically and allow simple computation and representation of the 3D
orientation workspace and the 2D projected orientation workspace.

This chapter begins by shedding light on the various advantages of these angles, as used
in the analysis of spatial parallel mechanisms. Then, we show that the new angles greatly
facilitate the geometric analysis of a special class of 3-DOF spatial parallel mechanisms with
mixed DOFs: two rotations and one translation. We prove that for this class the last angle is
always zero. Hence, using the new angles leads to the simplest kinematic model and reveals
the exact type of rotational DOFs.

75
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3.1 Introduction

The need for a geometric approach in the kinematic analysis of spatial parallel mech-

anisms is even more pronounced than for planar ones. The added dimension spurs an

exponential increase in the complexity of the algebraic expressions that govern the mo-

tion of the mechanism. An in-depth geometric analysis can significantly reduce the size

of these expressions. Furthermore, the essential geometric interpretation of the motion

of a mechanism is almost impossible if based purely on the analysis of some algebraic

expressions.

The complexity in the analysis of spatial motion is mainly due to the nature of

rotations in space which not only requires two more parameters, but is coupled and

non-Euclidean. Not surprisingly, then, we commence our endeavour to investigate

spatial kinematic geometry with a study of orientation representation.

Representing the orientation of a body in space is a non-trivial problem that has

intrigued scientists for centuries. According to Euler’s Rotation Theorem, a rigid body

can be guided into any orientation in space by a single rotation. The variable axis

and angle of this rotation can be used to parameterise the possible body orientations—

an idea that leads to the use of quaternions and Rodrigues parameters to describe

orientation (Murray et al., 1994). However, it is often much more practical to generate

the new orientation of the body using one or more rotations about constant axes, such

as the reference frame axes. Then, we can describe body orientation by only specifying

the angles of the rotations, in analogy to the single angle that describes the orientation

of a shape in the plane.

In general, three rotations about some of the coordinate axes are needed to bring the

body into an arbitrary orientation. The angles of these rotations are referred to as Euler

angles, and since Leonard Euler first considered them in his Theoria motus corporum

solidorum, these three parameters have provided the most popular description of rigid

body orientation.

The coordinate transformation associated with a change of orientation is given by

a 3 × 3 proper orthogonal rotation matrix, R. If p is a vector whose coordinates

are expressed in the fixed frame, Oxyz (the base frame), and p′ is the same vector

expressed in the rotated body frame, O′x′y′z′ (the mobile frame), then p = Rp′. When

R represents a rotation at an angle α about a coordinate axis it has a well known form:
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Rx(α) =

1 0 0

0 cosα − sinα

0 sinα cosα

, Ry(α) =

 cosα 0 sinα

0 1 0

− sinα 0 cosα

, Rz(α) =

cosα − sinα 0

sinα cosα 0

0 0 1

.
To describe orientation via Euler angles is to perform a single arbitrary rotation

as a pre-chosen sequence of coordinate-axis rotations, i.e., to express any R as an

ordered product of three matrices of the above form. Since matrix multiplications do

not commute, the order is important. There are twelve different sequences of the three

rotations, and hence, there can be twelve Euler-angle conventions: XYZ, XZY, YXZ,

YZX, ZXY, ZYX, XYX, XZX, YXY, YZY, ZXZ, and ZYZ.

For example, using the XYZ convention, R = Rx(αx)Ry(αy)Rz(αz). In this ex-

pression, R is decomposed as an ordered product of three rotation matrices. However,

there are multiple interpretations of the actual physical sequence of rotations that this

product represents. When a product of two matrices is read from right to left the two

rotations are performed, in that order, as if they are given in the base frame. Equiva-

lently, the two factors can be performed from left to right but then they are rotations

about axes in a frame attached to the body. For example, R can be achieved by exe-

cuting the rotations about the fixed Oz, Oy, and Ox. Equivalently, the body can be

rotated about its own body frame axes: first about the original Ox axis, next about the

new Oy axis (now at an intermediate location y∗) and then about the final z′ axis.

The numerous possible conventions and their multiple interpretations have led to

a certain confusion in the use of the term “Euler angles.” Different texts use different

conventions, yet the authors often assume that their chosen variant is the “standard”

one, and fail to clearly describe the axes used or the order of the rotations. Sometimes,

other proper names are used to describe the parameters, such as Fick angles (ZYX)

or Helmholtz angles (YZX), and to complicate things even further some authors use

left-handed reference frames.

Fortunately, standard practices in the use of Euler angles have been established in

the different fields. For example, most physics textbooks use the ZXZ convention and

refer to the corresponding three angles as precession, nutation, and spin. Aeronautical

engineers generally use the XYZ convention and refer to the three angles as bank,

attitude,, and heading, or, more commonly, roll, pitch, and yaw. The same convention

is also used in the automotive and machine tool industries. In robotics, the term “Euler

angles” usually refers to the ZYZ convention.
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The use of different conventions to model different problems is not (entirely) a

matter of personal preference or arbitrary choice. It is determined by the type of

coordinate frame used in the field and the nature of a typical displacement in the

studied system. Conventions of the roll-pitch-yaw type, with three different axes, are

suitable when small rotations occur frequently, while the use of only two axes (as in

precession-nutation-spin conventions) gives a clearer geometric picture of an orientation

defined by an arbitrary set of Euler angles.

Parallel kinematic machine (PKM) terminology and notation is usually borrowed

from the robotics and machine tool industries. However, neither the ZYZ nor the roll-

pitch-yaw angles used in the two fields are suitable to become a standard for describing

PKM platform orientation. In what follows, we make clear the important advantages of

a relatively new, modified set of angles that cannot be classified into any of the above

mentioned categories of orientation representation.

3.2 The Tilt-and-Torsion Angles

Various 6-DOF parallel mechanism applications do not require the rotational degree of

freedom about the mobile z′ axis. For example, hexapods used in telescope secondary

mirrors or as satellite dish bases have an axisymmetric mobile platform. PKMs are

also usually equipped with an axisymmetric tool along their mobile z′-axis, and so

the rotation of the mobile platform about this axis is irrelevant. Furthermore, the

mobile platform is usually shaped as an equilateral triangle, a semiregular hexagon, or

another non-rectangular shape, and exhibits no particular symmetry about any pair of

orthogonal axes that could be chosen as the mobile x′ and y′ axes.

Such observations have led to the idea of a modified set of orientation angles (Bonev

and Ryu, 1999a), particularly well suited to the specific symmetries of some hexapods.

These parameters were also introduced by Huang et al. (1999) and Wang (1999). In

the process of editing this text, we ran across a thread that lead us to the much earlier

origins of the angles. It turns out that the angles have been proposed by Korein

(1984) in his Ph.D. dissertation under the name halfplane-deviation-twist angles. The

author proposed the set due to its indisputable advantages in modelling the limits of

human body joints. At present, the angles seem to be somewhat popular for computer

animation of articulated bodies (Grassia, 1998; Baerlocher and Boulic, 2000), known

as swing-and-twist representation.
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Figure 3.1: The successive rotations that define the ZYZ Euler angles: (a) precession

and nutation, (b) spin.

The new angles were arrived at by a modification of a classic two-axis precession-

nutation-spin convention, such as ZYZ. In ZYZ, the three Euler-angle rotations are

defined as follows. First, rotate about Oz until the vertical Oxz plane incorporates Oz′.

Then, with a nutation about the new Oy axis, guide Oz into Oz′, Fig. 3.1(a). Finally,

spin the body about its z′ axis until the desired orientation is reached, Fig. 3.1(b). The

angles of these three coordinate-axis rotations are φ, θ, and ψ, respectively, precession,

nutation, and spin.

One can observe that the process, as described in the previous paragraph, has two

distinct stages. First, make Oz coincide with Oz′. Then, spin to the final orientation.

The newly proposed parameterisation uses the same two stages. However, unlike the

classic convention, the goal of the first stage, i.e. the guiding of Oz into Oz′, is achieved

directly, by a single rotation about a horizontal axis, a, Fig. 3.2(a). In other words, Oz

is tilted to its final location by the shortest path, and this movement is not preceded

by a precession.

Two points should be well understood. First, the tilt axis, a, is not a body coordi-

nate axis, at any time. Secondly, at the end of the tilt, when the Oz axis reaches its

final destination Oz′, the body will be oriented differently as compared to the end of the

classic precession-nutation sequence. Therefore, the final spin, σ, needed to achieve the

desired Ox′y′z′ orientation (Fig. 3.1b) will differ from the spin, ψ in the conventional

ZYZ Euler sequence. For this reason, we must use a different name and notation for the

angle of this final rotation: we can call it the endspin and will denote it by σ as opposed

to the (most) common ψ for the classic spin angle. More conventionally, we can refer
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Figure 3.2: The successive rotations that define the T&T angles: (a) tilt, (b) torsion.

to the endspin as the torsion. This last term describes well the physical effect of σ on

a PKM’s configuration and we will use it throughout this thesis. However, this word

should be handled with caution since, in the literature, “torsion” is used extensively

and with a variety of meanings.

Rather than decompose the rotation matrix R into three coordinate-axis rotations,

R = Rz(φ)Ry(θ)Rz(ψ), we have used two rotations, R = Ra(θ)Rz(σ). The axis of the

first is a variable horizontal axis, and we need an angle, φ, to locate it. This angle will

have the same value as the precession angle in the ZYZ convention. However, it has a

different geometrical interpretation. It is no longer the angle of one of the performed

rotations, but rather an indicator of the location of the tilt axis a. More precisely, φ

is the angle between Ox and the projection of Oz′ in Oxy, i.e., it defines the vertical

tilt plane (perpendicular to a, Fig. 3.2a) in which Oz must move to merge with Oz′.

In view of its new role we will refer to φ as the azimuth. The angle θ, between Oz and

Oz′, will be denoted as the tilt (and is equal to the classic nutation angle). Thus, the

new orientation angles are azimuth, tilt and torsion, (φ, θ, σ), and we will refer to this

parameterisation as the Tilt-and-Torsion (T&T) angles.

As we pointed out, the tilt rotation is not the same as precession-and-nutation,

Ra(θ) 6= Rz(φ)Ry(θ). However, it can be seen that Ra(θ) = Rz(φ)Ry(θ)Rz(−φ), i.e.,

to achieve the tilt Ra(θ) one needs to spin back at −φ after the precession and nutation

are completed. Therefore,

R = Ra(θ)Rz(σ) = Rz(φ)Ry(θ)Rz(−φ)Rz(σ) = Rz(φ)Ry(θ)Rz(σ − φ). (3.1)
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Thus,

R(φ, θ, σ) =

 cφcθcσ−φ − sφsσ−φ −cφcθsσ−φ − sφcσ−φ cφsθ

sφcθcσ−φ + cφsσ−φ −sφcθsσ−φ + cφcσ−φ sφsθ

−sθcσ−φ sθcσ−φ cθ

 (3.2)

where cφ ≡ cosφ, sφ ≡ sinφ, etc.

From the above, we see that the T&T angles (φ, θ, σ) are equivalent to the ZYZ

Euler angles (φ, θ, σ − φ), i.e., the spin angle ψ has been replaced with σ − φ. We

will see later that this seemingly slight change leads to significant simplifications in the

study of some spatial parallel mechanisms.

One of the characteristics of Euler angles, in any definition, is that any orientation

can be represented by at least two triplets of angles. To avoid this, we set the ranges of

the azimuth, tilt, and torsion as φ ∈ (−π, π], θ ∈ [0, π), and σ ∈ (−π, π], respectively.

3.3 Representations of the Orientation Workspace

The orientation workspace of a parallel mechanism is the set of all practically feasible

orientations of the mobile platform, for a given position. When the parallel mechanism

has three rotational freedoms, the graphical representation of the orientation workspace

becomes problematic due to the coupled and non-Euclidean nature of rotation as well as

the inherent singularity of any 3-dimensional parameterisation of orientation. However,

the T&T representation allows for a very intuitive and compact visualisation.

In the case of T&T angles as well as ZYZ Euler angles, there is a singularity at θ = 0.

Indeed, for such orientations, the choice of φ is arbitrary. However, at such a singularity,

the orientation of the mobile frame is defined by φ+ψ in the ZYZ convention, while if

using T&T angles, it is measured simply by σ. Similarly, for both sets of angles, there

is a singularity at θ = π. At this singularity, the orientation of the mobile frame is

defined by φ− σ in the ZYZ convention, while if using T&T angles, it is measured by

2φ− σ. However, for most applications θ = π is beyond the feasible range of motion.

The θ = 0 T&T representational singularity is of the same nature as the singularity

of a system of cylindrical coordinates (r, φ, h) occurring for zero-radius (r = 0). For this

reason, it is convenient to map the T&T parameters using such a cylindrical system
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Figure 3.3: Example for the orientation workspace of a 6-PUS parallel manipulator.

while identifying the tilt θ with the radius r and the torsion σ with the height h.

This yields a bijective map of the orientation workspace into a vertical cylinder in

3-dimensional space. This representation was introduced in (Bonev and Ryu, 1999a).

The feasible orientations of many existing parallel mechanisms have an inherent

symmetry about zero torsion. It is for this fundamental reason that the image of

the cylindrical mapping is typically a compact almond-shaped single volume giving a

very intuitive and faithful representation of the size and symmetry of the orientation

workspace. An example of this workspace is given in Fig. 3.3.

For many PKM applications, we are interested only in the set of all feasible direc-

tions of the mobile z′-axis, i.e., the set of all attainable pairs of azimuth and tilt. This

set was defined in (Bonev and Ryu, 1999a) as the projected orientation workspace due

to the fact that in the cylindrical coordinate system of our choice, this 2D workspace is

simply the projection of the 3D orientation workspace onto a horizontal plane. When

using T&T angles, the projected orientation workspace can be obtained with relative

ease using a computationally intensive discretisation method (Bonev and Ryu, 1999a;

Wang, 1999). However, with only a fraction of this computational cost one can obtain

a cross-section of the 3D orientation workspace for a given σ (Bonev and Ryu, 1999a;

Huang et al., 1999). Due to symmetry, the cross-section σ = 0 gives a particularly
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Figure 3.4: Example for the approximated projected orientation workspace.

good approximation of the total projected orientation workspace, although not neces-

sarily exact as pointed out in (Bonev and Ryu, 1999a). As a spin-off benefit, this fact

provides a straightforward solution to the redundancy problem of hexapods with ax-

isymmetric tools, namely, eliminate the redundant rotational freedom by fixing σ = 0,

with minimal loss of workspace.

An example of the approximated projected orientation workspace is shown in Fig. 3.4.

Not only can this workspace be computed quickly but it can also be shown in a very

intuitive representation that may be easily displayed on the low-resolution LCD panel

of a PKM or any other hexapod device.

These highly accurate workspace representations are in stark contrast to current

practices of hexapod manufacturers, for example. Most existing specifications list am-

biguous “±” ranges for the roll, pitch, and yaw as if these angles always have the same

(decoupled) symmetrical ranges for every configuration. Instead, when using the T&T

angles, one needs only specify a typical value of the maximal tilt angle and, if necessary,

a typical torsion range.

Not surprisingly, these angles are used for computer animation of human bodies for

exactly the same important reason—the angles represent the range of motion in the

most natural manner. Astonishingly, however, the analogue between the human body

and some spatial parallel mechanisms goes even further...
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Figure 3.5: The human eye is a zero-torsion spherical parallel mechanism actuated by

tendons (illustration courtesy of Patrick J. Lynch, Yale University School of Medicine).

3.4 Zero-Torsion 3-DOF Spatial Parallel

Mechanisms

As we pointed out in the previous section, parallel mechanisms with full rotational

capability (3 rotational DOFs), tend to exhibit a natural symmetry with respect to

zero-torsion. It is, therefore, not very surprising that many parallel mechanism designs

with restricted rotational freedoms (two rotational DOFs) are, in fact, with zero torsion

for all configurations.

One such “mechanism” is the human eye (Fig. 3.5). According to Listing’s Law

(Helmholtz, 1867), known in ophthalmology since the 19th century, all possible orien-

tations of a healthy eyeball can be obtained from the primary gaze by a single tilt, i.e.,

a rotation whose axis is in a plane (the Listing plane) normal to the primary gaze.

In other words, ocular motions preserve zero torsion, σ = 0, in the T&T convention.

Please be warned, that the term “ocular torsion” is often used in the medical literature

as the twisting of the eye as perceived during a frontal examination (which is not always

zero), although some authors do use the term as a synonym of the T&T endspin, σ.

(Confusion in rotation terminology is not restricted to the engineering domains.)
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The human eye is essentially a 3-DOF parallel mechanism actuated by tendons

(muscles). It is constrained to rotate with zero-torsion by the (healthy) brain, i.e., by its

“controller.” However, there are other human joints that are mechanically constrained

to rotate with zero torsion. One such zero-torsion “mechanism” is the sterno-clavicular

joint which articulates the clavicle by its proximal end onto the sternum (Korein, 1984).

This is the joint that is used to shrug the shoulders. We should point out, however,

that the sterno-clavicular joint is not always modelled as a zero-torsion mechanism. For

example, in a recent publication (Lenarc̆ic̆ et al., 2002), the authors have modelled the

human shoulder complex as a 4-DOF parallel mechanism allowing all three rotations

and one translation. Another zero-torsion “parallel mechanism” is the human wrist

(Canfield et al., 1996) which will be studied in Section 3.4.1, as the first member of the

class of zero-torsion mechanisms.

Back to engineering, there are multiple examples of constrained spatial parallel

mechanisms with three identical legs, each with 5 DOFs, and only 3 DOFs of the plat-

form. In many cases, the platform has one translational and two rotational freedoms,

and very frequently the allowed orientations are such that the torsion of the platform

remains zero.

Due to the use of traditional orientation parameterisations, these mechanisms have

not yet been recognised as a separate class, and their common properties have not

been investigated. A better known subclass of the zero-torsion family consists of the

so-called constant-velocity couplings of intersecting shafts. The work of Hunt (1973)

provides an in-depth theory of such constant-velocity transmissions.

Below, we outline the analysis of three popular zero-torsion parallel mechanisms,

of which the first is a constant-velocity coupling. A fourth example can be found

in (Zlatanov et al., 2002b). Once again, Hunt (1983) was the first to propose these

three designs for use as parallel manipulators. While multiple other works on the three

mechanisms have already been published, this is the first time when these parallel mech-

anisms are recognised as members of the same σ = 0 class and studied via a common

methodology. Moreover, we obtain explicit relationships of the platform centre coordi-

nates and the two independent orientation parameters (φ, θ). The further kinematic

analysis of these mechanisms is much simplified due to the particularly straightforward

position-orientation relationships. These expressions become much more complicated

when obtained with another Euler-angle convention.
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Figure 3.6: (a) A 3-RSR 3-DOF spatial symmetrical parallel mechanism and (b) its

kinematic geometry.

3.4.1 3-RSR 3-DOF Spatial Parallel Mechanisms

Our simplest example is the earliest constant-velocity coupling, known as Clemens

joint or reflected tripod (Hunt, 1973). It is composed of two bodies connected by three

RSR chains, so that, at any moment, the mechanism exhibits complete symmetry with

respect to the plane, πB, passing through the S joints, the bisecting plane, (Fig. 3.6).

The reflected tripod in its actuated form, i.e., the 3-RSR parallel mechanism, has

been studied extensively in the literature (Peruzzini et al., 1995; Canfield et al., 1996;

Dunlop and Jones, 1997; Hertz and Hughes, 1998). The mechanism, with slight mod-

ifications, has been used as a haptic device (Peruzzini et al., 1995), a robotic wrist

(Canfield et al., 1996), and a satellite tracking mechanism (Dunlop and Jones, 1996),

and even patented (Lambert, 1987; Canfield et al., 1997). Yet the physical nature of

the feasible orientations is not revealed in any of these publications.

The kinematic geometry of the reflected tripod is trivial. In any configuration, πB

intersects the planes Oxy and Cx′y′ at a common line (Fig. 3.6b). Let us choose a

directed axis a along this line, with a positive moment about both Oz and Cz′. Let the

angle between Ox and a be φ + π/2. Due to symmetry, the orientation of the mobile

frame is such that it could be obtained by rotating the base frame about the a axis

at some angle θ. It is easy to conclude that the orientation of the mobile platform is
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Figure 3.7: Horizontal offset as function of orientation for 3-RSR mechanisms.

described by the angles φ and θ which happen to be exactly the azimuth and tilt angles

of the T&T convention, while the torsion σ is obviously zero.

The plunging motion (the translational freedom) of the mobile platform, for any

given orientation is parallel to the segment OC, whose length is denoted by ρ. The

pose of the mobile platform is completely defined by φ, θ, and ρ. The orientation is

(φ, θ, σ = 0), and for the centre C, we have:

x = ρ cosφ sin θ/2, (3.3)

y = ρ sinφ sin θ/2, (3.4)

z = ρ cos θ/2. (3.5)

To clearly understand the coupling between the position and orientation of the

mobile platform, Fig. 3.7 shows the curves for x and y for constant φ or θ, and ρ = 1.

Note how elegantly T&T angles describe the kinematics of the 3-RSR parallel mech-

anism. Any other set of Euler angles would have led to larger expressions. Moreover,

the T&T angles put into evidence the exact geometric nature of the DOFs.
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Figure 3.8: (a) A 3-PRS 3-DOF spatial parallel mechanism and (b) the kinematic

geometry of a general 3-[PP]S parallel mechanism.

3.4.2 3-[PP]S 3-DOF Spatial Parallel Mechanisms

Undoubtedly, the most popular examples of zero-torsion parallel mechanisms belong

to this group. Each leg of these mechanisms has a 2-DOF chain, equivalent to two

coplanar translations, followed by an S joint. The vertical planes in which the three

equidistant S joints move are intersecting at a common line at 120◦ angles (Fig. 3.8).

There is abundant literature on this group of mechanisms. The 3-RPS architecture

has been analysed in (Lee and Shah, 1988; Buruncuk and Tokad, 1999; Huang and

Wang, 2000), two different designs of 3-PRS robots have been studied in, respectively,

(Carretero et al., 2000) used for telescope focusing, and (Chang et al., 2000) used as a

machine tool—a design, best known through the patented Z3 Head by DS Technologie

(Wahl, 2000), Fig. 3.8(a)—, and finally a 3-RRS manipulator has been investigated

in (Li et al., 2001). Of all these publications, only one, (Buruncuk and Tokad, 1999),

seems to identify the exact nature of the interdependence of the orientation parameters

and its geometric significance.

Let the three equidistant S joint centres, denoted by Bi (not shown), lie on a circle

of radius 1, i.e.,
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r′CB1
=

 1

0

0

 , r′CB2
=

 cos(2π/3)

sin(2π/3)

0

 , r′CB3
=

 cos(4π/3)

sin(4π/3)

0

 , (3.6)

where r′CBi
are the vectors along CBi expressed in the mobile frame. We, then, express

the coordinates of these three points in terms of the coordinates of the platform centre,

x, y, z, and the three T&T angles:

rOBi
= Rr′CBi

+

 xy
z

 ≡
 xOBi

yOBi

zOBi

 , (3.7)

for i = 1, 2, 3, where R is the rotation matrix defined by Eq. (3.2). Then, we write

the three linear equations that constrain the S joint centres in the three vertical planes

(Fig. 3.8b):

yOB1 = 0, (3.8)

cos(2π/3)yOB2 − sin(2π/3)xOB2 = 0, (3.9)

cos(4π/3)yOB3 − sin(4π/3)xOB3 = 0. (3.10)

Since z is obviously an independent coordinate, it is of no surprise that, after sub-

stitution of yOB1 , xOB2 , yOB2 , xOB3 , and yOB3 from Eqs. 3.7, none of the above three

equations contains that variable:

y + q1,3 = 0, (3.11)

−
√

3

2
x− 1

2
y + q2,3 = 0, (3.12)

√
3

2
x− 1

2
y + q3,3 = 0, (3.13)

where q1,3, q2,3, and q3,3 are functions of the three T&T angles. Therefore, in order

to have a solution for x and y, the three linear equations must be linearly dependent.

Obviously, any two of these equations are linearly independent. Hence, for any feasible

orientation of the mobile platform, there is a unique solution for (x, y).

Let Q be the coefficient matrix for the above three equations, i.e.,
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Q =

 0 1 q1,3

−
√

3
2
−1

2
q2,3√

3
2

−1
2
q3,3

 . (3.14)

For these equations to be linearly dependent, the matrix Q should be singular, i.e.,

detQ =
3
√

3

4
sinσ(cos θ + 1) = 0. (3.15)

From the above, we conclude that as long as θ = π, i.e., the mobile platform is

upside down, the parallel mechanism can be assembled. If we substitute θ = π in

Eqs. (3.11–3.13) and solve any two of them, we obtain the following for the feasible

motion of the mobile platform centre:

x = − cos(2φ− σ), (3.16)

y = sin(2φ− σ). (3.17)

Indeed, as we already mentioned, the T&T angles have a singularity at θ = π at

which the orientation of the mobile platform is defined by 2φ− σ. Thus, when θ = π,

the mobile platform acquires a new degree of freedom. Figure 3.9 shows the horizontal

upside down mobile platform. Simple geometrical analysis shows that the three normals

to the points Bi intersect at one point, H. The feasible poses of the platform in every

horizontal plane form a one-parameter set obtained by rolling the circle, cm, drawn

around the platform triangle, on the inside of a fixed circle, cf , twice the radius of cm

and centred at the point of intersection of the three planes πi and the mobile platform

plane. Hence, for one complete counter-clockwise tour of point C along the inner circle

of radius 1, the mobile platform makes exactly one clockwise rotation. This planar

motion is the so-called Cardanic movement (Hunt, 1978).

In other words, in general, the redundant motion with locked actuators will be a

screw motion, more precisely, a linear combination of a rotation through H and the

vertical translation (Zlatanov et al., 2002a).

Configurations like this were recently identified as a new type of singularity, asso-

ciated with constrained parallel mechanisms, named constraint singularity (Zlatanov

et al., 2002a). At such a singular configuration of a n-DOF mechanism (n < 6), both

the mechanism as a whole and the mobile platform have at least n + 1 DOFs. And

we are pleased to note that constraint singularities were found and analysed due to
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Figure 3.9: Constraint singularities of a 3-[PP]S parallel mechanism.

the application of the powerful geometric method of screw theory and basic geometric

constructions such as the one shown in Fig. 3.9.

Now, disregarding the not-so-practical case of θ = π, Eq. (3.15) leads us to the only

remaining possibility: σ = 0 or σ = π. If, again, we substitute σ = 0 or σ = π in

Eqs. (3.11–3.13), and solve any two of them, we obtain the following for the feasible

motion of the mobile platform centre:

x = ð
1

2
cos 2φ(cos θ − 1), (3.18)

y = −ð
1

2
sin 2φ(cos θ − 1), (3.19)

where ð = 1 for σ = 0 and ð = −1 for σ = π. These two modes of operation are

separated by the constraint singularity θ = π. Indeed, as shown in (Zlatanov et al.,

2002a), constraint singularities generally separate the different modes of operation of

constrained parallel mechanisms. While both modes exist in theory, in practice the tilt

angle θ will be quite limited, and the actual prototype will be confined to operate in

only one of the modes. Whether this mode corresponds to σ = 0 or σ = π is only a

matter of mobile reference frame choice. Since, normally, the mobile and base frames

are selected to coincide at θ = 0, we are automatically in the σ = 0 mode.

In industry, zero-torsion parallel mechanisms are used as plunge-and-tilt mecha-

nisms with axisymmetric tools. Thus, the lack of knowledge that some torsion angle
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Figure 3.10: Horizontal offset as function of orientation for 3-[PP]S mechanisms.

remains zero does not prevent from successfully operating the mechanism. However,

the knowledge of the exact motion of these mechanisms is undoubtedly essential at the

design stage and certainly helpful for the development of the control algorithms, since

expressions would be more compact. The fact that the centre of the mobile platform

does not always lie on the central z axis is considered as unwanted motion and should

be compensated (through an XY stage). This unwanted motion should, therefore, be

well understood.

Parallel mechanisms of type 3-[PP]S have an offset, υ, from the central axis that is

entirely dependent on the tilt of the mobile platform:

υ =
1

2
(1− cos θ). (3.20)

Recall that for the previous class of zero-torsion parallel mechanisms, constant-velocity

joints, the offset was also dependent on the distance between the base and platform

centres, ρ, and was equal to ρ sin(θ/2). Furthermore, if the centre of constant-velocity-

joint-like parallel mechanisms goes in the direction of the tilt, the situation is slightly

more complicated for 3-[PP]S parallel mechanisms.

To understand more clearly the coupling between position and orientation, we have
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Figure 3.11: (a) A 3-PSP 3-DOF spatial parallel mechanism and (b) its kinematic

geometry.

shown in Fig. 3.10 the curves for x and y for constant φ or θ (they are independent of

z). It should be noted, that in contrast to the 3-RSR mechanism, here, for any position

of the mobile platform, there are two (rather than only one) orientations. Their tilts

are the same but the azimuths are offset by 180◦. In other words, while for the 3-RSR

parallel mechanism, the platform centre moves away from the z axis in the direction

in which the platform tilts, for the group of mechanisms presented in this section, the

platform centre moves away from the z axis in a direction normal to the tilt plane.

3.4.3 3-PSP 3-DOF Spatial Parallel Mechanisms

The last and most complex example is the so-called Tripode joint, used in automotive

transmissions. The latter is a 3-PSP parallel mechanism (Fig. 3.11) for which the fixed

axes κi, along which the S joints slide, are parallel and equidistant, while the axes µi,

traced by the S joints on the platform, are coplanar and intersecting at 120◦ angles.

The 3-PSP mechanism was studied in detail by Durum (1975). Its actuated imple-

mentation, the 3-PSP mechanism, was later analysed by Tischler et al. (1998) for use

as a robot finger. Yet, Stefanini et al. (1999), who have found an interesting biomedical

application by actuating only two of the base P joints and blocking the third one, could

not interpret exactly the feasible orientations of their platform.
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Let the distance from the z axis to any κi axis be equal to 1. The unit vectors m′
i

along µi, expressed in the mobile frame, are

m′
1 =

 1

0

0

 , m′
2 =

 cos(2π/3)

sin(2π/3)

0

 , m′
3 =

 cos(4π/3)

sin(4π/3)

0

 , (3.21)

We, then, express the coordinates of these three unit vectors, expressed in the base

frame, in terms of the three T&T angles:

mi = Rm′
i, (3.22)

for i = 1, 2, 3, where R is the rotation matrix defined by Eq. (3.2). Then, we express

the vectors ni from the platform centre C (x, y, z) to three points chosen on the vertical

axes κi (e.g., the intersection points with the base xy plane):

n1 =

 x− 1

y

z

 , n2 =

 x− cos(2π/3)

y − sin(2π/3)

z

 , n3 =

 x− cos(4π/3)

y − sin(4π/3)

z

 . (3.23)

Let k be the unit vector along z. Since µi should intersect κi, vectors ni, mi, and k

should be coplanar, for all i. This gives us three linear equations in x, y, and z whose

coefficients are functions of the three T&T angles:

det[n1, m1, k] = 0, (3.24)

det[n2, m2, k] = 0, (3.25)

det[n3, m3, k] = 0. (3.26)

Since z is obviously an independent coordinate, none of the above three equations

contains that variable, after simplification. Therefore, in order to have a solution for x

and y, the three linear equations should be linearly dependent. This time, the coefficient

matrix Q of the constraint equations, Eqs. (3.24–3.26), has all its entries as functions of

the three T&T angles. For the three equations to be linearly dependent, the coefficient

matrix should be singular, i.e.,

detQ = −3
√

3

4
sinσ cos θ(cos θ + 1) = 0. (3.27)
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Figure 3.12: Constraint singularities of a 3-PSP parallel mechanism.

Note that Eq. (3.27) is only a necessary, but not a sufficient condition. Indeed, if

θ = ±π/2, the mobile platform obviously can not be assembled. Substituting θ = ±π/2
in Eqs. (3.24–3.26), reveals that the systems of equations has no solution.

The next solution that satisfies the necessary condition set by Eq. (3.27) is θ = π.

The resulting situation is similar to the one that happens in [PP]S mechanisms when

θ = π. In other words, the PSP mechanism is at a constraint singularity when its

mobile platform is upside down. At such a tilt angle, the centre of the mobile platform

moves again along a horizontal unit circle, centred at the z axis, as a function of the

platform orientation, which is again defined by 2φ−ψ (Fig. 3.12). However, this time,

for one complete counter-clockwise tour of point C along the circle of radius 1, the

mobile platform makes only half a turn in the same counter-clockwise direction:

x = − cos(4φ− 2σ) (3.28)

y = − sin(4φ− 2σ). (3.29)

Disregarding the impractical case θ = π, Eq. (3.15) leads us to the only remaining

possibility: σ = 0 or σ = π. If, again, we substitute σ = 0 or σ = π in Eqs. (3.24–3.26)

and solve them, we obtain the following for the feasible motion of the platform centre:

x =
cos θ − 1

4 cos θ

(
cos 4φ(cos θ − 1) + cos 2φ(cos θ + 1)

)
, (3.30)
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Figure 3.13: Horizontal offset as function of orientation for 3-PSP mechanisms.

y =
cos θ − 1

4 cos θ

(
sin 4φ(cos θ − 1)− sin 2φ(cos θ + 1)

)
. (3.31)

for both σ = 0 and σ = π. However, for PSP parallel mechanisms, it is impossible to

pass from one mode of operation to the other without disassembling the mechanism.

Again since, normally, the mobile and base frames are selected to coincide at θ = 0, we

are automatically in the σ = 0 mode.

Parallel mechanisms of type 3-[PP]S have an offset from the central axis that is

dependent not only on the tilt but also on the azimuth of the mobile platform:

υ =
1− cos θ

4 cos θ

√
cos 2θ cos 6φ− cos 6φ+ cos 2θ + 3. (3.32)

From the above, we may conclude that the minimum and maximum offsets depend only

on the tilt angle and are respectively:

υmin =
cos θ − 1

2
, υmax =

cos θ − 1

2| cos θ|
. (3.33)
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To understand more clearly the coupling between position and orientation, we have

shown in Fig. 3.13 the curves for x and y for constant φ or θ (they are independent of

z). Once again, for every position of the mobile platform, there are two orientations

with the same tilt, and azimuths offset by 180◦.

With this final example, we conclude our study of orientation representation and

constraint analysis of 3-DOF spatial parallel mechanisms. It is left no doubt that, the

use of the Tilt-and-Torsion (T&T) angles provides the fittest tool for the geometric

analysis of a plethora of parallel mechanisms. Furthermore, attention is drawn on the

newly-defined class of 3-DOF zero-torsion spatial parallel mechanisms which shows a

great potential for various industrial applications. It remains, however, to identify all

members of this zero-torsion family—a task that may be accomplished only by relying

on screw theory.



Chapter 4

Kinematic Analysis of 6-DOF

6-RUS Parallel Mechanisms

In this chapter, we study the kinematic geometry of general 6-RUS parallel mechanisms as
well as of a very particular design of the same class, called the Rotobot. For the general case,
we describe a geometrical method for the computation and representation of the constant-
orientation workspace. Firstly, we compute only the edges of the workspace by taking into
account the physical limits of the U joints. Then we ignore those limits, and calculate the
horizontal cross-sections of the constant-orientation workspace. We do the same for the
Rotobot but, in addition, we calculate the Type 2 singularity loci. The geometric study
of the Rotobot reveals an interesting phenomenon related to working modes and workspace
segmentation.

The geometric analysis of these spatial mechanisms involve the manipulations of tori,
cyclides, Bohemian domes, and bicircular quartics. Toric surfaces are intersected by circles
or planes, toric sections are intersected by other toric sections and then polygonised.

98



99

4.1 Introduction

It is well known that parallel mechanisms have a rather limited and complex workspace.

At the same time, the size and shape of the workspace is probably one of the main design

criteria. As the complete workspace of a 6-DOF parallel mechanism is a six-dimensional

entity which is practically impossible to visualise, algorithms for the calculation and

representation of various workspace subsets have been proposed. Apart from the brute-

force approach—the discretisation algorithms—all other computational schemes are

strictly dependent on the particular architecture. Thus, in general, each research on

workspace analysis can be virtually situated in a 3D array whose axes are the type of

workspace subset, the type of algorithm (geometrical, numerical, analytical), and the

type of mechanism architecture.

In the area of 6-DOF parallel mechanisms, most of the research has been particu-

larly aimed at the simplest and most popular architecture, namely the 6-UPS parallel

mechanism, commonly known as the Stewart-Gough platform. Indeed, almost all ex-

isting 6-DOF motion bases, used in entertainment or motion (particularly flight) sim-

ulation, are based on the 6-UPS architecture. (An exhaustive list of links to the web

sites of manufacturers of motion bases or complete motion simulators, may be found

at http://www.parallemic.org/WhosWho/CompSims.html.) Motion simulators, generally,

manipulate excessive loads of up to tens of tons. Furthermore, the mechanical part,

i.e., the motion base, is often only a small fraction of the cost of a high-tech flight sim-

ulator. Hence, a 6-UPS parallel mechanism is no doubt an excellent choice for these

applications, as it is the stiffest of all 6-DOF architectures (only axial loads in the legs)

and allows the use of powerful (yet expensive and messy) hydraulic actuators.

The second most common, yet much less studied, 6-DOF architecture is undoubtedly

the 6-RUS one. Often the U joints in the legs are replaced by S joints. This leads to

a redundant DOF in each distal link (the one connecting the mobile platform) which,

however, does not alter the properties of 6-RUS parallel mechanisms. Similarly, the

U and S joints in each leg may be interchanged without any change in the mechanism

characteristics. Therefore, in what follows, we will make no difference between legs of

type RUS, RSS, or RSU and refer to them simply as RUS.

An example of 6-RUS parallel kinematic machine (PKM), actually a 6-RSS one,

is presented in Fig. 4.1. Undoubtedly, however, the most popular member of the

6-RUS class is the Hexa robot (Pierrot et al., 1990), of which various versions are

already available. The first to propose this architecture, however, was Hunt (1983).

http://www.parallemic.org/WhosWho/CompSims.html
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Figure 4.1: An example of a 6-RUS parallel kinematic machine (photo courtesy of

Prof. Yukio Takeda, Tokyo Institute of Technology).

Some other prototypes have been constructed by Takeda et al. (1997), by Zabalza

et al. (1999), and by Benea (1996). The latter has even performed a detailed set of

analyses on this type of mechanism. Three other designs, one of which is shown in

Fig. 4.2, are also commercially available from Servos & Simulation, Inc., as motion

simulation systems (http://www.servos.com). A similar design is also available as part

of the newly developed low-cost flight simulator by Fidelity Flight Simulation, Inc.

(http://www.flightmotion.com). Finally, a more peculiar design has been introduced

by Hexel Corporation (http://www.hexel.com), dubbed RotobotTM (Chi, 1999). The

kinematic geometry of the Rotobot will be the subject of our study in Section 4.4.

The main advantages of 6-RUS parallel mechanisms are (1) their light mobile part,

as the heavy motors are mounted on the base, and (2) the possibility for use of lower-

cost electric motors. Certainly, the ability to use thin rods for the distal links and thus

reduce the risk for link interference is beneficial too. Finally, these mechanisms can be

statically balanced, as shown in (Wang and Gosselin, 1998). The main disadvantages

of these mechanisms are (1) the presence of bending moments in the proximal links

and, as we will see, (2) their highly complicated kinematic analysis. To overcome the

first of this disadvantages, designers have built their prototypes with solid proximal

links, as it may be seen in Fig. 4.1, or replaced these links with sliders moving on

base-mounted circular guides, as in the Rotobot (Fig. 4.22). To alleviate the second of

http://www.servos.com
http://www.flightmotion.com
http://www.hexel.com
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Figure 4.2: An example of a 6-RUS personal motion system (photo courtesy of Servos

& Simulation, Inc.).

these drawbacks, designers have oriented the axis of the R joints in only two ways: all

coplanar or all parallel. Our contribution serves to alleviate this same shortcoming,

while giving freedom to designers to place arbitrarily the axes of the R joints. Namely,

in this chapter we examine in depth the kinematic geometry of the 6-RUS parallel

architecture and provide tools for the optimal design of these mechanisms.

Despite the relative popularity of the 6-RUS parallel architecture, few researchers

have analysed in detail its workspace. What is more, as we just emphasised, all of the

existing prototypes have rather particular designs which facilitate their workspace anal-

yses. Benea (1996) has studied two subsets of the complete workspace: the constant-

orientation workspace and the orientation workspace. A discretisation algorithm has

been used for this purpose. The philosophy of such an algorithm is rather simple and

consists roughly in discretising the three-dimensional space, solving the inverse kine-

matic problem at each point, and verifying the constraints that limit the workspace.

Such discretisation algorithms are used by most researchers and can be applied to

any type of architecture. They are clearly computationally intensive and require large

amounts of disk space for storing the computed point cloud. A more advanced approach

for the computation of the constant-orientation workspace is based on the geometric

description of all constraints that limit the workspace. Unlike the discretisation meth-

ods, the geometric methods are very fast and accurate. Furthermore, they bring insight

into the problem and are very useful during the design stage.
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It is for the class of 6-UPS parallel mechanisms, that such an approach was first

introduced by Gosselin (1990) and then again, under a modified version, by Gosselin

et al. (1992), considering only the limits of the actuators. In the first paper, horizontal

cross-sections of the constant-orientation workspace have been determined, while in the

second, the workspace edges have been defined directly. Merlet (1994) later extended

this geometric approach by including the limited ranges of the passive joints and even

the risk of link interference. For the class of 6-PUS parallel mechanisms, Merlet and

Gosselin (1991) applied the same philosophy to compute horizontal cross-sections of

the workspace of their “active wrist.” Recently, a more general and detailed workspace

analysis following the same approach was performed by Bonev and Ryu (1999b), where

the constant-orientation workspace was directly computed and represented as a solid

model in the CAD/CAM system CATIATM.

To the best of our knowledge, a geometric algorithm has never been applied to

the general 6-RUS parallel mechanism. Yet, only a moderate change in the program

code used in Bonev and Ryu (1999b) would have been sufficient to produce a simi-

lar program for 6-RUS parallel mechanisms. Besides, a similar implementation has

also been carried out by Chrisp and Gindy (1999) in Pro/ENGINEERTM for a 6-UPS

parallel mechanism. However, while the use of CATIA or Pro/ENGINEER results

in an excellent visualisation of the workspace, common experience shows the obvious

disadvantages of this approach. Firstly, the two CAD/CAM systems, although quite

popular, are not necessarily available to all users of parallel mechanisms. Secondly, the

natural trend in industry is to develop large integrated programs that perform various

types of analyses and not just compute the constant-orientation workspace (Mayer St-

Onge and Gosselin, 2001; Astanin et al., 2002; Podzorov and Bushuev, 2002). That

is why, in the first part of this chapter, we propose an algorithm inspired by the one

presented in (Gosselin et al., 1992) for computing and representing the edges of the

constant-orientation workspace of 6-RUS parallel mechanisms. This algorithm can be

easily implemented and requires no special programming libraries. Later on, we ignore

all joint limits and present briefly the procedure for computing the horizontal cross-

sections of the constant-orientation workspace of general 6-RUS parallel mechanisms.

Finally, in Section 4.4, we examine the simplified but intriguing design of the

Rotobot. Its geometric analysis revealed a couple of new interesting phenomena which

are not present in general 6-RUS parallel mechanisms. The complete geometric analy-

sis of the Rotobot, emphasised once again the major open problem concerning working

modes.
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In particular, we present the procedure for computing and representing its constant-

orientation workspace and Type 2 singularity surface as horizontal cross-sections. While

mechanical joint limits are ignored, we take into account the obvious constraint on the

circular order of the centres of the U joints (slider interference constraint). Aston-

ishingly, this constraint can be modelled by a so-called Bohemian dome which fits

nicely into the vertex spaces of the mechanism. Thus, in each horizontal plane, the

constant-orientation workspace consists of one or more complex shapes with circular

arc boundaries, while the singularity loci of Type 2 are given by both the workspace

boundary and a bisymmetric bicircular quartic. Inevitably, the most interesting dis-

cussion appears, once again, on the topic of working modes.

All the algorithms presented in this chapter were implemented in MatlabTM R12

under Linux and run on a PC with 512 Mb RAM and 1.8 GHz Intel Pentium CPU.

4.2 Computing the Edges of the

Constant-Orientation Workspace of General

6-RUS Parallel Mechanisms

Following our established notation pattern, we select a fixed reference frame, called the

base frame with centre O and axes x, y, and z. Then, we also select a mobile frame

that is fixed to the mobile platform, with centre C and axes x′, y′, and z′ (Fig. 4.3).

We denote the centres of the U joints by Ai and the centres of the S joints attached at

the mobile platform by Bi (in this chapter, i = 1, . . . , 6). Each point Ai moves along

a circular trajectory referred to as track i whose centre is denoted by Oi. We assume

that each actuated revolute joint can rotate fully, without any restriction imposed by

the joint itself. Let the lengths of all proximal links be equal and denoted by `1 and

the lengths of all distal links be equal and denoted by `2.

Next, we select a local frame with centre at point Oi and axes x(i), y(i), and z(i), so

that z(i) coincides with the axis of actuated revolute joint i. We will refer to that frame

as track frame i. The constant matrix Ri defines the orientation of track frame i with

respect to the base frame. Finally, let us denote the angle between the x(i) axis and

the line OiAi by θi. This angle is the i-th input variable.

We select also a moving frame that is fixed to proximal link i, with centre at point

Ai and axes x(Ai), y(Ai), and z(Ai), so that the z(Ai) axis is always parallel to the track
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Figure 4.3: Leg i of a 6-RUS parallel mechanism.

frame’s z(i) axis, and the x(Ai) axis is always along line OiAi, pointing away from Oi.

We will call this frame proximal link frame i. The rotation matrix that transforms

coordinates from proximal link frame i to track frame i is a function of θi only and will

be designated by RAi
.

The mobile platform’s position is defined by vector p, while its orientation is de-

scribed by a rotation matrix R that is defined by the three T&T angles defined in the

previous chapter. Once again, given two points in space, e.g., A and B, we will denote

by rAB the vector along the directed line connecting point A to point B.

Finally, we will add the superscript ′ to a vector when the latter is expressed in the

mobile frame, the superscript (i) when the vector is expressed in track frame i, and the

superscript (Ai) when the vector is expressed in proximal link frame i. No superscript

will mean that the vector is expressed in the base frame.

4.2.1 Solving the Inverse Kinematic Problem

The solution to the inverse kinematic problem for 6-RUS parallel mechanisms is very

similar to the one for 3-RRR PPMs that we outlined in Chapter 2. Geometrically, for

each leg, the problem can be regarded as the one of finding the intersection point(s)

between a sphere of radius `2 and centre Bi and the track circle. Clearly, depending on

the position of point Bi, this problem may have an infinite number of real solutions,

two solutions, a single one, or none at all.
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The first step in the computation process is to calculate the coordinates of each

point Bi, first in the base frame, and then in track frame i:

rOBi
= p + Rr′CBi

, (4.1)

r
(i)
OiBi

= RT
i (rOBi

− rOOi
). (4.2)

Now, by squaring r
(i)
AiBi

= r
(i)
OiBi

− r
(i)
OiAi

, we obtain the main equation constituting

the inverse kinematic problem:

`22 = %2
i + `21 − 2(r

(i)
OiBi

)T r
(i)
OiAi

. (4.3)

where %i = ||r(i)
OiBi

||. If (r
(i)
OiBi

)T r
(i)
OiAi

= 0, i.e., if point Bi lies on the z(i) axis, then

Eq. (4.3) degenerates. That is to say, if, in addition, %2
i = `22 − `21, then the inverse

kinematic problem has an infinite number of solutions.

From the definition of input variable θi, we have that r
(i)
OiAi

= `1 [cos θi, sin θi, 0]T .

Let also the components of r
(i)
OiBi

be x
(i)
Bi

, y
(i)
Bi

, and z
(i)
Bi

. Then, Eq. (4.3) reduces to

x
(i)
Bi

cos θi + y
(i)
Bi

sin θi =
%2

i + `21 − `22
2`1

≡ pi. (4.4)

Now, in order to have a real solution to this equation, the following inequality should

hold true:

x
(i)2
Bi

+ y
(i)2
Bi

− p2
i ≡ Γi ≥ 0. (4.5)

This inequality is equivalent to the distal link’s length constraint that will be pre-

sented later on. Unless p2
i = x

(i)2
Bi

+ y
(i)2
Bi

, there exist two real solutions to Eq. (4.4),

determined uniquely from:

sin θi =
piy

(i)
Bi

+ x
(i)
Bi
δi
√

Γi

x
(i)2
Bi

+ y
(i)2
Bi

≡ Si, cos θi =
pix

(i)
Bi
− y

(i)
Bi
δi
√

Γi

x
(i)2
Bi

+ y
(i)2
Bi

≡ Ci, (4.6)

θi = atan2(Si, Ci), (4.7)

where θi ∈ [−π, π], and δi = ±1 is the branch index. As we just mentioned, when

the inequality represented by Eq. (4.5) turns into an equality, leg i is in a singular

configuration.

At the end of Chapter 2, we discussed the issue of working modes and workspace

segmentation. In this chapter, this issue will be readdressed in Section 4.4, where we
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study the Rotobot and see that its workspace is strictly dependent on the working mode.

For the general 6-RUS parallel mechanism, this fact is also true. However, as we will

see, a very simple and obvious design consideration may assure that the workspace is

maximum for one of the eight working modes. Therefore, in Sections 4.2 and 4.3, we

will assume that the mechanism is always in one working mode. In other words, once

the mechanism is assembled, distal link i should never be allowed to lie in one plane

with the z(i) axis.

In the remaining part of Section 4.2, we first describe the basic geometric algorithm

for defining the constant-orientation workspace of a general 6-RUS parallel mechanism.

Then, we describe our main contribution for obtaining analytically the intersection

points between a cyclide and a circle. This algorithm is the heart of the procedure for

computing the edges of the constant-orientation workspace. Subsequently, we propose

the general procedure for computing each vertex space, and then the procedure for

tracing the edges of the constant-orientation workspace. We conclude the section with

several examples and a brief discussion.

4.2.2 Geometric Modelling of the Constant-Orientation

Workspace

In order to describe a geometric method for the computation of the constant-orientation

workspace, it is necessary to establish geometric models for all the constraints that limit

it. The basic idea is to first regard all legs as independent and only then consider their

interdependence (Gosselin, 1990).

As defined earlier, for a constant orientation of the platform, the i-th vertex space

is the volume that can be attained by vertex Bi from chain i, ignoring the constraints

imposed by all other legs. The constraints that determine each vertex space are (i) the

distal link’s length, (ii) the leg singularity, (iii) the ranges of the base and platform

joints, and (iv) the proximal link’s length. However, we will explain later why the

constraints on the mobile platform joints cannot be easily described geometrically in

the determination of the vertex spaces. Also, as we already mentioned, we assume that

the revolute actuators can fully rotate, i.e., there are no revolute joint limits. Next, we

will investigate each constraint individually to finally construct vertex space i.
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4.2.2.1 Distal Link’s Length

In the proximal link’s frame, the set of points reachable by Bi is a sphere Si of

radius `2 and centre Ai.

4.2.2.2 Leg Singularity

As we already outlined, an RUS chain is at a singular configuration when a distal

link is coplanar with the axis of the corresponding actuated R joint, but its vertex Bi

does not lie on that axis. In this singularity, the two branches of the inverse kinematics

of the leg meet and the mobile platform loses one degree of freedom. In addition,

if vertex Bi lies on the axis of the actuated revolute joint, then the two branches

degenerate to an infinite number of solutions.

The motion of each distal link will, therefore, be restricted so that the angle between

vector rAiBi
and the proximal link frame’s y(Ai) axis be always in only one of the two

ranges [0◦, 90◦) (corresponding to δi = −1) or (90◦, 180◦] (corresponding to δi = +1).

Hence, we split the sphere Si by the x(Ai)z(Ai) plane. Depending on the branch index,

we take one of the two hemispheres. The great circle formed by the intersection of Si

with that plane will be denoted by Ci,N .

4.2.2.3 Mechanical Limits on the Passive Joints

The physical constraints that limit the range of a base joint can be modelled by a

general conical surface whose vertex is the centre of the joint. We already mentioned

that the distal links are attached to the proximal links through U joints, but, in practice,

spherical joints are often used instead. Thus, we choose to model the constraint imposed

by the base joint as a circular cone, within which the corresponding distal link is

restrained to stay, as shown in Fig. 4.4. If indeed, U joints are used, a better model

would be a pyramid as used in (Merlet, 1994), which, however, will inevitably make

the workspace analysis slightly more complicated.

Let α be the maximum misalignment angle of the base joints (α < 90◦) and let

j
(Ai)
Ai

be the unit vector along the axis of symmetry of the joint at point Ai, expressed

in proximal link frame i. This vector is constant when expressed in that frame and

depends only on the design of the parallel mechanism. Then, the allowable region for

point Bi consists of a spherical cap of radius `2 and centre Ai. The base circle of that

spherical cap will be designated by Ci,A.

The same cone model could be used for the platform spherical joints. Let β be
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Figure 4.4: Ranges of motion of the passive joints.

the maximum misalignment angle of the platform joints (β < 90◦) and let j′Bi
be the

constant unit vector along the axis of symmetry of the spherical joint with centre Bi

expressed in the mobile frame. Then, the allowable region for point Ai, referred to the

mobile frame, consists of a spherical cap of radius `2 and centre Bi. Let −j
(Ai)
Bi

be the

opposite unit vector, expressed in the proximal link frame i, and defined as:

j
(Ai)
Bi

= RT
Ai

RT
i Rj′Bi

. (4.8)

Thus, with respect to the proximal link frame, point Bi is located on an equivalent

spherical cap of radius `2 but centre Ai.

For the 6-PUS parallel mechanism (Bonev and Ryu, 1999b), the orientations of the

proximal link frames are fixed with respect to the base frame. Thus, when point Ai

moves along the linear track, the equivalent spherical cap representing the constraint

on spherical joint i remains unchanged in proximal link frame i. This, however, is

not true for the 6-RUS parallel mechanisms, since RAi
in Eq. (4.8) is not constant.

Therefore, the spherical cap has a different orientation in proximal link frame i for each

different position of point Ai on the circular track. This makes it practically impossible

to construct and use a geometric model of the platform-joint constraint.

Fortunately, simulations performed on different designs have shown that the con-

straint imposed by the S joint ranges is much less frequently violated than the constraint

on the U joints. Thus, we may ignore this constraint for the sake of describing geometri-

cally the constant-orientation workspace. If this constraint is too tight to be neglected,

then the use of a discretisation or a numerical method is the only alternative.
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Figure 4.5: The allowable spherical region.

4.2.2.4 Proximal Link’s Length

The allowable spherical region for point Bi in proximal link frame i is the inter-

section of the hemisphere defined in Section 4.2.2.2 and the spherical cap defined in

Section 4.2.2.3 (Fig. 4.5). Now, in track frame i, the allowable spatial region for ver-

tex Bi is the volume swept by the allowable spherical region by revolving it about the

z(i) axis. Therefore, the allowable spatial region for the platform centre C, i.e., vertex

space i (Fig. 4.6), is the allowable spatial region for vertex Bi translated along the

vector rBiC .

Note that ignoring the constraints on the mobile platform joints makes the shape

and orientation of each vertex space independent from the orientation of the mobile

platform. Thus, for a given design, we can store the data defining all vertex spaces and

avoid computing them for each different orientation of the mobile platform.

For simplification purposes, once the platform orientation is set, we will offset the

coordinates of each point Oi by vector rBiC . Thus, for a given design we compute the

vertex spaces at the original positions of points Oi, store the data, and then offset by

rBiC when computing the constant-orientation workspace for a given orientation.

After all six vertex spaces have been defined, we must consider the fact that all points

Bi are fixed to the mobile platform. This condition will be referred to as the closure

constraint. Thus, the intersection of all six vertex spaces is the constant-orientation

workspace of the parallel mechanism.
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Figure 4.6: Vertex space i.

4.2.3 Intersecting a Cyclide with a Circle

As we just saw, the geometric model of the vertex space for an RUS chain is not simply

a torus. Rather, it is a surface of revolution that consists, in general, of two parts. One

of these surfaces is part of the well-known torus—the part generated by the arc from

Ci,N . The surface traced by Ci,A is, however, part of a special cyclide (Segre, 1884),

sometimes referred to as a generalised torus (Fichter and Hunt, 1975), which includes

the (right circular) torus as a special case.

Therefore, in order to compute the edges of the constant-orientation workspace we

need to have a procedure for computing the intersection curve between two cyclides

(Fig. 4.7). In general, it is not possible to obtain directly analytic (parametric) expres-

sions for the intersection curves. Thus, we proceed as in (Johnstone, 1993) and use

circle decomposition to reduce the surface intersection problem to the problem of find-

ing the intersection points between a cyclide and a circle. We do this by decomposing

one of the surfaces into its generator circles (Fig. 4.9) and intersecting with them the

other surface.

In what follows, we will define the equation of the special cyclide from vertex space

i in track frame i (for brevity, we will omit the index k = 1, 2). Then, we will present

our algorithm for obtaining the intersection points between that cyclide and a circle.

Note that, to our best knowledge, no analytic solutions for this problem have been

presented before.
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Figure 4.7: Intersection curve between two cyclides.

4.2.3.1 Algebraic Approach

A detailed study on our special cylide was made by Fichter and Hunt (1975) related

to the design of spatial linkages. Indeed, our cyclide is the 2D locus of a point attached

to a body that is joined back to the reference system through an RR kinematic chain

as shown in Fig. 4.8(a). Its algebraic equation is:

(
x2 + y2 + z2 − a2 − b2 − f 2

)2
= 4a2

[
b2 −

(
z − f cos γ

sin γ

)2
]

(4.9)

where for a torus, f = 0 and γ = π/2.

The cyclide is a quartic surface that contains the imaginary spherical circle twice,

therefore having full circularity (Hunt, 1978). Consequently, its intersection curve with

a plane is a bicircular quartic, including its diametral sections shown in Fig. 4.8(b).

Thus, since a circle has circularity one, there may be at most four intersection points

between a cyclide and a circle.

A circle in space can be defined as the system of two algebraic equations—one of a

sphere and one of a plane. Those two equations and Eq. (4.9) can then be solved for the

unknowns x, y, and z. In fact, we can even set up the algebraic equation for the other

toroidal surface and then trace the intersection curves using some surface intersection

algorithm for algebraic (implicit) surfaces. However, such an approach suffers from



112

x
y

z a

b

γ
f

(a) (b)

Figure 4.8: (a) Tracing the cyclide and (b) several possible diametral sections.

disadvantages such as the necessity of determining starting points and the difficulties

in tracing the different branches of the intersection curves (Patrikalakis and Prakash,

1990). Furthermore, in the area of mechanism design, a parametric approach is much

more relevant and may suggest other applications than the one discussed here. It also

allows to define directly the range of the toroidal surface and the circle—recall that

we have to intersect a portion of a cyclide with an arc of a circle. Hence, our obvious

decision to use the parametric approach.

4.2.3.2 Parametric Approach

A circle in space can be defined by its radius r, coordinates px, py, and pz of its

centre, and unit vector along the axis of symmetry defined by the angles ϑ and ϕ, such

that its parametric equation is

C(i)(ui) =

 cosϕ − sinϕ 0

sinϕ cosϕ 0

0 0 1


 cosϑ 0 sinϑ

0 1 0

− sinϑ 0 cosϑ


 r cosui

r sinui

0

+

 px

py

pz

 (4.10)

where ϑ is the angle between the z(i) axis and the unit vector, and ϕ is the angle

between the x(i) axis and the projection of the unit vector onto the x(i)y(i) plane. Thus,

for example, for circle Ci,N , r = `2, px = rA, py = pz = 0, and ϑ = ϕ = π/2 in track

frame i.
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Each cyclide is generated by revolving the corresponding circle, whose equation was

derived above, about the track’s z(i) axis. Therefore, the parametric equation of the

resulting cyclide with respect to track frame i is

T(i)(ui, vi) =

 cos vi − sin vi 0

sin vi cos vi 0

0 0 1

C(i)(ui), (4.11)

where vi ∈ [−π,+π].

The parametric equation for a cyclide, T(j)(uj, vj), from vertex space j expressed

in track frame j has exactly the same form as the one defined by Eq. (4.11). Setting vj

equal to a constant, T(j)(uj, vj) ≡ C(j)(uj) becomes the equation of a circle. Finally,

C∗(i)(uj) = rOOj
− rOOi

+ RT
i RjC

(j)(uj) (4.12)

will be the expression for that circle referred to track frame i, where vectors rOOi
and

rOOj
are the modified positions of the origins of track frames i and j (recall the remarks

at the end of Section 4.2.2.4).

Obviously, one can find equivalent values ϑ∗, ϕ∗, p∗x, p
∗
y, and p∗z, such that C∗(i)(uj)

can be written in exactly the same form as in Eq. (4.10). Note, however, that due

to the rotation defined by RT
i Rj, the permissible range of the variable uj should be

modified by a certain offset, depending on RT
i Rj and the value of vj. Hence, the matrix

equation that needs to be solved is

T(i)(ui, vi) = C∗(i)(uj). (4.13)

The above is a system of three coupled sine-cosine polynomial equations in the

three unknowns ui, vi, and uj. Now, the first part of the solution can be applied for the

intersection of any surface of revolution with any spatial curve. The idea is that the

distance from the origin to any point on the surface of revolution is dependent only on

the parameter ui. Thus, we can obtain an equation that does not contain vi by writing

‖T(i)(ui, vi)‖2 = ‖C∗(i)(uj)‖2 (4.14)

where ‖ · ‖ is the Euclidean norm. In our case, the above equation is not only free of vi

but also has a rather simple form:
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Figure 4.9: Intersection points between a cyclide and a circle.

A sinui +B cosui + C sinuj +D cosuj + E = 0 (4.15)

where

A = 2r(py cosϕ− px sinϕ),

B = 2r(px cosϕ cosϑ− pz sinϑ+ py sinϕ cosϑ),

C = −2r∗(p∗y cosϕ∗ − p∗x sinϕ∗),

D = −2r∗(p∗x cosϕ∗ cosϑ∗ − p∗z sin θ∗ + p∗y sinϕ∗ cosϑ∗),

E = p2
x + p2

y + p2
z + r2 − (p∗2x + p∗2y + p∗2z + r∗2).

The other equation that is also free of vi is simply the last equation of the system

of three equations (4.13). The z component of T(i)(ui, vi) is clearly not dependent on

vi, since z(i) is the axis of revolution. Indeed, in our case, the equation is:

F cosui +G cosuj +H = 0, (4.16)

where

F = −r sinϑ, G = r∗ sinϑ, H = pz − p∗z.
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The second step of the solution process is to solve Eqs. (4.15) and (4.16) for sinui

and cosui obtaining:

sinui =
(BG−DF ) cos uj − CF sinuj +BH − EF

AF
, (4.17)

cosui = −G cosuj +H

F
. (4.18)

Then, from the identity sin2 ui + cos2 ui = 1, we may obtain the following equation

which is dependent only on uj:

J sinuj +K cosuj + L sinuj cosuj +M cos2 uj +N = 0 (4.19)

where

J = 2(CEF 2 −BCFH),

K = 2(A2GH +DEF 2 +B2GH −BEFG−BDFH),

L = 2(CDF 2 −BCFG),

M = (DF −BG)2 + (AG)2 − (CF )2,

N = (BH − EF )2 + (CF )2 + (AH)2 − (AF )2.

Next, we perform the tangent-half-angle substitution:

sinuj =
2tj

1 + t2j
, cosuj =

1− t2j
1 + t2j

, (4.20)

where tj = tan(uj/2). After substituting the above identities in Eq. (4.19), multiplying

by (1 + t2j)
2, and rearranging, we obtain:

q4t
4
j + q3t

3
j + q2t

2
j + q1tj + q0 = 0 (4.21)

where

q4 = M +N −K, q3 = 2(J − L), q2 = 2(N −M), q1 = 2(J + L), q0 = N +K +M.

The solutions for tj may be found analytically by solving the polynomial of degree 4

in Eq. (4.21). Then, for each real solution for tj, we obtain the corresponding value for

uj using uj = 2 tan−1(tj). Note that tan(uj/2) is not defined at uj = π, and indeed, if
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the latter is a solution to Eq. (4.19), then q4 = 0. Thus, if q4 = 0, we add the solution

uj = π. Finally, we substitute the values for uj into Eqs. (4.17) and (4.18) and solve

for the unknown ui.

The complete solution of the system of Eqs. (4.13) is an interesting problem in-

volving a large number of degenerate cases. Indeed, this is exactly what should have

been done if our task were the solution to the inverse kinematics of an RRSR kinematic

chain. However, in our case we are not interested in the values of vi, since we have as-

sumed that there are no actuated limits. Hence, the only cases that need to considered

are those that may prevent us from finding unique solutions for ui and uj.

In our particular problem, the generator circle of our special cyclide does not have

an arbitrary position and orientation. Thus, some of the cases will drop out and should

not be considered. Indeed, the constant A = 2r(py cosϕ − px sinϕ) is equal to zero

if and only if the axis of the generator circle intersects the z(i) axis. However, this

could happen if and only if j
(Ai)
Ai

= [±1, 0, 0]T , in which case B = 0 and the cyclide

degenerates to a doubly-covered spherical ring (or even a whole sphere).

Similarly, F = −r sinϑ is equal to zero if and only if j
(Ai)
Ai

= [0, 0,±1]T in which case

the cyclide degenerates to a doubly-covered planar ring or annulus. If also G = r∗ sinϑ∗

and H = pz − p∗z are equal to zero, then the circle from vertex space j lies in the plane

of the degenerated cyclide which could lead to having an arc as intersection rather than

distinct points.

To simplify our task, we will eliminate the above degenerate cases by imposing the

requirement that j
(Ai)
Ai

6= [±1, 0, 0]T and j
(Ai)
Ai

6= [0, 0,±1]T . Indeed, installing the U

joints in such a way that j
(Ai)
Ai

is along the x(Ai) or z(Ai) axis is unlikely to lead to an

optimal workspace.

Finally, it remains to consider the peculiar case C = D = G = 0 which geometrically

corresponds to the circle from vertex space j lying in a plane parallel to the x(i)y(i) plane

and with centre on the z(i) axis. In this case, Eq. (4.19) degenerates to N = 0, so if it

holds true, then the intersection we look for is the entire circle from vertex space j. If

this happens, then we discretise the arc of the circle defined by the permissible range

of uj into a finite number of points.

Hence, in any case we end up with a finite number of intersection points (most

frequently less than or equal to four) defined by the parameters uj and ui.
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4.2.4 Implementation Procedure

Armed with the essential geometric tools previously described, we can now formulate

the procedure for determining each vertex space (Section 4.2.4.1). The idea is to ob-

tain explicitly the contour of the allowable spherical region and then to construct the

boundary representation of the vertex space as the surface of revolution obtained by

revolving that contour. After that, in Section 4.2.4.2, we consider the algorithm for

obtaining the edges of the constant-orientation workspace.

4.2.4.1 Procedure for the Vertex Spaces

Each of the two circles Ci,N and Ci,A (recall Fig. 4.5), can be defined by a para-

metric equation, in which the parameter ui,1 (respectively ui,2) varies from −π to

+π. Then, for each vertex space, we calculate the intersection points between the

two circles, storing the values of the parameter ui,1 (respectively ui,2) corresponding to

each intersection point. Two different situations may occur depending on the value of

ξ = cos−1
(
[0,−bi, 0] j

(Ai)
Ai

)
.

Case 1: The number of intersection points is 0 or 1;

If ξ ≥ π/2 + α, then stop—vertex space i and, consequently, the constant-orientation

workspace do not exist for the current orientation and design. Else, if ξ ≤ π/2 − α,

then the contour of the allowable spherical region is the whole circle Ci,A and the vertex

space constitutes a cyclide, i.e., ui ∈ [−π, π].

Case 2: The number of intersection points is 2;

If π/2 + α > ξ > π/2 − α, then there exist two distinct intersection points. For each

circle, calculate the centre point of each of the two arcs connecting the intersection

points. If the centre point lies on the hemisphere and on the spherical cap, then the arc

belongs to the allowable spherical region. Store the arc’s range as the ordered couple

{us
i,k, u

e
i,k}, so that if us

i,k < ue
i,k, then ui,k ∈ [us

i,k, u
e
i,k], else ui,k ∈ [us

i,k,+π] ∪ (−π, ue
i,k],

where k = 1, 2. In this case, the vertex space has two distinct boundary surfaces, one

of which is a portion of a torus, and the other is a portion of a special cyclide.

The number of boundary surfaces (1 or 2), the data for circle(s) Ci,A (and Ci,N), and

the range limits {us
i,k, u

e
i,k} is all that needs to be saved for vertex space i. In addition,

in Case 2, we also need to calculate and save the data for the two circles that define

the edges of the vertex space. Finally, we modify vector rOOi
that positions the origin

of track frame i by adding to it vector rBiC .



118

4.2.4.2 Procedure for the Constant-Orientation Workspace

Since each vertex space has up to two boundary surfaces, our problem can be

decomposed into a finite number of intersections between surfaces. Each of the surfaces

is a parametric toroidal surface depending on two parameters, ui,k ∈ [us
i,k, u

e
i,k] or ui,k ∈

[us
i,k,+π] ∪ (−π, ue

i,k], and vi,k ∈ [−π,+π], where i corresponds to the vertex space to

which the surface belongs, and k = 1, 2.

We initialise as many lists as there are pairs of boundary surfaces. There may be

up to 60 inter-space pairs (15 pairs of vertex spaces × 4 pairs of boundary surfaces,

each pair coming from different vertex spaces) and 6 intra-space pairs, each pair coming

from the same vertex space.

To compute the edges of the workspace, we take each inter-space pair of surfaces—

one belonging to vertex space i and the other to vertex space j. Then, for the torus

to which one of the boundary surfaces belongs, say from vertex space j, we start to

increment the parameter vj from −π to π. For each discrete value of vj, we find the

intersection points, in terms of the parameters uj and ui, between the corresponding

circle and the cyclide to which the other boundary surface belongs using the algorithm

presented in the Section 4.2.3. The next step is to eliminate those solutions that are

not within the permissible ranges of uj and ui.

Then, we simply calculate the Cartesian coordinates of each point corresponding

to a solution for uj. Each such point lies on the boundaries of vertex spaces i and

j. Then, at this point, we solve the inverse kinematic problem for all legs except

chains i and j, and check for all constraints. The point will lie inside the four vertex

spaces if all constraints are satisfied. The remaining points belong to the edges of the

constant-orientation workspace and are put into a corresponding list.

Finally, for each intra-space pair of boundary surfaces, say corresponding to chain i,

we already know the two circles constituting the intersection curves. Then, we intersect

each circle with the (maximum 5×2) boundary surfaces of all vertex spaces except

vertex space i. This is done again by using the algorithm presented in Section 4.2.3.

The intersection points divide each circle into a maximum number of 4×10 arcs. For

each arc, we calculate its centre point, and at this point, we solve the inverse kinematics

for the five legs. If all constraints are satisfied, then the corresponding arc is discretised

and put into a corresponding list.
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4.2.5 Examples and Discussion

To illustrate our geometric method, we take as an example a 6-RUS parallel mechanism

whose data is given in Table 4.2.5. In this table, zi denotes the unit vector along the

z(i) axis of track frame i, expressed in the base frame. In addition, `1 = 90, `2 = 150,

α = 70◦, and δi = (−1)i+1 (i = 1, . . . , 6). In our implementation, we adopt the choice

of Tilt & Torsion angles (Chapter 3) to represent the orientation of the platform.

Table 4.1: Geometry of the 6-RUS parallel mechanism.

i rOOi
zi r′CBi

j
(Ai)
Ai

1

 100.000

−173.205

0.000


 −0.500

0.866

0.000


 70.707

−84.265

50.000


 0.380

−0.912

0.152



2

 200.000

0.000

0.000


 −1.000

0.000

0.000


 108.329

−19.101

50.000


 0.380

0.912

0.152



3

 100.000

173.205

0.000


 −0.500

−0.866

0.000


 37.622

103.366

50.000


 0.380

−0.912

0.152



4

 −100.000

173.205

0.000


 0.500

−0.866

0.000


 −37.622

103.366

50.000


 0.380

0.912

0.152



5

 −200.000

0.000

0.000


 1.000

0.000

0.000


 −108.329

−19.101

50.000


 0.380

−0.912

0.152



6

 −100.000

−173.205

0.000


 0.500

0.866

0.000


 −70.707

−84.265

50.000


 0.380

0.912

0.152


The proposed methodology was implemented in Matlab 5 and take full advantage of

the newly introduced data structures and cell arrays. Three examples of the constant-

orientation workspace of the 6-RUS parallel mechanism are presented here. The first

one is at the reference orientation (Fig. 4.10), φ = θ = σ = 0◦—a workspace measure
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Figure 4.10: Constant-orientation workspace for the reference orientation.

Figure 4.11: Constant-orientation workspace for φ = σ = 0◦ and θ = 10◦.

that is highly misleading if taken solely at this orientation. The second example is at

a slightly tilted orientation (Fig. 4.11), φ = σ = 0◦ and θ = 10◦ already showing some

substantial decrease in the workspace. The final example shows clearly how a slightly

greater tilt of θ = 25◦ at φ = 50◦ plus a very small twist of σ = 10◦ reduces, distorts,

and offsets the workspace significantly (Fig. 4.12).

These three examples demonstrate that computing and drawing the edges of the

constant-orientation workspace provides a relatively intuitive representation. Naturally,

these 2D projections are not sufficient, but in practice, they are to be displayed on a

computer screen where the user can interactively manipulate the workspace wireframe

and see it from any direction.
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Figure 4.12: Constant-orientation workspace for φ = 50◦, θ = 25◦, and σ = 10◦.

Our representation, however, has several faults. The biggest of all is that the

workspace wireframe is not a set of curves or polylines but a “thin point cloud” of

points. Indeed, it would be too time consuming to order the coordinates of these

points. The core of this problem lies in the intersection between two cyclides (recall

Figs. 4.7 and 4.9). In order to have the maximum four closed-loop intersection curves

as polylines, a large number of checks should be performed.

The same cyclide/cyclide intersection procedure leads to another imperfection. Namely,

the distances between the subsequent points representing a particular edge, generally,

vary significantly. The latter is due to the fact that each cyclide has been sliced into gen-

erator circles of equiangular spacing. This shortcoming can be avoided by using some

adaptive slicing which attempts to preserve the distance between successive points.

However, unlike other similar problems, such a procedure would, in this case, be too

complex and time consuming.

Regardless of these two unavoidable disadvantages, our method remains a better

solution than a brute-force discretisation method. Our procedure for the wireframe

representation can be easily implemented in the proprietary software of any commercial

6-RUS parallel robot, despite its design. Alternatively, if the manufacturer or user has

either a commercial CAD/CAM software such as CATIA or some Boolean algebra

library, our method can be implemented even more easily. Indeed, we should admit

that, from our previous experience, we know that a CAD/CAM software will generally

produce the workspace as a wireframe and even solid, faster than a complex exact

method as ours implemented in Matlab.
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Our strongest contribution, however, is the geometric description of the constant-

orientation workspace of a general 6-RUS parallel mechanism. This is of great help

to the designer in finding the optimal configuration from a workspace point of view.

It provides insights to answer such questions as “How should the base U joints be

mounted?” and “How should the axes of the motors be placed?”. None of these

questions can be answered correctly by simply using a numerical optimisation procedure

since we are dealing not only with quantitative measures (i.e., workspace volume) but

also with qualitative measures (i.e., workspace shape).

The reader may derive other benefits from our geometric method. Firstly, we de-

scribe the geometry of a special cyclide which is a surface that appears in the analysis of

other serial and parallel mechanisms. Secondly, as we already mentioned, our solution

to the problem of intersecting a circle with a cyclide is basically the solution to the

inverse kinematics of a general RSRR serial chain. Finally, we bring to light the circle

decomposition method, which may be used to obtain the intersection curves between

various ringed surfaces. Ringed surfaces are surfaces generated by sweeping a circle

(with non constant radius) along a curve (Johnstone, 1993). Such surfaces obviously

appear in most mechanisms with revolute joints.

4.3 Computing the Horizontal Cross-Sections of

the Constant-Orientation Workspace of

General 6-RUS Parallel Mechanisms

An important disadvantage of computing and displaying only the edges of the constant-

orientation workspace is that it is not possible to make any quantitative measure. For

example, in an optimisation algorithm, we would need to know the (approximate)

volume of the constant-orientation workspace for various key orientations. This infor-

mation is readily available if we use a CAD/CAM software or a solid-geometry Boolean

algebra library. However, in many cases these expensive packages are not available and

alternative solutions to our problem are needed.

The most obvious way to enhance the representation of the constant-orientation

workspace and computing the approximate workspace volume is to calculate and draw

the horizontal cross-sections of the workspace in addition to the edges. This task is,

however, too difficult if we decide to keep taking into account the mechanical constraints
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Figure 4.13: Cross-section of a torus.

on the U joints. Indeed, in an optimisation procedure, it is usual to ignore these joint

limits and optimise the orientations of the joint limit cones, once the geometry of the

mechanism is decided.

Therefore, in this section, we will deal only with six identical tori. The part needed

for computing the edges of the constant-orientation workspace can be easily derived

from the general procedure described in the previous section. Besides, if optimisation

is our sole goal, we do not need to compute the edges of the workspace. Therefore, we

will not describe the simplified procedure for computing the workspace wireframe of a

6-RUS parallel mechanism with no joint limits. It should be noted, however, that we

have implemented this procedure in our new Matlab program.

We may, therefore, concentrate directly on the problem of computing the horizontal

slices of a torus in an arbitrary orientation (Fig. 4.13). We will first derive the equation

of such a toric section, which is a bicircular quartic. Unfortunately, a toric section can

only be represented by an algebraic equation and not a parametric one. Hence, the

only way to draw it and further manipulate it is to discretise it to a polygon. Once we

have the six polygonised toric sections it remains to intersect them and compute the

area of the intersection. The process can be repeated at various altitudes, the areas

integrated, and the approximate workspace volume found.
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4.3.1 Algebraic Equation of a Toric Section

Referring to the algebraic equation of our cyclide represented by Eq. (4.9), we may

directly write the equation for the surface of vertex space i, a torus, in track frame i:

(
x(i)2 + y(i)2 + z(i)2 − `21 − `22

)2
= 4`21

(
`22 − z(i)2

)
. (4.22)

To express the above equation in the base frame, we apply the following coordinate

transformation: x
(i)

y(i)

z(i)

 =

 cosϕi cosϑi sinϕi cosϑi − sinϑi

− sinϕi cosϕi 0

cosϕi sinϑi sinϕi sinϑi cosϑi


 x− xOOi

y − yOOi

z − zOOi

 (4.23)

where ϑi is the angle between the z(i) axis and the base z axis, and ϕi is the angle be-

tween the base x axis and the projection of z(i) onto the the base xy plane. Substituting

the above new expressions for x(i), y(i), and z(i) in Eq. (4.22) we obtain:

(x2 + y2)(x2 + y2 + q1x+ q2y) + q3x
2 + q4xy + q5y

2 + q6x+ q7y + q8 = 0, (4.24)

where the constant coefficients are

q1 = −4xOOi
,

q2 = −4yOOi
,

q3 = 2(2`21 cos2 ϕi sin
2 ϑi + 2x2

OOi
+ s1),

q4 = 8(`21 sinϕi cosϕi sin
2 ϑi + xOOi

yOOi
),

q5 = 2
(
−2`21s3 + 2y2

OOi
+ s2

)
,

q6 = 4(−xOOi
s1 − 2`21s4 sinϑi cosϕi),

q7 = 4
(
− yOOi

s2 − 2`21xOOi
sinϕi cosϕi sin

2 ϑi + 2`21yOOi
s3

−2`21(zOOi
− z) sinϕi sinϑi cosϑi

)
,

q8 = s2
1 − 4`21(`

2
2 − s2

4),

s1 = x2
OOi

+ y2
OOi

+ (zOOi
− z)2 − `21 − `22,

s2 = x2
OOi

+ y2
OOi

+ (zOOi
− z)2 + `21 − `22,

s3 = cos2 ϑi + cos2 ϕi sin
2 ϑi,

s4 = xOOi
cosϕi sinϑi + yOOi

sinϕi sinϑi + (zOOi
− z) cosϑi.
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The bicircular quartic from Eq. (4.24) that represents a general toric section can be

written in a much more compact form under the following coordinate transformation:

x = x̂ cosϕi − ŷ sinϕi + xOOi
, (4.25)

y = x̂ sinϕi + ŷ cosϕi + yOOi
, (4.26)

z = ẑ + zOOi
. (4.27)

In fact, the new frame x̂ŷẑ is simply obtained by rotating frame i at an angle −ϕi about

its y(i) axis. We say that in the new frame, our toric section is expressed in canonical

form with the following simple equation:

(x̂2 + ŷ2)2 + q̂3x̂
2 + q̂5ŷ

2 + q̂6x̂+ q̂8 = 0, (4.28)

where

q̂3 = 4`21 sin2 ϑi + 2ŝ1,

q̂5 = 2ŝ1,

q̂6 = 8`1z sinϑi cosϑi,

q̂8 = ŝ2
1 − 4`21(`

2
2 − z2 cos2 ϑi),

ŝ1 = z2 − `21 − `22.

The toric section in canonical form is symmetric with respect to the x̂ axis but

takes a variety of different shapes, some of which were shown in Fig. 4.8(b). One

of its simplest forms, the spiric section (occurring when ϑ = π/2), has been studied

as early as 150 BC by the Greek mathematician Perseus. Unfortunately, however,

even this simplest form of the toric section cannot be written in polar form or with a

parametric equation. Therefore, we are obliged to work with its algebraic equation and

subsequently polygonise the toric section so that we may visualise it.

4.3.2 Intersection Between two Toric Sections

As we already mentioned, and as will be discussed in the next section, in order to

compute the horizontal cross-sections of the constant-orientation workspace of 6-RUS

parallel mechanisms we will need to polygonise all toric sections. Therefore, if we only
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need to compute a close estimate of the volume of the constant-orientation workspace,

we do not need to know the exact intersection points between the toric sections.

However, if we wish to represent the constant-orientation workspace using both

horizontal slices and edges we will need to know the exact locations of the intersection

points between all pairs of toric sections. These points lie on the edges of the workspace

and, therefore, may enhance the continuity of the (discretised) workspace edges. What

is more, they need to be incorporated in the polygonised models of the toric sections,

so that, as a result, the vertices of each horizontal cross-section lie exactly on the

workspace edges.

In order to simplify the intersection problem, we will compute the intersection points

in the natural frame of one of the quartics. Note, that under any planar coordinate

transformation, the equation of the toric section remains in the general form represented

by Eq. (4.24). Therefore, our algebraic problem is to find the solutions of two quartic

equations, one of the form represented by Eq. (4.28) and one of the form given by

Eq. (4.24):

(x2 + y2)(x2 + y2 + p1x+ p2y) + p3x
2 + p4xy + p5y

2 + p6x+ p7y + p8 = 0, (4.29)

(x2 + y2)2 + q3x
2 + q5y

2 + q6x+ q8 = 0. (4.30)

Since both quartics have a circularity of 2, we may expect to have as much as eight

solutions to such a problem. We will obtain them using dialytic elimination (Raghavan

and Roth, 1995). If we suppress the variable y, then we obtain the following two

quartics in x:

x4 +m3x
3 +m2x

2 +m1x+m0 = 0, (4.31)

x4 + n2x
2 + n1x+ n0 = 0, (4.32)

where

m3 = p1, m2 = 2y2 + p2y + p3, m1 = p1y
2 + p4y + p6,

m0 = y4 + p2y
3 + p5y

2 + p7y + p8,

n2 = 2y2 + q3, n1 = q6, n0 = y4 + q5y
2 + q8.
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The resultant of these two equations is

D =



1 m3 m2 m1 m0 0 0 0

0 1 m3 m2 m1 m0 0 0

0 0 1 m3 m2 m1 m0 0

0 0 0 1 m3 m2 m1 m0

1 0 n2 n1 n0 0 0 0

0 1 0 n2 n1 n0 0 0

0 0 1 0 n2 n1 n0 0

0 0 0 1 0 n2 n1 n0


(4.33)

such that the system of two quartic equations, Eqs. (4.31) and (4.32), is equivalent to

the following system of eight equations:

D[x7, x6, x5, x4, x3, x2, x, 1]T = 0. (4.34)

Setting the determinant of the above resultant equal to zero gives us a univari-

ate polynomial in y of degree eight. The expressions for all nine coefficients of this

polynomial can be easily obtained using a computer algebra system such as Maple. In-

troducing several new variables, i.e., for q3−p3, q6−p6, q5−p5, q8−p8, q3−p3−q5 +p5,

and q5−q3, reduces the total of nine coefficients to about 260 lines (80 characters each).

Naturally, these will not be shown on the pages of this thesis.

Next, the polynomial in y of degree eight is to be solved using a numerical procedure.

Only the real and unique solutions are to be retained. Once these solutions are available,

for each value of y, the corresponding (maximum four) value(s) of x should be found.

To do so, we rewrite the matrix equation (4.34) as follows:

D̄[x7, x6, x5, x4, x3, x2, x]T = [0, 0, 0,−m0, 0, 0, 0,−n0]
T , (4.35)

where the 8 × 7 matrix D̄ is obtained from matrix D by erasing its last column. We

substitute the current value of y in D̄, which becomes numerical. Then we run all eight

7× 7 submatrices of D̄, denoted by D̂, obtained by erasing one row and select the one

that has highest condition number. If the number is sufficiently high, i.e., if matrix D̂

is not singular, we solve for the corresponding value of x by taking the last component

of the vector D̂−1[0, 0, 0,−m0, 0, 0, 0,−n0]
T .
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Figure 4.14: Cutaways of the three types of tori: (a) ring torus, (b) horn torus, and (c)

spindle torus.

If, however, matrix D̂ is singular, then we have more than one solution for x.

The simplest and most stable method to get all (maximum four) solutions for x is to

substitute the value of y and to compute all four solutions of each of Eqs. (4.31) and

(4.32), and then to retain only those solutions that satisfy both equations.

Following the above procedure, we find the intersection points between all fifteen

pairs of toric sections. We create a two dimensional list for each of the six toric sections,

and for each pair, we save the coordinates of the maximum eight intersection points to

the lists of both toric sections. These coordinates are expressed in the base frame.

4.3.3 Polygonisation of the Toric Section

Everything that we have done up to now in Section 4.3 is valid for any relationship

between `1 and `2. If `1 > `2, the vertex space as shown in Fig. 4.14(a) is a ring torus,

the common form of torus that looks like a doughnut with a hole. If `1 = `2, the

vertex space as shown in Fig. 4.14(b) is a horn torus. Finally, if `1 < `2, the vertex

space as shown in Fig. 4.14(c) is a spindle torus. The spindle torus has an internal

void that makes the workspace of a 6-RUS parallel mechanism more intricate. It is

partly because of such voids that discretisation methods for computing the constant-

orientation workspace fail.

The relationship between `1 and `2 does not come into play in the problems of

describing the algebraic equation of a torus or a toric section and the intersection

between two toric sections. However, the ratio between these two radii is important in

polygonising the toric sections. In practice, it is more common to see `1 < `2. Therefore,

we will describe only the method for polygonising a cross-section of a spindle torus.

Note, however, that polygonising a cross-section of a ring or horn torus is even simpler.
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Figure 4.15: Various cross-sections of a spindle torus.

Figure 4.15 shows all basic types of shapes of the cross-sections of a spindle torus.

We know that the sections, as considered in their natural frames, are always symmetric

with respect to the x̂ axis. The cross-sections have always a single exterior curve

but some may have a single interior curve as well. While most forms can be easily

polygonised, there is one rarely appearing shape, the one in the lower left corner, that

requires some special attention. Let us refer to this particular shape as the complex

crescent shape.

The first part of the algorithm for polygonisation of a toric section consists in

computing the coefficients of the algebraic equation of the section in its natural frame,

as described by Eq. (4.28). We also transform the coordinates of the intersection

points, as found following the method of the preceding section, to the same natural

frame. Then, if z < 0, we make it positive, z = −z, as well as the x̂ coordinates of the

intersection points. This mirror reflection with respect to the ŷ axis is performed to

ensure that the cavity of the complex crescent shape (in case it turns out later that we

are dealing with such) is on the left. Note that this is true under the natural assumption

that ϑi ∈ [0, π/2].

Next, we need to calculate the intercepts of the toric section with the x̂ axis, i.e.,

set ŷ = 0 and solve

x̂4 + q̂3x̂
2 + q̂6x̂+ q̂8 = 0. (4.36)

The real solutions (maximum four) to the above equation should be ordered, i.e.,



130

x̂1 ≤ x̂2 ≤ x̂3 ≤ x̂4. Based on this information we should now compute a centre defined

by x̂c which will be used for our ray discretisation method. If the number of real

solutions of Eqs. (4.36) is equal to four, then we simply select x̂c = (x̂2+x̂3)/2. However,

if x̂2 = x̂3, we move the centre slightly to the right, e.g., x̂c = x̂c +0.1(x̂4− x̂3)/2. Note

that it is not possible to have all four solutions coinciding. Neither is it possible to have

only one or three real solutions—complex solutions go in pairs. Similarly, if we have

only two real solutions, then x̂c = (x̂1 + x̂2)/2. Finally, if there are no real solutions,

then the toric section does not exist, i.e. the constant-orientation workspace does not

exist at the current altitude.

Once we have calculated the centre (x̂c, 0) for the toric section, we may directly

obtain the maximum four vertical intercepts at x̂ = x̂c:

ŷ1 =
1

2

√
−2q̂5 − 4x̂2

c + 2
√
q̂2
5 + 4(q̂5 − q̂3)x̂2

c − 4q̂8, (4.37)

ŷ2 =
1

2

√
−2q̂5 − 4x̂2

c − 2
√
q̂2
5 + 4(q̂5 − q̂3)x̂2

c − 4q̂8. (4.38)

and ŷ3 = −ŷ1 and ŷ4 = −ŷ2, where ŷ1 (if real) is the upper-most intercept that is part

of the exterior contour, while ŷ2 (if real) is the upper-most intercepts from the interior

contour.

Let there be a line passing through the centre (x̂c, 0) and making angle u with the

x̂ axis, i.e.,

su(x̂− x̂c)− cuŷ = 0, u ∈ (0, π/2), (4.39)

where cu ≡ cosu and su ≡ sinu. This line intersects the toric section in maximum

four points which may be found by solving the following univariate quartic in x̂ and

substituting subsequently in Eq. (4.39) to find ŷ:

x̂4 − 4x̂cs
2
u x̂

3 + (c4u q̂3 + s2
u c

2
u q̂5 + 6s4

u x̂
2
c + 2s2

u c
2
u x̂

2
c)x̂

2

+(c4u q̂6 − 2s2
u c

2
u x̂c q̂5 − 4s4

u x̂
3
c)x̂+ c4u q̂8 + s2

u c
2
u x̂

2
c q̂5 + s4

ux̂
4
c = 0.

(4.40)

Finally, the algorithm for computing the polygon approximation of the toric section

is as follows:

S1 Convert the list of intersection points to the list of angles uint, so that for each

intersection point, there is a value in uint for which the corresponding line passes
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through that point. Render the elements of the list uint in ascending order and

eliminate any repeating values.

S2 Initialise one-dimensional arrays Eleft,x and Eleft,y, as well as Eright,x and Eright,y,

which will contain the x and y coordinates of the left and right parts of the exterior

contour. Note that by varying u in the range (0, π/2), we will be able to obtain

the lower-left and upper-right parts of the toric section, which after reflection will

give us the whole toric section (Fig. 4.16). Assign x̂1 and 0 to respectively Eleft,x

and Eleft,y, and the rightmost horizontal intercept (x̂2 or x̂4) and 0 to respectively

Eright,x and Eright,y.

S3 If there are four, rather than just two, horizontal intercepts, then the toric section

obviously has an interior contour. Therefore, initialise one-dimensional arrays Ileft,x

and Ileft,y, as well as Iright,x and Iright,y, which will contain the x and y coordinates

of the lower-left and upper-right parts of the interior contour. Assign x̂2 and 0 to

respectively Ileft,x and Ileft,y, and x̂3 and 0 to respectively Iright,x and Iright,y.

S4 Initialise one-dimensional temporary arrays E1,x, E1,y, E2,x, E2,y, which will be

used in case we have a complex crescent shape.

S5 Set the initial value of u to the first value from uint or, for example, 0.01, whichever

smaller. If a value from uint has been used, then remove that entry from the list.

S6 Solve Eq. (4.40) for the current u. There should be either two or four real solutions,

which need to be arranged in ascending order, x̂u,1 ≤ x̂u,2(≤ x̂u,3 ≤ x̂u,4).

S7 If there are only two horizontal intercepts, i.e., if we are dealing with a single

contour, then two cases are possible. If there are two solutions to Eq. (4.40), then

add x̂u,1 to Eleft,x and the corresponding ŷu,1 = tanu (x̂u,1−x̂c) to Eleft,y, as well as

x̂u,2 to Eright,x and ŷu,2 to Eright,y. Increment u with 0.04 unless the result is larger

than the first element of uint, in which case assign the value of that element to u

and remove the element from uint. If there are four solutions to Eq. (4.40), then

we are dealing with a complex crescent shape, as shown in Fig. 4.16(b). Assign

E1,x = Eleft,x and E1,y = Eleft,y and remove all values from Eleft,x and Eleft,x. Add

the four intersection points as x̂u,1 to Eleft,x, x̂u,4 to Eright,x, x̂u,3 to E1,x, and x̂u,2 to

E2,x, and similarly for the ŷu,i values (i = 1, 2, 3, 4). Increment u with 0.01 unless

the result is larger than the first element of uint, in which case assign the value of

that element to u and remove the element from uint.

S8 If there are four horizontal intercepts, i.e., if we are dealing with two contours,

simply add x̂u,1 to Eleft,x, x̂u,4 to Eright,x, x̂u,2 to Ileft,x and x̂u,3 to Iright,x, and
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(a) (b)

Figure 4.16: Examples of polygonisation of a toric section.

similarly for the ŷu,i values (i = 1, 2, 3, 4). Increment u with 0.04 unless the result

is larger than the first element of uint, in which case assign the value of that element

to u and remove the element from uint.

S9 Repeat steps 6 through 8 until u < π/2

S10 Finally add x̂c and ŷ1 to respectively Eleft,x and Eleft,y, and if an inner contour

exists, add x̂c and ŷ2 to respectively Ileft,x and Ileft,y.

S11 In case a complex crescent shape was encountered, reverse the order of E2,x as well

as of E2,y, and assign Eleft,x = {E1,x,E2,x,Eleft,x} and Eleft,y = {E1,y,E2,y,Eleft,y}.

S12 Create the one-dimensional lists:

Pext,x = {Eleft,x, reversed(Eright,x),Eright,x, reversed(Eleft,x)},

Pext,y = {Eleft,y,−reversed(Eright,y),Eright,y, reversed(Eleft,y)},

Pint,x = {Ileft,x, reversed(Iright,x), Iright,x, reversed(Ileft,x)},

Pint,y = {Ileft,y,−reversed(Iright,y), Iright,y, reversed(Ileft,y)}.

S13 Finally, if z was initially negative and made positive, then reflect the polygonised

toric section, Pext,x = −Pext,x and Pint,x = −Pint,x, and set back z = −z.
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Once the polygon approximation of the toric section is found in the natural frame,

a coordinate transformation should be applied to render the coordinates of the polygon

as expressed in the base frame.

There are certainly many other possible algorithms for the polygonisation of the

toric section, and ours is probably not the simplest one, particularly the part that

deals with the complex crescent shape. Indeed, while for the spindle torus, the crescent

shaped toric sections are very rare, for the other two types of tori, toric sections have

usually a crescent shape. Thus, if dealing with a general toric section, a faster algorithm

should be used.

4.3.4 Intersection of All Six Polygonised Toric Sections

Having all toric sections as polygons, external and possibly internal, we may use avail-

able planar Boolean algebra libraries to obtain the actual cross-section of the constant-

orientation workspace at a given altitude. Once again, we have implemented all our

algorithms in Matlab and therefore looked for such a Matlab toolbox. Probably the

only free toolbox that can be used to perform Boolean algebra on polygons is the SaGA

toolbox (Pankratov, 1996). The toolbox is professionally written following the well es-

tablished principles of computational geometry but requires some slight modifications

due to the old version of Matlab in which it is written and due to the lack of some

special features necessary in our case.

With the help of the slightly modified SaGA toolbox, our Matlab program is capable

of computing accurately each cross-section of the constant-orientation workspace in a

matter of few seconds. Figures 4.17 and 4.18 show two examples of workspace slices

(the ones in full colour) together with the six toric sections. The inner contours of the

toric sections are drawn in dashed line. The points in red are the edges of the workspace

cross-section and are from those obtained analytically by intersecting each pair of toric

sections. Note the complex form of each cross-section and particularly the possibility

of having more than a single area defining a cross-section. While we were unable

to find a realistic example which features a void in the cross-section, this possibility is

theoretically feasible. Therefore, a constant-orientation workspace with such a complex

shape cannot be obtained by using a brute-force discretisation algorithm.
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Figure 4.17: Example for the cross-section of the constant-orientation workspace show-

ing four distinct areas.

Figure 4.18: Example for the cross-section of the constant-orientation workspace having

a complex shape.
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Using a basic function of Matlab, the command polyarea, we are able to calculate

the area of the workspace cross-sections. Integrating these areas along the whole height

of the workspace yields a good approximation of the workspace volume.

4.3.5 Examples and Discussion

While the complete procedure for computing the edges and the horizontal cross-sections

of the constant-orientation workspace is not trivial, we will not discuss it here in detail.

Indeed, the most significant stages of this procedure were already outlined. Overall, for

every orientation and design, we need to calculate the minimum and maximum altitude,

so that for any altitude between them, all six toric sections exist. Then we need to

discretise the range from the minimum to the maximum altitude and at each altitude,

calculate the toric sections and the points of intersection between all pairs of toric

sections, and finally compute the horizontal cross-section of the constant-orientation

workspace. After (or before) all cross-sections are computed, the edges of the constant-

orientation workspace may be computed following a simplification of the procedure

previously described.

Four examples of the constant-orientation workspace of the 6-RUS parallel mecha-

nism whose data is given in Table 4.2.5 are presented in Figs. 4.19 through 4.21. Recall,

that this time the mechanical limits on the range of the U joints are ignored.

Each of the examples was computed and plotted within less than a minute. Note

that the combination of equally-spaced horizontal cross-sections and edges drawn in

a different colour yields a very intuitive representation. This allows us to use a low

resolution for the edges of the workspace—they no longer need to look like continuous

curves—and thus reduce the computation time.

In both examples shown in Figs. 4.19 and 4.20, only the top halves of the constant-

orientation workspace are drawn. Indeed, the actual constant-orientation workspace is

composed of two separated parts. In practice however, only one of this parts will be

usable, so special care should be taken not to consider both parts as in an optimisation

procedure which computes the volume of the constant-orientation workspace. To do

so, a simple constraint z ≥ zmin may be added. On the contrary, the two parts of the

workspace unite into one for the two orientations for which the constant-orientation

workspace is shown in Figs. 4.21(a) and 4.21(b). Therefore, an additional constraint

z ≥ zmin is mandatory in order to ensure realistic results.
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Figure 4.19: Constant-orientation workspace for the reference orientation.

Figure 4.20: Constant-orientation workspace for φ = −150◦, θ = σ = 0◦.
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(a) (b)

Figure 4.21: Constant-orientation workspace for (a) φ = θ = 0◦, σ = 25◦ and (b) φ =

σ = 0◦, θ = 30◦.

Finally, note the complex shape of the constant-orientation workspace shown in

Fig. 4.21(b). The workspace has even a hole in it. Such a solid is almost impossible

to compute and represent using a discretisation method. Thus, once again, we see the

superiority of geometric methods as opposed to purely numerical ones.
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4.4 Computing the Horizontal Cross-Sections of

the Constant-Orientation Workspace and

Singularity Surface of the Rotobot

We were able to propose intricate geometric methods for computing and visualising the

constant-orientation workspace of general 6-RUS parallel mechanisms. Unfortunately,

however, a geometric study of the singularities of such general parallel mechanisms

turned out to be impossible. Indeed, we saw that even the simple planar 3-RRR equiv-

alent of the 6-RUS parallel mechanism has extremely complex singularity loci. Recall

that for a constant orientation, the curve that represents these singularity loci for all

working modes is of degree 42. Furthermore, there is no polynomial that corresponds

to the singularity loci of a single working mode. One can easily make a rough extrap-

olation of these results and foresee the unsurmountable complexity of the problem in

the case of general 6-RUS parallel mechanisms.

The situation is completely different with the Rotobot (Fig. 4.22). We were able

to analyse in depth the complete kinematic geometry of this particular 6-RUS par-

allel mechanism. Furthermore, some interesting results related to the singularities of

the Rotobot were generalised for a larger class of 6-RUS parallel mechanisms. Most

importantly, a number of fascinating features of the Rotobot were discovered, among

which, its workspace segmentation by working modes. Once again, it is the geometric

approach that revealed these previously unknown kinematic properties.

Figure 4.22: CAD model of the Rotobot.
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Figure 4.23: Schematic and notation of the Rotobot.

We will follow the notation for general 6-RUS parallel mechanisms that was already

introduced. All U joint centres, points Ai (i = 1, . . . , 6), move along the same circular

trajectory referred to as the track whose centre is denoted by O. The centres of the

spherical joints are pairwise coincident, i.e., B1 ≡ B2, B3 ≡ B4, and B5 ≡ B6. These

centres form an equilateral triangle and lie on a circle of radius rB and centre C.

Henceforth, we will use the term adjacent to refer to any two chains that have a com-

mon spherical joint centre. The same term will be applied to any of the corresponding

elements of such two chains (e.g., points A1 and A2 are adjacent).

The lengths of all proximal links are equal and denoted by `1. The lengths of all

distal links are also equal and denoted by `2. We select a fixed reference frame, called

the base frame, with origin at O and axes x, y, and z, such that z is also the axis of all

R joints and the track lies in the xy plane. We also select a mobile frame that is fixed

to the mobile platform, with centre C and axes x′, y′, and z′, such that all points Bi

are in the x′y′ plane and the x′ axis is parallel to B3B5 (Fig. 4.23).

Let the angle between the x axis and line OAi be denoted by θi. This angle is input

variable i and is controlled by the motor at R joint i. The mobile platform’s position

with respect to the base frame is defined by vector p, while the platform orientation is

described by a rotation matrix R that is defined by the Tilt & Torsion angles.

Finally, we will add the superscript ′ to a vector when the latter is expressed in the

mobile frame. No superscript will mean that the vector is expressed in the base frame.

Finally, the vectors, expressed in the base frame, along lines OAi, OBi, and CBi are

respectively denoted by rOAi
, rOBi

, and rCBi
.
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The solution to the inverse kinematic problem of the Rotobot is the same as for

the general 6-RUS parallel mechanism, with the simplification that all track frames

coincide with the base frame. Thus, the input variables are determined uniquely from

sin θi =
piyBi

+ xBi
δi
√

Γi

%2
i

≡ Si, cos θi =
pixBi

− yBi
δi
√

Γi

%2
i

≡ Ci, (4.41)

θi = atan2(Si, Ci), (4.42)

where %2
i = x2

Bj
+ y2

Bj
,

Γi = x2
Bi

+ y2
Bi
− p2

i (4.43)

and

pi =
x2

Bi
+ y2

Bi
+ z2

Bi
+ `21 − `22

2`1
. (4.44)

The variables xBi
, yBi

, and zBi
are the coordinates of point Bi expressed in the base

frame. Finally, recall that δi = ±1 is the branch index.

The special thing about the Rotobot is directly related to the branch index and the

whole issue of working modes. It all comes from the fact that the spherical joints are

pair-wise coincident. Therefore, the two solutions to the inverse kinematic problem for

each two coinciding vertices, e.g., B1 and B2, are the same. Since the corresponding U

joint centres should not coincide, each chain should take one of the two solutions. In

other words, the branch indices for each two adjacent chains should be different, i.e.,

δ1 = −δ2, δ3 = −δ4, δ5 = −δ6, while Γ1 = Γ2, Γ3 = Γ4, Γ5 = Γ6. Hence, there are only

eight (instead of sixty four) working modes.

The fact that Γj = Γj+1 (j = 1, 3, 5) guarantees that the singularity loci for the

Rotobot and for any 6-RUS parallel mechanism with pair-wise coincident S joints shar-

ing the same tracks are the same for all working modes. This automatically means that

these singularity loci can be represented by a polynomial. In fact, if the distal links

are shorter than the proximal links (`2 < `1), as in the actual commercially available

Rotobot by Hexel Corporation, there is only one working mode. Indeed, once such a

mechanism is assembled, there is no way of changing the branch indices of the legs.

If, however, `1 < `2, it is possible to change a working mode without disassembling

the mechanism. This phenomenon gives rise to an interesting discussion on workspace

segmentation.
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4.4.1 Singularity Surfaces

The main equation that constitutes the inverse kinematic problem of the Rotobot is

rAiBi
= rOBi

− rOAi
, (4.45)

where rOBi
= p + Rr′OBi

and rOAi
= `1[cos θi, sin θi, 0]T . Squaring the above equation

yields

`22 = (p + Rr′OBi
− rOAi

)T (p + Rr′OBi
− rOAi

). (4.46)

We may now proceed to differentiating Eq. (4.46) with respect to time:

`2f
T
i

v + Ṙ× r′OBi
− `1θ̇i

 − sin θi

cos θi

0


 = 0 (4.47)

where fi is the unit vector along proximal link i. Expressing `2fi as

`2fi =

 xBi − `1 cos θi

yBi − `1 sin θi

zBi

 , (4.48)

and using the fact that Ṙr′OBi
= ṘRT rOBi

= ω× rOBi
, where ω is the angular velocity

of the mobile platform, and the fact that fT
i (ω × rOBi

) = (rOBi
× fi)

T ω, we obtain

`2
[
(rOBi

× fi)
T , fT

i

][ ω

v

]
= `1(yBi

cos θi − xBi
sin θi)θ̇i. (4.49)

Finally, substituting sin θi and cos θi in the above equation with the expressions

found in Eqs. (4.41), simplifying, and writing in matrix form gives us the final velocity

equation:

`2


(rOB1 × f1)

T fT
1

...
...

(rOB6 × f6)
T fT

6

ξ = −`1


δ1
√

Γ1 0
. . .

0 δ6
√

Γ6

θ̇ (4.50)

where ξ = [ωT , vT ]T is the twist of the mobile platform, and θ̇ = [θ̇1, θ̇2, . . . , θ̇6]
T is

the vector of active joint rates. We will denote, as usual, the (Jacobian) matrices
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multiplying the platform twist and the active joints rates with Z and Λ, respectively.

Thus, for every configuration, there is an equation

Zξ = Λθ̇, (4.51)

which completely describes the velocity kinematics of the Rotobot.

Equation (4.51) can, therefore, be used to fully describe and classify the singularity

configurations of the Rotobot. A general 6-RUS parallel mechanism, as well as most

parallel mechanisms, have two distinct types of singularities (Gosselin and Angeles,

1990). The first, or Type 1, occurs when matrix Λ is singular, while Type 2 corresponds

to configurations where Z is singular.

The equation describing the instantaneous kinematics of the Rotobot was derived

using the conventional approach of differentiations. However, we could have used re-

ciprocal screws to directly obtain that equation, similarly to what we did for planar

parallel mechanisms in Chapter 2. Indeed, for 6-RUS parallel mechanisms, the recip-

rocal screws are the zero-pitch screws passing through the centres of the U and S joints

in each leg, i.e., along the distal links. The rows of matrix Z are also the Plücker

coordinates of the lines along the distal links (Merlet, 1989).

While in the planar case, a parallel mechanism was at a Type 2 singularity when the

lines of the reciprocal screws intersect at one point or are all parallel, the situation in

the spatial case is much more complicated. Merlet (1989) studied all possible scenarios

in which a set of six reciprocal zero-pitch screws degenerate using Grassmann Geom-

etry. He applied that classification to the study of the singularities of 6-DOF parallel

mechanisms.

Ebert-Uphoff et al. (2000) studied geometrically the Type 2 singularity configura-

tions for 6-DOF parallel mechanisms with three S joints at the mobile platform, such as

our Rotobot. The authors classified the singularity configurations into several categories

based on the relationship between the plane of the platform and three planes through

the S joints. Their approach can be applied directly to the Rotobot, where the three

planes will be the planes defined by the adjacent distal links. However, most of the

groups for the particular design of the Rotobot represent very peculiar cases. Besides,

the approach only gives a geometric insight and does not show how to obtain the sin-

gularity surfaces, which is our main task. Therefore, we will derive the expressions for

the singularity surfaces by directly manipulating the Jacobian matrices.
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4.4.1.1 Type 1 Singularity Surfaces

From the above, it follows that a Type 1 singularity occurs only if Γi = 0. As used

in the transition from Eq. (4.49) to Eq. (4.50)

rT
OBi

r⊥OAi
= −`1δi

√
Γi (4.52)

where r⊥OAi
is the vector obtained by rotating rOAi

about the z axis by 90◦. Hence,

Γi = 0 when vector rOBi
, or equivalently, vector fi, is normal to the tangent to the

track at point Ai.

The complete set of positions of point Bi that correspond to singularities of Type 1

forms a surface. From the description given in the previous paragraph, it can be easily

seen that this surface is generated by sweeping a circle of radius `2, the generatrix, about

a circle of radius `1, the directrix or, as we already call it, the track. The centre of the

generatrix lies on the track while the axis of symmetry of the generatrix is tangent to

the track. Such a surface is, of course, a torus.

Recall that this surface may have three distinctive shapes depending on the lengths

of the proximal and distal links of the RUS chain (Fig. 4.14). As we will see later, the

case `2 ≥ `1 makes the singularity and workspace analysis of the Rotobot much more

intricate and ... intriguing. This is due to the existence of self-intersection points in

the horn and spindle tori. Recalling the inverse kinematic problem of 6-RUS parallel

mechanisms, such self-intersection points correspond to configurations at which the

inverse kinematics of the leg has infinitely many solutions.

For a given constant orientation of the mobile platform, the Type 1 singularity

surfaces for point C may be obtained simply by translating the toroidal surfaces for

each leg along the corresponding line BiC. Naturally, there will be only three distinct

Type 1 singularity surfaces for the Rotobot.

The volume enclosed by each of those surfaces is, of course, the vertex space. For-

mally, vertex space i is the set of all possible positions that may be attained by point C

considering only the kinematic constraints of chain i and keeping the mobile platform

at a constant orientation. It is important to note that the spindle torus has a lemon-

shaped cavity. Thus, any horizontal cross-section of any such vertex space will be an

annulus, i.e., the area enclosed by two concentric circles.

Finally, let us point out an interesting fact related to the singularities of general

6-RUS parallel mechanisms with pair-wise coincident S joints and adjacent chains shar-
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ing a common track. At a Type 1 singularity, at least one pair of adjacent distal (and

proximal) links is coincident. In other words, at least two rows of matrix Z will be iden-

tical. Hence, Type 1 singularities, in such mechanisms, are also Type 2 singularities.

The only exception may be at the above mentioned self-intersection points. Namely, a

pose, at which one of points Bi is at a corresponding self-intersection point, corresponds

to a Type 1 singularity. However, among the infinitely many possible placements for

the corresponding two adjacent distal links, only some will lead to Type 2 singularities.

4.4.1.2 Type 2 Singularities

For a general 6-RUS parallel mechanism, the inverse kinematic problem for each

chain has two solutions, and hence, for the whole mechanism, it has sixty-four solu-

tions. For a general 6-RUS (or other, e.g., 6-PUS ) parallel mechanism with pair-wise

coincident S joints and adjacent chains sharing a common track, however, there is only

one solution, since in each adjacent pair of chains, each chain corresponds to one of the

two solutions of the inverse kinematic problem for that pair. This important property

determines the nature of the Type 2 singularities for such mechanisms.

At the same time, when the distal links are longer than the proximal ones, the

unique solution to the inverse kinematics of a 6-RUS parallel mechanism with pair-

wise coincident S joints and adjacent chains sharing a common track may happen to

be in any of a total of eight working modes.

For a general 6-RUS parallel mechanism, the singularity loci of Type 2 depend on

the working mode of the mechanism. The problem with such parallel mechanisms is

that the expression defining their Type 2 singularity loci is not polynomial (it contains

radicals) and hence the singularities are difficult to study and represent. On the other

hand, the advantage of such Type 2 singularities is that they may be modified without

disassembling or reconfiguring the robot. Indeed, it is possible to change the branch

index of one or more chains in order to change the Type 2 singularity loci and so be

able to follow Type 2 singularity-free trajectories that are otherwise impossible for a

given branch set.

For a 6-RUS parallel mechanism with pair-wise coincident S joint centres and ad-

jacent chains sharing a common track, it may be proven that the determinant of the

Jacobian matrix Z is free of any radicals. In fact, for a constant orientation, the deter-

minant reduces to a polynomial of degree eighteen in x, y, and z (in the case `1 = `2).

This initially astonishing fact is actually quite obvious. Such a parallel mechanism is

kinematically the same for any branch set for which δjδj+1 = −1, j = 1, 3, 5.
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Let us now focus on our Rotobot and determine its Type 2 singularity surfaces for

a given orientation. Our task is quite simplified due to the fact that we need to specify

only two Euler angles. Indeed, it is obvious that the Type 2 singularities remain the

same when the mobile platform rotates about the z axis since the configuration of the

Rotobot remains unchanged with respect to the mobile frame. It can be shown, again

using a computer algebra system, that the Type 2 singularities of the Rotobot can be

represented by a polynomial of degree 5 in x, y, and z (of degree 4 in x and y). The

polynomial is, however, still too big (some two pages) to represent here.

In order to be able to describe in detail the derivation of the expression representing

the Type 2 singularities we will limit ourselves to the case of the redundant Rotobot.

(The procedure is almost the same as in the general case, though.) In other words,

we will assume that the Rotobot is used with an axisymmetric tool along the mobile z′

axis, such as a milling cutter or a laser beam. Thus, there will be no need to orient the

mobile platform about the mobile z′ axis and all required orientations of the mobile

platform or, rather, all required directions of the axisymmetric tool may be realised by

only one rotation. This rotation will be simply about the mobile x′ axis at an angle θ.

Once the Jacobian Z is expressed in the variables x, y, z, and the parameters rB (the

platform radius), `1, `2, θ, %j, Γj, δj, (recall that %j = %j+1, Γj = Γj+1, and δj = −δj+1)

we follow the procedure described below (in this section j = 1, 3, 5).

S1 Substitute the expressions δj
√

Γj with the parameters ∆j.

S2 Obtain detZ. Its denominator is equal to 128%4
1%

4
3%

4
5. Indeed, Z is not defined

when point Bi lies on the z axis, i.e., when %j = 0. Eliminating this special case,

we consider further only the numerator, E . This numerator is a function of x,

y, and z that cannot be generally factored and contains the three radicals δj
√

Γj

(actually ∆j) and the parameters %2
j .

S3 E can be factored to E = 9`31r
3
B∆1∆3∆5E1, where E1 is an expression depending on

x, y, z, rB, `1, `2, θ, and %j, and cannot be factored. Indeed, recall that the Type 1

singularities which are represented by ∆j = 0 are also Type 2 singularities. Hence,

we are interested only in E1.

S4 Substitute in E1 the expressions for %2
j = xB

2
j + yB

2
j :

%2
1 = x2 + (y + cos θ rB)2,

%2
3 = (x− rB

√
3/2)2 + (y − cos θ rB/2)2,

%2
5 = (x+ rB

√
3/2)2 + (y − cos θ rB/2)2.
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S5 Now, E1 depends only on x, y, z, rB, `1, `2, and θ, and may be factored to

96rB%
2
1%

2
3%

2
5(z−sin θ rB/2)E2, where %2

j are actually the above left-hand expressions.

The singularity for z = sin θ rB/2 corresponds to the case where the horizontal side

of the platform, B3B5, lies in the xy plane.

If the mobile platform is horizontal (or inverted, which however is practically im-

possible), i.e., if θ = 0, then the singularity surfaces are a vertical cylinder, centred at

the origin and of radius rB, and the plane z = 0:

E2 = 8z2(x2 + y2 − r2
B) = 0. (4.53)

Otherwise, the singularity surface defined by E2 for θ 6= 0 is a complex-shaped

quartic surface. However, each horizontal cross-section of that surface is a bicircular

quartic that is symmetric about the x axis and the line y = z cot θ (Fig. 4.24). This

curve resembles the spiric section, also called Perseus’ spiric curve. As we already

mentioned, the spiric section is the curve obtained by intersecting a torus with a plane

that is parallel to the axis of the torus.

To simplify the equation of the singularity loci, we perform the coordinate trans-

formation y = ŷ+ z cot θ and after factoring out the constant csc θ, we obtain the final

expression for the Type 2 singularity loci for a given z and θ 6= 0:

Q = (x2 + ŷ2)2 + q3x
2 + q5ŷ

2 + q8, (4.54)

where

q3 = 2`22 − 2`21 − r2
B + (2z2 + 4zrB sin θ) csc2 θ,

q5 = 2`22 − 2`21 − r2
B − 2z2 csc2 θ,

q8 = r2
B(`21 − `22) + (`21 − `22)

2 + 2z2(`21 − `22) csc2 θ −

z(2rB sin θ − z)(rB sin θ + z)2 csc4 θ.

Even though the above equation of the singularity curve is simpler than the more

general bicircular quartic, the toric section, the curve still cannot be represented by

a parametric equation or written in polar form. Therefore, we need to polygonise the

curve as we already did for the toric section. Figure 4.24 shows all possible types of

shapes that the bicircular quartic from Eq. (4.54) can take.



147

Figure 4.24: The types of shapes of the singularity loci (bicircular quartic).

The algorithm for the polygonisation of our bicircular quartic is similar to that

for the toric section but slightly differs since the bicircular quartic of Eq. (4.54) is

symmetric with respect to both the x and the new ŷ axis. Furthermore, it seems that

the curve has always at least two ŷ intercepts. However, while we could not find any

counterexample, we were unable to prove this fact theoretically. On the other hand,

it was easy to show that the curve may have no x intercepts and be composed of two

symmetric contours separated by the x axis.

Therefore, for the centre of the ray polygonisation method, one should simply select

the origin of the coordinate frame, in case there is an equal number of x and ŷ intercepts.

If, however, there are no x intercepts, that centre should be selected somewhere between

the two positive (or negative) ŷ intercepts. Similarly, if there are no ŷ intercepts, the

centre should be selected somewhere between the two positive (or negative) x intercepts.

4.4.2 Constant-Orientation Workspace

The methodology for computing the constant-orientation workspace of a general 6-RUS

parallel mechanism was already described in detail. The workspace was visualised

through its edges which were computed by analytical methods (Section 4.2). The other

alternative of representing the workspace through its horizontal cross-sections was also

explored for the case where no joint constraints are assumed (Section 4.3).

In this section, however, we deal mainly with the Rotobot design, and the emphasis

is on obtaining simple formulations for the singularities and workspace for a constant

orientation that can be used for optimisation purposes. In addition, our goal is to use

the Rotobot design to demonstrate several new phenomena, rather than just provide a

practical tool for analysing a particular parallel mechanism.
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Hence, we choose to compute and visualise the constant-orientation workspace by

horizontal slices. Firstly, the task is simpler, and, secondly, we need cross-sections and

not edges in order to compute the volume of the workspace. The task of computing

the workspace using a CAD system, as previously done (Bonev and Ryu, 1999b), is

overruled due to the difficulty in representing some of the geometrical entities (a quartic

singularity surface and three Bohemian domes) and the necessity for some extra tests

involving the solution of the inverse kinematic problem. In our method, we will not

consider the mechanical limits of the S and U joints. However, we will consider the

inevitable constraint on the order of the U joints along the common circular track. This

constraint is particularly interesting and can nicely be modelled geometrically. Once

again, the geometric method will prove to be more effective than a numerical one.

4.4.2.1 Order of the U Joints Along the Track

If we were able to construct the Rotobot in such a way that the U joint centres

Ai along the track could change their circular order, then all that would have been

necessary to do is to find the intersection between all three vertex spaces. The latter

task amounts to finding the intersection of three annular regions (Gosselin, 1990).

Unfortunately, most feasible designs would restrain the order of the U joint centres

along the circular track. In order to be able to easily model that physical constraint,

we assume that two or more consecutive U joint centres can coincide but not pass over.

Thus, in our case, points A1, A2, . . . , A6 should preserve their counter-clockwise order

along the circular track.

For a given pose of the Rotobot, we may solve the inverse kinematic problem and

generally know the values for all six input variables from Eq. (4.41). This is true if we

choose to keep the branch index of each chain constant. However, as we will see later,

two adjacent chains of the Rotobot may actually switch their branch indices simply by

passing through a self-intersection singular point. Thus, by simply solving the inverse

kinematic problem, we do not immediately know which of the two values in each of the

three pairs of input variables corresponds to one or the other chain in the corresponding

adjacent pair of chains.

Even though the problem of verifying whether six points along a circle are in a

given order seems quite easy, its solution is a challenging task due to the fact that the

points may coincide. This task is even further complicated by the fact that we do not

differentiate between the two points in each of the three pairs. The following procedure

is proposed:
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Figure 4.25: Four valid arrangements of the U joint centres.

S1 Form the ordered list ϑ = {θ1 +π, . . . , θ6 +π}. Replace all elements that are equal

to 2π by 0, so that ϑ ∈ [0, 2π).

S2 Reduce the numeric precision of all elements to, say, three digits after the decimal

point. This is done to ensure that theoretically equal elements are indeed identified

as equal.

S3 If ϑ2 < ϑ1, then interchange the values of ϑ2 and ϑ1. If ϑ2 ≥ max{ϑ3, . . . , ϑ6} and

ϑ1 ≤ min{ϑ3, . . . , ϑ6}, then interchange (possibly again) the values of ϑ2 and ϑ1.

This is done to ensure that, if possible, point 2 is immediately after point 1 in a

counter-clockwise direction.

S4 Subtract ϑ1 from all elements of ϑ. Add 2π to all elements, that have become

negative to make ϑ ∈ [0, 2π). If any of or both ϑ5 and ϑ6 are equal to zero, then

replace the zero with 2π. If any of or both ϑ3 and ϑ4 are equal to zero and ϑ2 6= 0,

then replace the zero with 2π (Fig. 4.25).

S5 Is ϑ2 ≤ min{ϑ3, ϑ4} and max{ϑ3, ϑ4} ≤ min{ϑ5, ϑ6}?

If the above test is positive, then the order of the six points is valid and we may

obtain the branch indices for each chain. In particular, δ1 = −1 if there was no

interchange in the values of ϑ1 and ϑ2 in step 3; otherwise δ1 = +1. Similarly, δj = −1

(j = 3, 5) if ϑj < ϑj+1; otherwise δj = +1. (If ϑj = ϑj+1 or ϑj = ϑj+1 ± 2π, the branch

indices δj and δj+1 are irrelevant.)

If for some reasons we wish to—or are forced to (as in the case `2 < `1)—operate

the Rotobot in a single working mode, the above procedure should be slightly modified.

In particular, step 3 should be removed and steps 4 and 5 should be modified as follows:
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S4’ Subtract ϑ1 from all elements of ϑ. To make ϑ ∈ [0, 2π), add 2π to its negative

elements. If ϑ6 = 0, set ϑ6 =2π. If ϑi = 0 and ϑi−1 6=0, set ϑi = 2π for i = 3, 4, 5.

S5’ Is ϑ2 ≤ ϑ3 ≤ ϑ4 ≤ ϑ5 ≤ ϑ6?

4.4.2.2 Geometric Model for the U Joint Interference

The vertex space boundary, as previously defined, may be seen as the surface cor-

responding to all positions for the platform centre, for a given constant orientation of

the mobile platform, for which two adjacent U joint centres are coincident. Inside the

vertex space, the adjacent U joint centres are not interfering.

A similar geometric model exists to describe the positions of the platform centre

for which two neighbouring U joint centres, i.e., {Aj+1, Ak}, where j = 1, 3, 5 and

k = 3, 5, 1 are coincident. Let the mobile platform has a given constant orientation

and two of its neighbouring U joint centres, {Aj+1, Ak}, are coincident and fixed to

the track. Then, under these conditions, the platform centre can move along a circle,

C, whose plane is normal to BjBk. The radius of this circle is equal to the distance

from Ak to line BjBk, i.e., rC =
√
`22 − 3r2

B/4, and its centre is at a point obtained by

translating point Ak along the constant vector pk = −(rCBj
+ rCBk

)/2.

Notice that the above remains true for any position of the coinciding U joint centres

on the circular track. Hence, the complete set of positions of the platform centre for

which two neighbouring centres are coincident is the translation surface, Bk obtained

by sweeping circle C, while its centre moves on the track circle and the plane of the

circle remains parallel to vector rBjBk
. Such a surface is a quartic and is referred to as

a Bohemian dome (Weisstein, 2002), shown in Fig. 4.26. Its parametric equation is:

Bk(uk, vk) = pk +

 rC cosφk cosuk − rC sinφk cos γk sinuk + `1 cos vk

rC sinφk cosuk + rC cosφk cos γk sinuk + `1 sin vk

rC sin γk sinuk

 (4.55)

where the coordinate uk ∈ [0, 2π] defines the horizontal circular parallels and vk ∈ [0, 2π]

defines the inclined circular parallels, and φk and γk are respectively the azimuth and

tilt angles defining vector rBjBk
as:

rBjBk
= rCBj

− rCBk
=
√

3rB

 sinφk sin γk

− cosφk sin γk

cos γk

 . (4.56)



151

Figure 4.26: The lower half of a Bohemian dome surface.

Now, let us make the important observation that at the interior of the Bohemian

dome B, the two neighbouring U joint centres pass over and, therefore, are in interfer-

ence. Hence, the platform centre should always be at the exterior of that surface.

For a given value of uk, the corresponding horizontal circular parallel is of radius

`1 and centre that can be directly obtained from Eq. (4.55). For a given height z, two

values of uk can be generally found. Hence, for a given height z, there are generally

two circles. And it is the area enclosed by these two circles, excluding the area inside

both of them (if the circles are intersecting as in Fig. 4.26), that corresponds to U

joint interference and should be avoided. Note that for the heights zk,min and zk,max

for which uk = ±π/2, there is only one circle, but neither of these circles limits the

workspace area in any way. In other words, for z ≤ zk,min and z ≥ zk,max there is no

interference between the two U joints.

Finally, let us study the relationship between the Bohemian dome surface for chains

j + 1 and k and the vertex spaces corresponding to those two chains (actually to pairs

{j, j + 1} and {k, k + 1}). By definition, the Bohemian dome should be inside both

vertex spaces. The parametric equation of vertex space j is

Vj(uj, vj) =

 cos vj(`2 cosuj + `1)

sin vj(`2 cosuj + `1)

` sinuj

− rCBj
, (4.57)

where uj ∈ [0, 2π] and vj ∈ [0, 2π].

Using the parametric equations for Vj, Vk, and Bk, it can be shown that Bk is not

simply inside both vertex spaces but is tangent to their boundaries. This amazing ge-
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Figure 4.27: The lower halves of a Bohemian dome and the corresponding vertex spaces.

ometrical fact is demonstrated in Fig. 4.27, where the colour interfusion (the smudges)

on the Matlab plot are due to the tangency between the surfaces. For a better repre-

sentation, only the halves of the three entities are shown (u ∈ [π, 2π]).

An example of the cross-sections is given in Fig. 4.28. Basically, we have two

pairs of concentric circles (from the vertex spaces) whose mean radius is `1, and two

non-concentric circles of radius `1 (from the Bohemian dome). Each of the two non-

concentric circles is tangent to all four concentric circles. The filled part is the area

where the platform centre can move without causing interference between the two

neighbouring U joint centres Aj+1 and Ak.

Figure 4.28: Cross-sections of a Bohemian dome and the corresponding vertex spaces.
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4.4.2.3 Procedure for Computing the Workspace

We are finally ready to describe the computational procedure for computing the

horizontal cross-sections of the constant-orientation workspace of the Rotobot.

For a given orientation, set the range z ∈ (zmin, zmax) for which all three vertex

spaces exist and the distal links are always above the xy plane, where zmax = `2 −
max{rCB1,z, rCB3,z, rCB5,z} and zmin = −min{rCB1,z, rCB3,z, rCB5,z} (rCBj ,z are the z

components of vectors rCBj
). Start decrementing z from zmax down to zmin. To achieve

a better visual result, it is not recommended to use a fixed interval step. We use, for

example, the law z = zmax cosw, where w ∈ (cos−1 zmin, 0).

For each z, we compute the centres and radii of all three pairs of concentric circles

(the cross-sections of the vertex spaces—they exist for sure) and the centres of the

maximum three pairs of non-concentric circles (the cross-sections of the Bohemian

domes—some or all may be missing). This data is stored in maximum six structure

objects, each divided into two. Each of these maximum twelve objects corresponds to a

circle and contains fields for the geometrical data (centre and radius), the intersection

points (as values in the range [0, 2π]), and the pairs of intersection points that define

the boundary arcs of the workspace cross-section.

For each two pairs of concentric circles, we compute and store the maximum four

intersection points. If, for those two pairs, there exists a Bohemian dome, we compute

and store the maximum two points of intersection between the two non-concentric

circles. Finally, we calculate the eight points of tangency (recall Fig. 4.28) and store

them in the appropriate fields.

Next, we take each of the maximum three pairs of non-concentric circles, and for

each pair, we take each of the non-corresponding vertex space concentric circles and

each of the maximum two other pairs of non-concentric circles. For each pair of non-

concentric circles and each pair of concentric or non-concentric circles, we compute the

maximum eight (four times two) intersection points and store them in the appropriate

field of each circle.

At this stage, we have computed all possible intersection points between the maxi-

mum twelve circles. We then sort in ascending order all maximum twelve lists containing

the values that define the intersection points. If the list of a circle has none or only one

value, its contents is replaced with the pair {0, 2π}. Otherwise, we copy the smallest

value at the end of the list. In this way, the consecutive values in each list define the

consecutive arcs composing the circle.
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Finally, we proceed to checking which of the resulting arcs are part of the workspace

boundary. For each of the maximum twelve circles, start testing each arc. Find the

coordinates of the middle point of each arc. Then, solve the inverse kinematic problem.

If some Γj (j = 1, 3, 5) is negative, then stop and start with the next arc. If all Γj

are non-negative, then perform the tricky test on the order of the U joint centres. If

the test is negative, then stop and start with the next arc. Otherwise, put the values

defining the arc in the third field of the structure object and repeat the procedure with

the next arc until all arcs have been tested.

When all valid arcs have been identified, we may construct the workspace boundary

array. Discretise each arc into a finite number of sequential points, as pairs of {x, y}
coordinates, and put them into the array. If using Matlab, add the {NaN, NaN} pair

after each arc list. Note that we do not sort the arcs to obtain the boundary as an

ordered list of closed contours, which is needed if we wish to compute the area of the

workspace cross-section.

The list is now ready to be plotted. We may discretise the bicircular quartic defining

the Type 2 singularity loci and plot the parts that are inside the workspace.

N.B. For simplicity, we have considered that C is the point of interest, i.e., the tool-

tip. Obviously, this is not always the case. However, since the mobile platform has a

constant orientation, we only need to offset all of the results presented in this section

if we are interested in another point of the mobile platform.

4.4.3 Examples and Discussion

The proposed methodology was implemented in Matlab 6, taking again advantage of

its data structures and cell arrays. The computation time for the workspace is a few

seconds only. Computing and plotting the whole singularity curves, as well, doubles

the computation time. If instead, only the segments of the singularity curves inside the

workspace are plotted, the computation time builds up to some 15 seconds.

We present several examples for several different designs that illustrate the ideas

developed in this section. The first example, shown in Fig. 4.29 presents the constant-

orientation workspace of the design that was chosen by Hexel Corporation for their

commercially available prototype of the Rotobot (`1 = rB = 500 mm, `2 = 433 mm).

Their design has a much more simplified workspace computation due to the fact that
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Figure 4.29: Constant-orientation workspace and singularity loci for a Rotobot design.

the distal links are shorter than the proximal links and the distance between two S

joint centres is greater than twice the length of the distal links. These mechanical

limits ensure respectively a constant working mode and no U joint interference. Even

if the choice of the design was probably governed by the simplicity of the workspace

computation, we should admit that the design seems to be quite optimal, with a “well-

shaped” workspace that is almost singularity free.

Figure 4.29 shows the horizontal cross-sections of the workspace boundary (in black)

and singularity loci (in red) for the orientation defined by θ = −10◦. The Rotobot is

also shown at the position x = −140 mm, y = −60 mm, and z = 380 mm. Note that

for this design, as well as for the others to come, the tool-tip for which all computations

are made (shown as a small blue “+”) is selected at z′ = 200 mm.

The second example, shown in Fig. 4.30, refers to a design for which `1 = 500 mm,

rB = 300 mm, and `2 = 650 mm. The orientation of the mobile platform is defined

by θ = 10◦ and the Rotobot is shown at the pose for which its tool-tip is at x =

y = 0 and z = 720 mm. The constant-orientation workspace at this orientation is

divided into six volumes, of which only the upper-most central three correspond to the

branch set δj = −1, δj+1 = +1 (j = 1, 3, 5). Note that for this working mode, the

corresponding workspace is centrally located, while for the other working modes, the

workspace volumes are far from the z axis.
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Figure 4.30: Constant-orientation workspace and singularity loci for a Rotobot design.

The final example, shown in Fig. 4.31, refers to a design for which `1 = 500 mm,

rB = 450 mm, and `2 = 500 mm. The orientation of the mobile platform is defined

by θ = 0 and the Rotobot is shown at the pose for which its tool-tip is at x = y = 0

and z = 500 mm. The constant-orientation workspace at this orientation is divided

into four volumes, of which only the upper-most central one corresponds to the working

mode δj = −1, δj+1 = +1 (j = 1, 3, 5).

Based on these and many other examples, we conclude that the Type 2 singularity

loci are scarce and close the the workspace boundary, and thus do not substantially

limit the workspace. The optimisation of the Rotobot can, therefore, ignore the Type 2

singularity loci and focus of the constant-orientation workspace only. As the edges of

the workspace boundary cross-sections represent arcs of circles, the areas of these cross-

sections can be computed exactly. By integration, the volume of the whole workspace

may further be obtained.

In view of design optimisation, we should mention the recent work of (Liu et al.,

2002) on the design of general Rotobot parallel mechanisms with distinct S joints. How-

ever, with all the geometric tools proposed in this section, the optimisation of the Ro-

tobot is a straightforward task that may be performed using a relatively brute-force

approach since there are only two independent design variables, e.g., `2/`1 and rB/`1.

Let us also mention that our study of the Bohemian dome surface may be useful

in the analysis of other parallel mechanisms as well. For example, the workspace of



157

Figure 4.31: Constant-orientation workspace and singularity loci for a Rotobot design.

a novel parallelepiped parallel mechanism was recently found to be a Bohemian dome

(Wu and Gosselin, 2002b).

The Rotobot is one of the best examples showing how only the use of a geometric

method may lead to the complete understanding of the robot kinematics. Indeed,

without using a geometric method, it is nearly impossible to realise that, in the case

`2 ≥ `1, there is an important phenomenon related to working modes. Without being

aware of this phenomenon, one would, naturally, fix the working mode and thus reduce

significantly the Rotobot workspace while, most probably, believing that the workspace

is much larger.



Chapter 5

Conclusions

This thesis presents a rigorous and intuitive geometric approach to the kinematic anal-

ysis of parallel mechanisms. Unlike some previous works, the investigation is not based

upon the extensive (and sometimes shortsighted) manipulation of algebraic equations

and the frequent abuse of computer algebra systems. The often seen appendices with

automatically generated unintelligible bulky equations have been rejected in favour of

enlightening geometric illustrations and algorithms. Motion as incurred in mechanisms

is a geometrical phenomenon, which is the reason why we speak of kinematic geometry.

Kinematics of mechanisms should, therefore, be analysed geometrically.

Geometrical methods for the study of mechanisms are intuitive and provide an in-

depth kinematics insight. They are especially useful at the design stage. Furthermore,

geometry develops creativity as intuition is guided by unifying geometric principles.

Numerical methods are another alternative over analytical methods. But while nu-

merical methods are general and may be applied to a wide class of different mechanisms,

geometrical methods are more accurate and often prove to be much faster.

158
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One of the simplest examples for the supremacy of geometrical methods is the

problem of singularity analysis of 3-RRR planar parallel mechanisms with a pair of

coincident platform R joints (Fig. 2.12, page 42). A brute-force manipulation of the

determinant of the Jacobian matrix results in a polynomial of degree 42 which, because

of its huge size, is almost impossible to factorise (even though, theoretically, this is

possible). Thus, a study of this polynomial reveals nothing.

A numerical method, such as a simple discretisation method, would show, after

long computations, that, for each orientation of the mobile platform and for a single

working mode, the Type 2 singularity loci look like arcs of circles and a portion of some

curve. If, by any chance, one plots these singularity loci for all working modes, then

four complete circles and a close-loop curve would suddenly appear. Yet, those would

not be smooth curves but thousands of scattered points that will take a long time to

be computed and a whole lot of storage space.

In contrast, a geometrical approach immediately recognises the three scenarios that

lead to Type 2 singularities—when the line along the lone distal link passes through the

pair of coincident platform R joints, when the other two distal links are overlapping,

or when they are fully stretched. These three scenarios are readily associated with two

circles, another two circles, and a sextic, respectively. Moreover, these curves may be

represented with parametric equations and, therefore, quickly and smoothly drawn. It

can further be seen how they relate to the workspace boundaries, and how they are

segmented corresponding to each of the eight working modes. Based on these findings,

one may easily select the best design in order to maximise the workspace of the parallel

mechanism.

Of course, the geometrical approach does not always eliminate the use of numer-

ical methods. For example, the singularity loci for general 3-RRR planar parallel

mechanisms which are represented by a curve of degree 48 can only be drawn using a

discretisation algorithm. Nor does the geometrical approach always eliminate the use

of algebra. For instance, the intersection points between a cyclide and a circle cannot

be computed without the use of algebraic geometry. Geometry does not always make

miracles but “it can often simplify, or even entirely eliminate, the subsequent steps

in analysis” (Hunt, 1978). It is, therefore, crucial that the first step in the kinematic

analysis of any parallel mechanism includes an overall geometric study of the problem.
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5.1 Summary and Contributions of the Thesis

Our journey into the geometric analysis of parallel mechanisms starts naturally with

a detailed investigation of the singularities of all possible 3-DOF planar fully parallel

mechanisms (Chapter 2). And what better general approach to do that than the use of

planar reciprocal screws. Since screw theory using three coordinates is not commonly

used, we outline a detailed tutorial on the use of planar reciprocal screws for the analysis

of the singularities of planar fully-parallel mechanisms.

Despite the recent increase in the popularity of screw theory, some remain reluctant

to accept its advantages. The first of these is the systematic procedure of setting

up directly the velocity equations and geometrically interpreting the singularities of

a parallel mechanism. For Type 2 singularities of planar parallel mechanisms, for

example, screw theory teaches us that the three lines along the three reciprocal screws

should either be intersecting at one common point or parallel. To give a sense of

the compactness of the reciprocal screw method, we have put it into contrast with

the conventional way of deriving the velocity equations through differentiation, with

respect to time, of the inverse kinematic equations.

The second advantage of using screw theory is the ability to correctly explain par-

ticular singularities such as configurations where the two passive R joints in an RPR

chain coincide. There exist examples in the literature where such singularities are in-

correctly classified based on a misleading analysis of the basic velocity equations. The

problem is that at such singularities, the conventional input-output velocity equations

are simply not valid, while screw theory can aid to set up the correct system of velocity

equations.

One of the most important contributions of Chapter 2 is the systematic study of

the kinematic geometry of all 3-DOF planar fully-parallel mechanisms. The results

obtained in Chapter 2 are of great value to the designer looking for a 3-DOF planar

parallel architecture. We propose some new simplified designs that have no Type 2

singularities, or other with singularities that are very easy to determine. The results

could also be of value to support or reject general theories. For examples, among the

various architectures, some give direct answers to questions such as whether Type 2

singularities divide the workspace into segments corresponding to each assembly mode.

Finally, some examples are ideal candidates for a robot kinematics course exam. The

singularity analysis of some mechanisms may take days to complete when incorrectly

approached, yet require only minutes to outline when based on geometry.
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In Chapter 3, we approach the constraint analysis of a special class of 3-DOF spatial

parallel mechanisms. One of the major reasons for the complexity of the analysis of

spatial mechanisms is the problem of orientation representation. Hence, we dedicate

the first part of the chapter on a new type of Euler angles. The Tilt & Torsion angles,

as we call them, have been previously used in biomechanics, but only recently have they

been used to represent the orientation of the mobile platform of parallel mechanisms.

We define these angles and summarise the numerous advantages that they offer for the

analysis of spatial parallel mechanisms.

We saw that the use of the Tilt & Torsion angles is more intuitive, allows the

representation of the orientation workspace under a nicely-shaped form, and reveals

the particular symmetry of spatial parallel mechanisms when the torsion angle is equal

to zero. We showed that the T&T angles are the best choice for most 6-DOF spatial

parallel mechanisms and especially those for which the torsion capability is considered

to be a redundant degree of freedom. In essence, the first part of Chapter 3 is a concise

treatise on the use of T&T angles for spatial parallel mechanisms.

The most original contribution in Chapter 3 is, however, the analysis of a class

of 3-DOF spatial parallel mechanisms with zero torsion. While none of the studied

designs is new—in fact a lot of work has been done on most—these mechanisms have

never been recognised before as members of the same class. In fact, it is not even clear

whether all those researchers have reached the conclusion that the torsion of the mobile

platform is always equal to zero. The key factor in our successful analysis is the use of

T&T angles which allows us to directly obtain the simple equations relating the three

constrained and three feasible degrees of freedom of the mobile platform.

The conclusion is once again in favour of geometry. When Euler angles are simply

seen as a parametrisation of orientation, without any insight into their nature, one ends

up with huge algebraic expressions and misses the exact nature of the motion of the

analysed parallel mechanisms.

Finally, in Chapter 4, we approach the kinematic analysis of one of the most intricate

6-DOF parallel mechanisms—the 6-RUS architecture. This chapter is abundant with

geometry as we all know it—we construct general tori, intersect them with circles and

planes, work with bicircular quartics, intersect and polygonise toric sections, work with

translational surfaces. While most of the results in the previous two chapters could,

theoretically, be obtained without even mentioning geometry, Chapter 4 could not even

exist without it.
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We first develop in Section 4.2 a geometrical method for the computation and

representation of the edges of the constant-orientation workspace of general 6-RUS

parallel mechanisms. Not only do we cover the most general case, but we also consider

the mechanical constraints on the U joints. For this purpose, we propose a method

for obtaining the intersection of two general tori. The method is based on the analytic

formulation of the problem of intersecting a cyclide with a circle.

Then, in Section 4.3, we ignore the constraints on the U joints and gain the capability

of computing and representing the cross-sections of the constant-orientation workspace

of general 6-RUS parallel mechanisms. To achieve this, we define the equation of a

toric section and propose an analytic method for computing the intersection points

between two toric sections. Then, we propose an algorithm for polygonisation of each

toric section.

Finally, in Section 4.4, we narrow down our investigation to the special Rotobot

design which has pair-wise coincident S joint centres and one single common track

for all U joints. While aimed at a very peculiar design, our study reveals interesting

phenomena which appear in other parallel mechanisms as well. Basically, we propose a

geometric method for the computation of the horizontal cross-sections of the constant-

orientation workspace and the Type 2 singularity surface. The first major contribution

is the description of a geometric model for the constraint on the circular order of the

U joints along the track which was represented by three Bohemian dome surfaces. The

second major result is the derivation of a bisymmetric bicircular quartic equation for the

cross-sections of the Type 2 singularities. Based on our geometric study, we reveal the

fact that the Type 2 singularities are the same for all working modes, but the workspace

is segmented into parts that correspond to different working modes. Other interesting

properties of the Rotobot have also been discussed. Apart from the very theoretical

contributions, our method has the advantage that it may be easily incorporated into

the optimisation of the Rotobot itself.

5.2 Directions for Future Work

One of the greatest benefits from using geometric methods in the kinematic analysis of

parallel mechanisms is the gain of in-depth insight. It is, therefore, of no surprise that

several new and interesting phenomena have been revealed during our study. Unfor-

tunately, they are outside the scope of this thesis and require considerable efforts for
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their proper study and generalisation. Herein, we suggest two main areas of continued

investigation, which will require more advanced forms of the geometric approach used

in this thesis.

5.2.1 Workspace Segmentation, Working Modes, and

Assembly Modes

The workspace segmentation by working modes or by assembly modes is recognised at

the very beginning of our thesis. We even delve, in some detail, into this mysterious

phenomenon in Chapter 2, while still analysing the relatively simple planar parallel

mechanisms. The phenomenon appears in a new light in the study of the spatial 6-

DOF Rotobot. The more we study this problem and try to generalise the results, the

more new peculiar cases appear.

The investigation of this phenomenon may look too theoretical to be of any practical

value but we gave sufficient number of examples to demonstrate its practical impor-

tance. A complete understanding of the workspace segmentation, at least as appearing

in a particular parallel mechanism, allows the optimised use of the workspace and the

proper control of the mechanism.

As shown in Chapters 2 and 3, some parallel mechanisms have Type 2 singularities

that depend on the particular working mode. Therefore, a hypothesis can be made that

in order to make use of the whole workspace segmented by these dangerous singularities,

the mechanism should be capable of switching working modes which, by definition,

requires the passage through a less-menacing Type 1 singularity. But some examples

suggested that it is probably impossible to switch working modes without encountering

Type 2 singularities...

When mechanisms with multiple working modes have some mechanical limits as on

the range of the actuated joints or the order of passive joints (as in the Rotobot), the

workspace is segmented into parts corresponding to different working modes. Therefore,

in order to maximise the use of the whole workspace, the mechanism should switch

working modes by passing through a Type 1 singularity. But is it always possible to

do that without passing through a Type 2 singularity?

Then, there is the old question of whether assembly modes are separated by Type 2

singularities. We saw that in some cases, as in the 2-DOF planar PRRRP parallel
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mechanism, this is true. But is it always true, at least for simple mechanisms as the

planar ones? And what is the relation between assembly and working modes? Examples

in Chapter 2 may fuel that discussion but a rigorous study of this problem has yet to

be presented.

The issues discussed in the preceding paragraphs are all related to the design of some

parallel mechanisms. But they are also important for the control of these mechanisms.

Is it really that harmful to pass through a Type 2 singularity? Well, researchers in

Germany have done that without any damage to their PRRRP parallel mechanism

(Hesselbach et al., 2002).

Undoubtedly, a geometrical study is the way to approach all those problems. It

should not, however, be limited to the output space of the mechanism but, rather,

investigate the motion of the mechanism in its configuration space.

5.2.2 Zero-Torsion 3-DOF Spatial Parallel Mechanisms

If the practical utility of a study on the issue of working modes is less evident to

the general user of a parallel mechanism, the importance of 3-DOF spatial parallel

mechanisms with zero-torsion is obvious.

To begin with, we all agree that 3-DOF spatial mechanisms allowing one transla-

tion and two rotations are useful for a wide range of applications. Indeed, the trend in

parallel kinematic machines (PKMs) is the use of such mechanisms. There are multiple

examples of commercially available PKMs based on such architectures. Such mecha-

nisms are also used for telescope applications and micro-manipulation.

The translational degree of freedom is used to advance the mobile platform of the

parallel mechanism, e.g., as in focusing, while the two rotational degrees are used to

direct the axisymmetric tool. Clearly, these three basic degrees of freedom are the most

important for applications requiring axisymmetric tools. The mechanisms may further

be mounted on an XY stage to provide wide range of motion in x and y. Indeed,

machine tools used in the aerospace industry are required to work on very large-area

parts of relatively small thickness.

For most of the existing non-zero-torsion parallel mechanisms of this type, the re-

lationship between the constrained and feasible degrees of freedom is extremely com-

plicated. This leads to problems in the design of the mechanism and sets much higher
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requirements on the control system of the mechanism. Therefore, it is of no doubt that

having a constraint relationship as simple as σ = 0 is a great relief. Not surprisingly,

nature has also “evolved” in this way, “designing” the human eye and the clavicle to

work with zero torsion.

While the contribution of our thesis was to demonstrate, using the Tilt & Torsion

angles, that certain parallel mechanisms are with zero torsion, we could not define the

general rules for the synthesis of such mechanism. Therefore, one possible direction

for research may be the synthesis of such zero-torsion mechanisms. Surely, such an

endeavour should be based on the advanced geometric tools of screw theory.
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