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Résumé

L’objectif de ce travail de recherche est le développement de planifications de trajectoires
analytiques de type point a point pour mécanismes a cables suspendus complétement action-
nés. Spécifiquement, cette thése propose une planification de trajectoire point a point dite
de transition pour mécanismes a effecteur ponctuel a 2 et a 3 degrés de liberté (ddl), ainsi
que des planifications de trajectoires point a point classiques pour mécanismes spatiaux a 3
ddl, d’une part, et pour mécanismes a 6 ddl de type Gough-Stewart, d’autre part. Chaque
trajectoire développée assure aux points limites une vitesse nulle et une accélération continue,
en plus d’étre spécifiquement construite dans le but de maintenir des forces exclusivement de

tension dans les cables tout au long du tracé.

La trajectoire de transition pour mécanismes a effecteur ponctuel a 2 ddl et & 3 ddl relie une
pose a I’équilibre statique du mécanisme a une pose a accélération non-nulle et consiste en
des oscillations rectilignes d’amplitude progressivement croissante centrées a la pose au repos.
Il est établi que cette trajectoire est réalisable avec des forces exclusivement de tension dans
les cables pourvu qu’elle demeure entierement sous le plan formé par les enrouleurs, ce qui en

démontre la pertinence.

La trajectoire point a point destinée au mécanisme spatial & 3 ddl joint deux positions quel-
conques de 'espace tridimensionnel en suivant un tracé hypocycloidal. Pour illustrer la per-
tinence de cette construction, il est démontré qu’il suffit que ’enveloppe circulaire de ’hypo-
cycloide soit entierement située sous le plan des enrouleurs pour que la trajectoire souhaitée

soit réalisable avec des forces exclusivement de tension dans les cables.

Enfin, la trajectoire a 6 ddl destinée au mécanisme hexapodal relie deux poses arbitraires.
Elle consiste, pour sa composante translationnelle, en une version améliorée de la trajectoire
hypocycloidale définie pour le mécanisme & 3 ddl, tandis que sa composante rotationnelle
consiste en des oscillations angulaires le long des arcs de I’hypocycloide. La pertinence de
cette formulation est démontrée par le calcul, pour certaines positions génériques de la plate-
forme, de la proportion d’orientations que la trajectoire est en mesure de joindre avec un
mouvement horizontal partant d’une pose au repos : il est obtenu que, pour des valeurs
typiques, la planification proposée parvient a atteindre environ 90% de ’espace atteignable

en orientation du mécanisme.
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Abstract

The purpose of this work consists in the development of analytical point-to-point trajectory
procedures for fully-actuated cable-suspended parallel mechanisms. Specifically, this thesis
proposes a static-to-dynamic transition trajectory formulation for 2-degree-of-freedom (dof)
and 3-dof mechanisms with point-mass end-effectors, as well as point-to-point trajectory for-
mulations for spatial 3-dof and 6-dof mechanisms. Each proposed trajectory ensures a zero
instantaneous velocity at the endpoints and the continuity of the acceleration, and is specifi-

cally designed to maintain tensile-only forces in the cables throughout the motion.

The proposed static-to-dynamic transition trajectory for the planar and spatial point-mass
mechanisms connects a pose at rest in the static workspace to an arbitrary pose with a non-
zero acceleration and consists of rectilinear oscillations of progressively increasing amplitude
centred at the pose at rest. It is shown that this trajectory is dynamically feasible with
tensile-only forces in the cables as long as it remains entirely below the plane passing by the

fixed cable spools, which justifies its relevance.

The point-to-point trajectory intended for spatial 3-dof mechanisms connects two arbitrary
positions in three-dimensional space by following a hypocycloidal path. In order to demon-
strate the relevance of the proposed formulation, it is shown that it suffices that the circular
envelope of the hypocycloid remains entirely below the plane passing by the cable spools for

the desired motion to be feasible with tensile-only forces in the cables.

Finally, the 6-dof point-to-point trajectory intended for hexapodal mechanisms connects two
poses with arbitrary position and orientation. It consists, for its translational component, in
an enhanced version of the hypocycloidal trajectory defined for the 3-dof mechanism, while its
rotational component consists of rotational oscillations along the arcs of the hypocycloid. The
relevance of this construction is demonstrated by the computation, for generic positions of the
platform, of the proportion of orientations that the trajectory can reach through a horizontal
motion starting from a pose at rest: it is obtained that, for typical values, the proposed

formulation can reach approximately 90% of the orientational workspace of the mechanism.
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Avant-propos

Cette these est I’'achévement de travaux effectués en vue de I'obtention du dipléme de Doctorat
en génie mécanique. Elle est présentée sous forme d’une thése par articles, c’est-a-dire que
chaque chapitre est constitué d’un article que 'auteur de cette these a rédigé a titre de
premier auteur. Ces articles ont toutefois été modifiés par rapport a la version apparaissant
dans les publications afin d’en uniformiser la notation, de compléter certaines explications ou

de clarifier certaines notions.

Le Chapitre 1 consiste en 'article de journal Trajectory planning for the static to dynamic
transition of point-mass cable-suspended parallel mechanisms. Cet article a été publié dans le
journal Mechanism and Machine Theory le 23 mars 2017 (Dion-Gauvin and Gosselin, 2017).
L’intégralité des travaux théoriques présentés dans cet article, de méme que la rédaction
complete du corps de Darticle, de la conclusion et de I'abstract, ont été effectuées par I’auteur
de cette these. Le professeur Clément Gosselin, coauteur de l'article, a rédigé I'introduction
en plus de réviser l'article en profondeur. Finalement, le professionnel de recherche Simon
Foucault a piloté la phase expérimentale du projet. Dans un souci d’uniformité et pour éliminer
tout risque d’ambiguité, la dérivation du modele dynamique du mécanisme a été revue. Enfin,

certaines définitions et tournures de phrases ont été simplifiées, et une figure a été ajoutée.

Le Chapitre 2 consiste en I'article de journal Dynamic Point-to-Point Trajectory Planning
of a Three-DOF Cable-Suspended Mechanism Using the Hypocycloid Curve. Cet article a été
publié dans le journal IEEE/ASME Transactions on Mechatronics le 31 mai 2018 (Dion-
Gauvin and Gosselin, 2018). L’intégralité des travaux théoriques présentés dans cet article,
de méme que la rédaction complete de I'article, ont été effectuées par 'auteur de cette these. Le
professeur Clément Gosselin, coauteur de l'article, a pour sa part révisé ’article en profondeur.
Finalement, le professionnel de recherche Simon Foucault a piloté la phase expérimentale du
projet. Dans un souci d’uniformité et pour éliminer tout risque d’ambiguité, la dérivation
du modele dynamique du mécanisme a été revue et la notation mathématique a été ajustée.

Enfin, une figure a été corrigée.

Le Chapitre 3 consiste en 'article de journal Beyond-the-static-workspace point-to-point tra-
jectory planning of a 6-DoF cable-suspended mechanism using oscillating SLERP. Cet article

a été publié dans le journal Mechanism and Machine Theory le 11 mai 2022 (Dion-Gauvin



and Gosselin, 2022). L’intégralité des travaux théoriques présentés dans cet article, de méme
que la rédaction complete du corps de 'article, ont été effectuées par I'auteur de cette these.
Le professeur Clément Gosselin, coauteur de l'article, a pour sa part rédigé le résumé anglais,
I'introduction et la conclusion en plus de réviser I'article en profondeur. Finalement, I’étudiant
Jérdme Landuré a contribué au développement de la technique de détection d’interférences
entre deux cables. Pour corriger certaines lacunes, une nouvelle technique de détection d’in-
terférences entre un céable et la plate-forme est proposée dans cette these. De plus, dans un
souci d’uniformité et pour éliminer tout risque d’ambiguité, la notation mathématique a été

ajustée. Enfin, le résumé anglais a été remanié et certaines phrases ont été réécrites.

P. Dion-Gauvin and C. Gosselin. Trajectory planning for the static to dynamic transition of
point-mass cable-suspended parallel mechanisms. Mechanism and Machine Theory, 113 :
158-178, 07 2017. doi:10.1016/j.mechmachtheory.2017.03.003.

P. Dion-Gauvin and C. Gosselin. Dynamic point-to-point trajectory planning of a three-dof
cable-suspended mechanism using the hypocycloid curve. IEEE/ASME Transactions on
Mechatronics, 23(4) :1964-1972, 2018. doi:10.1109/TMECH.2018.2840051.

P. Dion-Gauvin and C. Gosselin. Beyond-the-static-workspace point-to-point
trajectory planning of a 6-dof cable-suspended mechanism wusing oscillating
SLERP.  Mechanism and Machine Theory, 174 :104894, 2022. ISSN 0094-114X.
d0i:10.1016/j.mechmachtheory.2022.104894.
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Introduction

Contexte de la thése

D’une fagon générale, le robot le plus communément reconnu est le manipulateur sériel, qui se
retrouve par exemple de maniére omniprésente sur les chaines d’assemblage dans I'industrie
automobile. Ce type de robot bénéficie d’un espace de travail relativement grand puisque ses
membrures sont jointes 'une a la suite de 'autre le long de la méme chaine cinématique. En
contrepartie, il ne peut générer de grandes vitesses et accélérations car les lourds actionneurs
placés a ses articulations doivent étre déplacés lors de la mise en mouvement de 'effecteur.
Outre le manipulateur sériel, le mécanisme le plus présent dans l'industrie est le robot paral-
lele, qui est constitué de plusieurs chailnes cinématiques en paralléle connectées & un méme
effecteur. Ce type de mécanisme constitue par exemple une partie intégrante des simulateurs
de vols en aviation. En comparaison avec le robot sériel, le mécanisme parallele dispose d’un
plus petit espace de travail pour des membrures de mémes dimensions parce que cet espace
de travail est limité par la combinaison des restrictions de mobilité de chacune de ses chaines
cinématiques. En revanche, ce type de manipulateur est généralement en mesure de produire
de grandes vitesses et accélérations puisque les actionneurs peuvent étre fixés a la base du

mécanisme et donc demeurer immobiles lors du déplacement de ’effecteur.

Un troisiéme type de mécanisme, le mécanisme parallele entrainé par cédbles, peut étre vu
comme regroupant a la fois 'avantage du mécanisme sériel et celui du mécanisme parallele.
Un mécanisme parallele entrainé par cables consiste en un effecteur attaché a des cébles
qui est mis en mouvement par l'’enroulement et le déroulement controlés de ces cables sur
leur bobine. D’une part, l'aspect filiforme des cables et leur mécanisme d’enroulement sur
I’enrouleur permettent d’assembler des mécanismes a cables pourvus de grands espaces de
travail, reproduisant ainsi I’avantage du mécanisme sériel. D’autre part, la masse négligeable
des cables de méme que la disposition des enrouleurs et actionneurs a la base du mécanisme
permettent aux actionneurs de générer, a l'instar du robot parallele, de grandes vitesses et
accélérations de l'effecteur. En contrepartie, les cables ne pouvant résister a des forces de
compression, seules des forces de tension peuvent leur étre transmises. Cette problématique
est incontournable et doit invariablement étre résolue chaque fois que des mécanismes a cables

sont mis a contribution.



L’une des avenues privilégiées pour garantir I'unilatéralité des forces dans les cédbles tout en
assurant un minimum de controllabilité de 'effecteur consiste & utiliser un nombre de cables—
et d’actionneurs—plus grand que le nombre de degrés de liberté de I'effecteur. D’ailleurs, Kurtz
and Hayward (1991) ont démontré que n+1 cables suffisent pour complétement contraindre un
effecteur entrainé par cables a n degrés de liberté. En revanche, un tel mécanisme comportant
une redondance d’actionnement, des forces internes considérables peuvent étre générées et une
gestion de la distribution de celles-ci dans les membrures doit en étre faite, ce qui complexifie la
commande du robot. Pour éviter une telle gestion, une autre approche permettant de garantir
I'unilatéralité des forces dans les cables tout en assurant un minimum de controllabilité de
Peffecteur consiste a utiliser un nombre de cables correspondant au nombre de degrés de liberté
de la tache a accomplir et & tirer profit de la force gravitationnelle exercée sur l'effecteur pour
maintenir les cables sous tension. De tels mécanismes sont appelés mécanismes paralleles a

cables suspendus.

Les mécanismes paralléles a cables suspendus sont, dans la plupart des cas répertoriés dans la
littérature et dans l'industrie, congus pour travailler en condition statique ou quasi-statique.
Dans ce mode de fonctionnement, 'effecteur se déplace incrémentalement de pose d’équi-
libre statique en pose d’équilibre statique, maintenant ainsi les cables sous tension en tout
temps. Les applications les plus notables de mécanismes a cébles suspendus que sont la Sky-
Cam (Cone, 1985), le RoboCrane NIST (Albus et al., 1993) et le radio-télescope FAST (Zi
et al., 2008), peuvent toutes opérer en condition statique ou quasi-statique. Toutefois, ce mode
de fonctionnement confine I'espace de travail de I'effecteur a I’ensemble des poses d’équilibre
statique du mécanisme, lequel est limité par ’emprise des points d’attaches des enrouleurs a

la base du mécanisme.

Plus récemment, les mécanismes paralleles a cables suspendus ont été envisagés comme pou-
vant étre opérés a des vitesses et accélérations non négligeables. Ce nouveau mode d’opé-
ration meéne au concept d’espace de travail dynamique d’un mécanisme a cébles (Barrette
and Gosselin, 2005), lequel correspond a ’ensemble des poses que l'effecteur peut atteindre
en maintenant tous les cables sous tension, que sa vitesse ou son accélération soit nulle ou
non. Ainsi, puisque selon ce concept il n’est plus nécessaire que 'effecteur se trouve en état
d’équilibre statique pour étre completement controlé, celui-ci a acceés a un éventail beaucoup
plus large de poses. Evidemment, les poses situées a extérieur de Pespace de travail statique
du mécanisme peuvent seulement étre atteintes avec une accélération non-nulle, alors que les
poses appartenant a ’espace de travail statique peuvent aussi bien étre atteintes avec une

accélération nulle que non-nulle.

Cette notion d’espace de travail dynamique a naturellement mené & la planification de trajec-
toires de type pendule par des mécanismes suspendus possédant moins d’actionneurs que de
degrés de liberté, c’est-a-dire sous-actionnés (Lefrangois and Gosselin, 2010; Zanotto et al.,

2011). Dans cette approche, des trajectoires analytiques sont prescrites pour les variables ar-



ticulaires qui sont actionnées. Les trajectoires des variables articulaires non-actionnées, pour
leur part, sont obtenues par l'intégration numérique en temps réel des équations différentielles
du mouvement associées aux variables non-actionnées. Enfin, 'atteinte du point final ciblé
est assurée par une optimisation (minimisation) entre la valeur prédite par I'intégration nu-
mérique et sa valeur désirée, laquelle fonction de minimisation est bonifiée de fonctions de
pénalité garantissant le respect des contraintes inviolables du mécanisme, telles les contraintes
de tension dans les cédbles, les limites articulaires ainsi que les limites de couple aux action-
neurs. Une telle procédure permet I'atteinte d’une pose finale désirée méme si la trajectoire de

Ieffecteur ne peut étre imposée en tout instant en raison du sous-actionnement du mécanisme.

Pour se soustraire & une planification de trajectoire et un schéma de commande d’une telle
complexité, il a été proposé de réaliser les trajectoires de type pendule au moyen de méca-
nismes a cables suspendus completement actionnés, c’est-a-dire comptant autant d’action-
neurs que de degrés de liberté. Dans cette approche, les trajectoires sont définies dans le
repere global sous forme paramétrique et, puisque chaque degré de liberté peut étre controlé,
la contrainte de tension dans les cables est vérifiée par la simple substitution de la trajec-
toire et de ses dérivées dans le modele dynamique du mécanisme. Comme introduction a
cette nouvelle approche, des trajectoires périodiques décrivant des mouvements linéaires ou
elliptiques ont d’abord été développées pour des mécanismes a 2 ddl (Gosselin et al., 2012),
a 3 ddl spatiaux (Gosselin, 2013), puis & 6 ddl (Jiang et al., 2018b). Ces travaux ont entre
autres permis de démontrer que certaines trajectoires périodiques pouvaient atteindre des
amplitudes de mouvement théoriquement infinies lorsque réalisées a la fréquence naturelle du
pendule simple équivalent. Par la suite, en raison de leur plus grand potentiel d’applications
pratiques, les trajectoires dites de type point a point, qui sont employées pour relier deux
poses cibles a vitesse instantanée nulle sans égard au chemin emprunté par 'effecteur, ont
été investiguées pour des mécanismes a 2 ddl (Gosselin and Foucault, 2014), & 3 ddl (Jiang
and Gosselin, 2016), puis a 6 ddl (Jiang et al., 2018a). C’est dans ce contexte que s’inscrit la

présente these.

Objectifs de la these

L’objectif de ce travail de recherche est de développer des trajectoires analytiques de type point
a point pour les mécanismes a cables suspendus complétement actionnés. Tel que mentionné
précédemment, les trajectoires de type point & point trouvent leur utilité dans des applica-
tions qui requierent de relier deux poses données a vitesse instantanée nulle et pour lesquelles
le chemin spécifique emprunté pour relier ces deux poses n’est d’aucune importance. Par
ailleurs, ce type de trajectoire étant habituellement employé pour relier plusieurs poses cibles
en séquence, il importe d’assurer la continuité de 'accélération aux points limites afin d’éviter
I'introduction de discontinuités au niveau des efforts articulaires qui pourraient se traduire

par des instabilités du mécanisme. Enfin, puisque dans cette these les trajectoires sont desti-



nées a étre réalisées par des mécanismes a cables suspendus, leur suivi doit, en tout instant,
requérir exclusivement des forces de tension dans les cibles afin de pouvoir étre exécutées.
Cela se traduit notamment par la nécessité d’atteindre les poses cibles avec des accélérations
instantanées non-nulles, dans la mesure ou ces poses cibles pourraient ne pas appartenir a
I’espace de travail statique du mécanisme. L’objectif principal de cette these consiste donc a
développer des procédures de planification de trajectoires respectant ces contraintes qui per-
mettent d’atteindre le plus grand nombre possible de poses cibles. Un chapitre de cette these
est consacré a la planification de trajectoires point & point pour un mécanisme a effecteur
ponctuel a 3 degrés de liberté, et un autre est consacré a la planification de trajectoires pour

un mécanisme a 6 degrés de liberté de type Gough-Stewart.

Un objectif complémentaire de cette these est le développement de trajectoires analytiques
dites point a point de transition reliant une pose au repos appartenant a ’espace de travail
statique du mécanisme & une pose cible a accélération non-nulle. Ces trajectoires peuvent étre
utilisées pour joindre la premiere d’une série de poses cibles a atteindre ou, par l'inversion
de la trajectoire, pour retourner I'effecteur au repos une fois toutes les poses cibles atteintes.
Puisqu’il s’agit d’un cas particulier de trajectoires point a point, les trajectoires de transition
doivent également satisfaire les conditions aux points limites de vitesse instantanée nulle et
de continuité de ’accélération, de méme que la contrainte de tension dans les cables. Enfin, en
raison de 'unilatéralité des forces dans les cables, une attention particuliére doit étre accordée
a la sélection de la pose au repos, en ce sens ot elle doit constituer une pose d’équilibre statique
de leffecteur. Un chapitre de cette these est consacré au développement de trajectoires de

transition pour des mécanismes a effecteur ponctuel a 2 et 3 degrés de liberté.

Méthodologie et organisation de la these

Les trajectoires développées se divisant en trois catégories, leur présentation se décline en
autant chapitres dans cette theése. Ces chapitres sont organisés en ordre croissant de complexité
des trajectoires, soit de la trajectoire comptant le plus petit nombre de degrés de liberté a
celle en comptant le nombre le plus grand. Cet ordre consiste également en ’ordre dans lequel

elles ont été produites et en ordre chronologique de publication des articles.

Dans un premier temps, le Chapitre 1 propose une formulation analytique de trajectoire point
a point de transition pour mécanismes a effecteur ponctuel a deux et a trois ddl. Dans la pre-
miére section du chapitre, une formulation de trajectoire pour le mécanisme plan & effecteur
ponctuel est articulée et il est validé que celle-ci respecte les contraintes cinématiques et dy-
namiques dans la plupart des inclinaisons. Puis, cette trajectoire est adaptée au mécanisme
spatial a effecteur ponctuel, et les similarités et différences entre les expressions des deux
mécanismes sont mises en évidence. Par la suite, le réle joué par la fonction d’amplitude dans

le maintien des tensions dans les cables est discuté, laquelle discussion mene a 1’établissement



de criteres visant & en évaluer la performance. Enfin, ce chapitre se conclut avec la présen-
tation des résultats de simulations de trajectoires-exemples qui illustrent 'impact de divers

parametres sur la faisabilité de la trajectoire.

Dans un second temps, le Chapitre 2 propose une formulation analytique de trajectoire point
a point pour mécanismes a trois ddl a effecteur ponctuel. En premier lieu, une trajectoire
respectant par construction les conditions cinématiques aux points limites est définie. Puis, a
partir des expressions des tensions dans les cables, des relations algébriques simples établis-
sant la faisabilité de la trajectoire sont développées. Ce chapitre se conclut par une section

présentant les résultats d’une trajectoire-exemple simulée.

Enfin, le Chapitre 3 dresse un portrait détaillé de la planification de trajectoires point a
point pour mécanismes a cables suspendus a six ddl complétement actionnés. Le coeur du
chapitre consiste en la dérivation complete des composantes translationnelle et rotationnelle
de la trajectoire analytique proposée. Puis, ce chapitre établit clairement la distinction entre
les poses accessibles au mécanisme a cables et celles atteignables par la trajectoire, et articule
des stratégies pour respectivement les identifier. En complément, ’architecture du mécanisme
hexapodal a privilégier est discutée et un systéme de coordonnées novateur permettant de
visualiser plus intuitivement la configuration du mécanisme est présenté. Enfin, comme les
autres chapitres, celui-ci se conclut avec une phase de simulation servant a démontrer ’appli-

cabilité de la trajectoire proposée.
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Chapitre 1

Trajectory planning for the static to
dynamic transition of point-mass
cable-suspended parallel

mechanisms

1.1 Résumé

Cet article présente une formulation de trajectoire reliant un point inital au repos & un point
final & joindre & vitesse nulle et & accélération non-nulle pour des mécanismes a cébles sus-
pendus a effecteur ponctuel a 2 et & 3 ddl. La trajectoire est congue pour atteindre le premier
d’une séquence de points cibles qui peuvent étre positionnés a I’extérieur de ’espace de travail
statique des mécanismes. Les planifications proposées consistent en des oscillations rectilignes
d’amplitude progressivement croissante centrées au point initial, ot le nombre minimal d’oscil-
lations de la trajectoire est déterminé de maniére a assurer des forces exclusivement de tension
dans tous les cables tout au long du mouvement. Il est prouvé que ce nombre d’oscillations
peut étre trouvé pour toute trajectoire se trouvant entierement sous les enrouleurs. Cet article
pose un nouveau regard sur la dynamique des mécanismes a cables suspendus a 3 ddl, et met
en exergue les similarités et différences entre les trajectoires a 2 et a 3 ddl. Des résultats de
simulation d’une trajectoire exemple sont présentés afin d’illustrer I’approche proposée, et
une démonstration vidéo d’une validation expérimentale réalisée sur un prototype a 3 ddl est

incluse.

1.2 Abstract

This paper presents a trajectory formulation that connects an initial point at rest to a final

point to be reached with zero velocity but nonzero acceleration for planar two-dof and spatial



three-dof cable-suspended mechanisms with point-mass end-effectors. The trajectory is de-
signed to reach the first of a sequence of target points that can be located outside of the static
workspace of the mechanisms. The proposed motion consists of oscillations of progressively
increasing amplitude centred at the initial point, whereby an expression for the minimum fea-
sible number of oscillations is determined by ensuring positive tension in all cables throughout
the trajectory. It is shown that this number of oscillations can be found for any trajectory
that is entirely located below the spools. The paper provides novel insight into the dynam-
ics of the three-dof mechanism, and highlights the similarities and differences between the
planar and spatial motions. Simulation results of example trajectories are included in order
to illustrate the approach, along with a video demonstration of an experimental validation

performed using a three-dof prototype.

1.3 Introduction

A cable-suspended parallel mechanism consists of a platform that is suspended by cables,
and that is put into motion by the winding and unwinding of these cables on their respective
servo-controlled winch. Unlike fully constrained cable-driven parallel mechanisms that have
more cables than dofs (see for instance Lim et al., 2009; Gouttefarde et al., 2008; and many
others), cable-suspended mechanisms have the same number of cables as dofs and rely on
gravity to maintain tension in the cables. Cable-suspended parallel mechanisms can be used
in applications that require very large workspaces, such as cranes (Albus et al., 1993) or camera
support systems (Cone, 1985). Examples of some of the first cable-suspended mechanisms
are presented in Alp and Agrawal (2002); Pusey et al. (2004); Bouchard and Gosselin (2010).

In most cases reported in the literature, cable-suspended mechanisms are assumed to work in
static or quasi-static conditions, which implies that their workspace—referred to as the static
workspace (Riechel and Ebert-Uphoff, 2004)—is limited by the footprint of the mechanism.

However, using the notion of dynamic workspace (Barrette and Gosselin, 2005), it is possible to
envision the dynamic control of cable-suspended parallel mechanisms. The dynamic workspace
is defined as the set of poses that the platform can reach with a controlled kinematic state
(position, velocity and acceleration) while maintaining all cables under tension. Clearly, poses
beyond the static workspace can only be reached with a nonzero acceleration, while poses in

the static workspace can be reached with either zero or nonzero accelerations.

In this context, an elementary task that cable-suspended mechanisms must be able to perform
consists in connecting two target points that are located outside of their static workspace
with a zero instantaneous velocity at each of the points. Dynamic point-to-point trajectory
planning aims at developing path-finding procedures that satisfy these boundary conditions

while maintaining cable tension throughout the motion.



Trajectory planning techniques for underactuated cable-suspended mechanisms were proposed
in Cunningham and Asada (2009); Lefrangois and Gosselin (2010); Zanotto et al. (2011);
Zoso and Gosselin (2012). These techniques require the online numerical integration of the
complex dynamic equations. On the other hand, the trajectory planning of fully actuated
cable-suspended mechanisms is much simpler since it can be accomplished using algebraic re-
lationships. Based on such relationships, periodic trajectories were developed in the literature
for a two-dof planar mechanism with a point-mass end-effector (Gosselin et al., 2012), for a
three-dof spatial mechanism with a point-mass end-effector (Gosselin, 2013), and then for a
specific architecture of a planar three-dof mechanism (Jiang and Gosselin, 2014). Notably, the
conditions that ensure trajectory feasibility presented in these publications lead to the discov-
ery of a special frequency that can be regarded as the natural frequency of the mechanism, as
shown in Jiang and Gosselin (2016). This approach was also used to develop dynamic point-
to-point trajectories for a two-dof planar mechanism with a point-mass end-effector (Gosselin
and Foucault, 2014). The dynamics of cable-suspended parallel mechanisms was also studied
in Trevisani (2010); Schmidt et al. (2014); Zhang and Shang (2016); Berti et al. (2016).

In this paper, a dynamic trajectory planning framework is proposed for fully actuated planar
two-dof and spatial three-dof cable-suspended mechanisms with point-mass end-effectors. The
trajectory connects an initial point at rest to a final point to be reached with a dynamic
state (nonzero acceleration). The proposed motion consists of oscillations of progressively
increasing amplitude centred at the initial point, whereby the minimum number of oscillations

is determined to ensure positive tension in all cables throughout the trajectory.

This paper is arranged as follows. Section 1.4 presents, in the following order, the kine-
matic and dynamic modelling of the two-dof mechanism, the proposed transition trajectory,
the condition ensuring its feasibility, the optimized minimum-time trajectory, and the reverse
transition trajectory. Section 1.5 presents the same derivations for the spatial three-dof mech-
anism and highlights the similarities and differences between the planar and spatial motions.
Section 1.6 addresses the amplitude function, which is an essential component of the proposed
trajectory formulation. Section 1.7 provides simulation results of examples trajectories that
illustrate the impact of some parameters on the motion. Finally, a video demonstrating the

implementation on a prototype is provided in order to validate the proposed trajectory.

1.4 Planar Mechanism

1.4.1 Mechanism Modelling

The planar two-dof cable-suspended mechanism addressed in this study is represented schemat-
ically in Fig. 1.1. It consists of two actuated spools mounted on a fixed structure which are
used to control the extension of two massless cables with infinite stiffness. The cables are

attached to a common end-effector which is considered as a point-mass. By controlling the



extension of the two cables, the position of the point-mass can be controlled. The mechanism
has two actuators and two dofs and is therefore fully actuated. However, because the cables
can only work in tension (they cannot push), constraints must be imposed on the Cartesian
trajectory prescribed at the end-effector. The static workspace of the mechanism, i.e., the
portion of the Cartesian space in which the end-effector can be brought to rest, is limited by

vertical lines passing through the cable attachment points on the structure.

X

v

Figure 1.1 — Planar two-dof cable-suspended mechanism.

Referring to the two-dof cable-suspended mechanism of Fig. 1.1, a fixed reference frame is
defined on the base of the mechanism, whose origin is located on the line that connects the
spool output points and at an equal distance from these points. The Y axis is defined along
this line which is assumed to be horizontal and the X axis is vertical, pointing downward.

The distance between the spool output points is noted 2a. The (constant) position vectors of
T T
these points can then be written as a; = [O a] and ag = [0 —a} . The position vector
T
of the end-effector point-mass m is noted p = [x y] . The cable lengths, i.e., the joint

coordinates, are respectively noted p; and po. The inverse kinematic model of the mechanism

is written as

e =1/(ar —p)T(ax —p), k=12 (1.1)

Since the mass and elasticity of the cables are neglected, the dynamic model of the mechanism

is obtained by considering the force balance on the point-mass end-effector, namely

f:(”‘p)m+mg—mﬁ (1.2)

=1 Pk

T
where fj, is the tension in cable k, and g = [g 0} is the vector of gravitational acceleration.

Equation (1.2) can be rewritten in matrix form as

Mp=p g, (13)
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with

T
and where matrix M is defined as
M = [P1 P2} J (1.5)
with
Pr = ai — P, kE=1,2. (1.6)

Solving eq. (1.3) for vector p yields expressions for the cable forces, which must be positive

to ensure dynamically feasible trajectories. One obtains
p=M"(p-g) =0, (1.7)

where > stands for the componentwise inequality. The inverse of matrix M appearing in
eq. (1.7) is given by
~1_ Adj(M)
Mt =—"—"—"2 1.8
det(M)’ (18)
where Adj (M) stands for the adjoint matrix of M and det (M) is its determinant. Referring

to eq. (1.5), the latter is given by
det (M) = pLEp,, (19)

where E is the 90° rotation matrix, namely

0 —1
E = L 0] . (1.10)

It can be noted, from eq. (1.9), that the determinant is positive as long as the end-effector
remains below the straight line passing through the fixed cable spools. This assumption is

used here to simplify the positive tension constraints (1.7), yielding
k= Adj(M)(p —g) = 0, (1.11)

T
where the quantities kK = [/{1 /{2} , referred to as pseudotensions, bear the same sign as the
cable tensions and are introduced to simplify the analysis. Referring to eq. (1.5), the adjoint

matrix of M is given by

. piE
AdjM) = | "7 |, (1.12)
—p1 E
and hence the pseudotensions can be written as
k1= (a2—p)"E({B-g) >0 (1.13)
ko = —(a1 — p) E(B - g) > 0. (1.14)
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Therefore, satisfying the above inequalities at all points of a given trajectory ensures that the
cables remain under tension throughout the trajectory. These conditions are necessary and
sufficient and their simple form allows for trajectory planning. They are written, in scalar
form, as (Gosselin et al., 2012)

k1= —(a+y)(E—g)+x§>0 (1.15)
ky=—(a—y)(&—g)—zy>0. (1.16)

1.4.2 The pendulum constraint

In Fig. 1.2, the pseudotension constraints of eq. (1.15) and (1.16) are represented schematically
in the £ —4 plane for a given position p = [x y] ’ of the end-effector. The unbounded feasible
region, i.e., the set of kinematic states for which both cables are under tension, is represented
by the shaded area, which is defined by the lines corresponding to the constraints. As it can
be observed, the constraints intersect at point p = [g O}T regardless of the position of the

end-effector.

YA

Figure 1.2 — Pseudo-tension constraints.

The triangle defined by the lines corresponding to the constraints and a given constant vertical
acceleration # has a median passing by point (g,0) that is illustrated by a dashed line in

Fig. 1.2. Its equation can be written as

-9 Y
== 1.17
74 (117)
From a physical point of view, eq. (1.17) is the dynamic model, written in Cartesian coordi-
nates, of a simple pendulum suspended from the centroid of the cable spools. Considering the
form of egs. (1.15) and (1.16), it corresponds to the limit of either one of the pseudotensions
when a goes to zero. The latter statement implies that a kinematic state satisfying eq. (1.17)

has equal pseudotensions, of value k = a(Z — g). Additionally, it can be shown that for such

12



a kinematic state, the resulting force produced by both cables is directed toward the centroid
of the cable spools, at the centre of the positive tension sector defined by the two cables.
Finally, according to the definition of a median, a kinematic state satisfying eq. (1.17) is
located at equal distance from the two lines of zero tension for a given vertical acceleration,
i.e., it is located the farthest possible from the loci of zero tension. For all these reasons,
end-effectors satisfying eq. (1.17) are the least likely to fall into negative tension states if
an external disturbance were to occur and can thus be construed as dynamically stable as

possible. Equation (1.17) can therefore be thought of as the locus of ideal kinematic states.

This equation can be put to good use in dynamic trajectory planning. Specifically, in a
context of point-to-point trajectory planning constructed as a sequence of trajectory segments,
eq. (1.17) can be imposed on endpoint kinematic states in order to maximize the likelihood of
obtaining feasible subsequent trajectory segments. In this regard, it generalizes the condition
imposed on endpoint kinematic states put forward in Gosselin and Foucault (2014), thereby
extending the dynamic workspace of the mechanism for a given initial kinematic state. This

constraint is used here in the trajectory planning algorithm.

1.4.3 Static to Dynamic Transition Trajectory Planning

The static to dynamic transition trajectory connects an initial point at rest in the static
workspace of the mechanism to a target point in the dynamic workspace. Let pg = [aco yO}T
be the coordinates of the initial (static) kinematic state. Since static kinematic states can
be easily connected through quasi-static motions, the location within the static workspace of
the initial point does not have to be prescribed from the outset. However, using eq. (1.17)
to maximize the likelihood of obtaining a feasible trajectory yields yo = 0, while g remains
undetermined. The prescribed position of the final (dynamic) kinematic state, to be reached
with a zero intantaneous velocity, is noted by vector p; = {xl yl}T. As shown schematically
in Fig. 1.3, the proposed motion connecting point pg to point p; consists of progressively
increasing oscillations centred at the initial point, along a straight line passing through the

initial and final points.
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Figure 1.3 — Static to dynamic rectilinear transition trajectory.

The point located on the opposite side of the (vertical) X axis and at the same distance from

the X axis as point pi, along the trajectory, is noted p_1, and its coordinates can be written

2r0 — 11
P-1=
—n

as:

(1.18)

Observing that this point must remain below the spools leads to a constraint on xy, namely

0 > o (1.19)

One parametric trajectory formulation producing the proposed motion is

x(t) = 4 (t/T) = $4(7) = (x1 — 20)A(T) cos(2mnT) + x0 (1.20)
y(t) = sy(t/T) = sy(7) = y1A(T) cos(2mnT), (1.21)

with
7:%, 0<t<T, 0<r<1 (1.22)

where A(7) is a non-decreasing amplitude function, t is the time, 7 is the normalized time,
T is the duration of the trajectory segment, and n € N7 is the number of oscillations. The

latter two variables are linked by the relation

7-L (1.23)

n

where T is the period of one oscillation. The rectilinear trajectory must meet initial conditions

representing the initial state of rest that can be written as
z(0) = zo, #(0) = &(0) = 0, y(0) = 9(0) = 4(0) = 0, (1.24)
while the final conditions are given by

z(T) = a1, y(T) =y, i(T) = y(T) = 0, (1.25)
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and .. ..
T)—g _ §(T)
z(T) (1)
where eq. (1.17) is used on the final kinematic state to produce eq. (1.26). Eqgs. (1.24)—(1.25)

lead to conditions on the amplitude function, namely

(1.26)

A(0)=0 A(0) =0 A"(0) =0 (1.27)
A1) =1 A'(1) =0, (1.28)

while eq. (1.26) yields an expression for 72, namely
T2 = 20 (42202 — A"(1)). (1.29)

9

Therefore, the amplitude function can be any smooth function on the interval 7 € [0, 1] that
matches egs. (1.27) and (1.28). In addition, eq. (1.29) must be positive-definite, yielding

) A1)

which is necessarily satisfied if the amplitude function is non-decreasing on the considered

time interval (since the latter implies A”(1) < 0).

1.4.4 Positive-Tension Constraint

As shown above, the selection of a proper amplitude function ensures that the parametric tra-
jectory defined by eqs. (1.20) and (1.21) meets all endpoint kinematic conditions. However, it
is left to verify that the tensions in the cables remain positive throughout the trajectory. To
this end, the parametric trajectory and its time derivatives are substituted into the pseudoten-
sions, egs. (1.15) and (1.16). Eq. (1.29) is thereafter substituted into the resulting expressions
to eliminate T2, yielding pseudotensions depending only on two parameters, namely xo and

n. Then, using the substitutions

. K N 1 — T
Rr = —k, UL = E, v= 2 0, (1.31)
ga a xo

the (normalized) pseudotensions can be written as
R =1 — Cj cos(2mnt) + Si sin(27nt), k=1,2. (1.32)

In the above expressions, coefficients Cy and Sk, k = 1,2, are given by

B (v + wg)c(T)
Ck = 47T2n2 — A”(l) — UA(T) (1.33)
drn(v + wy)s(T
S 47?2(12;—— j’)’(i))’ (1.34)
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with

e(r) = A"(r) — A(r)A"(1) 1.35)
s(1) = A'(7), (1.36)

and with
w1 = —??1, wo = ??1. (1.37)

The linear combination of the sine and cosine functions in egs. (1.32) can be rewritten as

Rp = 1+ 1/C? + S cos(2mnt + ¢), k=12, (1.38)

where ¢, k = 1,2, are phase shifts. Given the bounds on trigonometric functions, the

normalized pseudotensions are positive definite if

Rep =1— m >0, k=1,2. (1.39)

The above expressions represent the time-dependent lower envelope of the normalized pseu-
dotensions. On the considered time interval, these inequalities constitute a sufficient (but not

necessary) condition for positive cable tension. Using the substitution
N = n?, (1.40)

condition (1.39) depends solely on two parameters, namely v and N. These expressions are

used extensively in this study to assess the feasibility of the proposed trajectory defined above.

Trajectory Feasibility

The inequality constraints derived in the preceding section can be used to determine the least
constraining value of parameters v and NN that ensures positive cable tensions throughout
the trajectory. In this regard, one could reflect that the longer it takes for the trajectory to
reach its final amplitude, the more likely the cables are to remain under tension. Referring to
eq. (1.23), this proposition suggests that positive cable tensions are more likely to occur as T
and n approach infinity, but as 7 remains in R. Therefore, computing the limit of egs. (1.39)
as N approaches infinity yields

lim //%e,l = lim /H\/e,Q =1- A(T)|U| > 0. (141)
N—oo N—oo

The left-hand side of the above inequality reaches its minimum value over the considered time
interval at the amplitude function’s maximum point, i.e., at 7 = 1 where A”(1) = 1. Ensuring

that this minimum is positive definite leads to an interval on v, namely:

] < 1. (1.42)
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The latter expression can be rewritten as

0< <o, (1.43)
0

which merely consists of eq. (1.19) along with assumptions zp > 0 and z; > 0. In other
words, a number of oscillations n can always be chosen large enough to ensure the feasibility
of the trajectory provided that points p; and p_; are located below the spools. Therefore,
ensuring positive cable tensions throughout the proposed trajectory introduces no additional

geometric constraints to those previously assumed.

Trajectory with the Minimum Feasible Number of Oscillations for a Given

Inclination v

Although there always exists a number of oscillations sufficiently large that guarantees the
feasibility of the trajectory provided it is entirely located below the spools, in practice it may
be desirable to determine the minimum value of N as a function of the inclination v that can
be used while satisfying the constraints of cable tensions, eqs. (1.39). These constraints define
in the v N—plane a feasible region that contains the set of points (v, N) that produce feasible
trajectories. Therefore, the minimum feasible value of N as a function of v is found at the
boundary of this feasible region, and can be obtained by setting both inegs. (1.39) to zero.
Then, each of these equalities is multiplied by its always-positive conjugate (to eliminate the
square-root) and by the resulting always-positive denominator. Two quadratic equations in
N, each yielding two possible solutions, are thereby produced. Since arbitrarily large numbers
of oscillations ensure feasible trajectories, the feasible region contains arbitrarily large values
of N and is unbounded. Therefore, the minimum feasible value of N as a function of v
corresponds to the feasible region’s lower boundary and belongs to one of the two branches
of solution corresponding to the largest root of both quadratic equations. The two branches

of solution can thus be written as:

—E. + \/E2 — DF;,
Ny(v, 7) = i k=1,2, (1.44)

472D ’
where
D=1- A(r)%? (1.45)
E, = A(T) A" (1)v? — A"(1) — 25(7)2 (v + wi)? + ¢(7) A(T)vwy, (1.46)
F, = A"(1)% — ¢(1)?w? — A"(1)%0* — 2¢(1) A (T)vwy. (1.47)

Eqs. (1.44) represent the time-dependent zero-tension locus of each cable. For any time
T € [0, 1], each relation yields the minimum value of N allowing instantaneous positive tension
in the corresponding cable as a function of v. These relations are represented for various

instants of time in Fig. 1.4 for the trajectory corresponding to the first column of Table 1.1.
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In the figure, each shaded region comprises the points (v, N') that yield instantaneous positive

tension in both cables at the considered instant of time.

\ / 1 1
N Cable 1 \ N Cable 1 \ N Cable 1
8 f|= = =Cable 2 \\ 8 f|= = =Cable 2 \ 8 f|= = -Cable 2

4 4 N 41
- N
- = - ~
/_———:;2-( 2 \_2 -~ ’
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
(% v v
(a) 7 =0.25. (b) 7=0.5. (c) 7= 0.75.

Figure 1.4 — Minimum value of N as a function of v allowing instantaneous positive tension
in each cable at various instants of time for the trajectory corresponding to the first column
of Table 1.1.

In order for a given cable k to be under tension at all points of the proposed trajectory, its
minimum feasible value of N must be large enough such that positive tension is maintained
at the most constraining instant of the motion. Therefore, the minimum feasible value of N
for cable k corresponds, for a given inclination v, to the maximum value of the corresponding

eq. (1.44) over the considered time interval, Ni(v) = max Ng(v, 7). Likewise, the minimum

feasible value of NV of the whole trajectory is given by the largest among the minimum feasible
values of Ny of each cable, which can be written as:

N(v) = max( max Nj(v,T), max NQ(U,T)). (1.48)

T€[0,1] T€[0,1]

The above expression is the conceptual formulation of the feasible region’s lower boundary
equation in the v/N—plane. For any given inclination of the motion v, this expression yields
the minimum feasible value of N of the trajectory, which by virtue of eq. (1.40) leads to the
minimum feasible number of oscillations n that ensures positive cable tensions at all points

of the motion.

Minimum-Time Trajectory

The minimum-time trajectory for a given amplitude function corresponds to the minimum
value of eq. (1.48) over v and is of substantial interest. In this regard, one should remark
that, referring to eq. (1.37), both eqs. (1.44) satisfy the relation

Nl(’l)) = NQ(—U), (1.49)

which indicates that they are symmetric one to the other with respect to the axis v = 0. Hence

for v = 0, both cables have the same minimum feasible number of oscillations. Referring to
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eq. (1.37), this is due to the lower pseudotension envelopes, egs. (1.39), that are equal for the

horizontal trajectory, namely:

ﬁeh,k =1- |wk\ VvO2 + SQ, k=1,2, (150)

with
_ c(7)
 4n2n? — A"(1) (1.51)
4mns(T) (1.52)

T ArnZ— A1)

Hence the lower envelopes of both normalized pseudotensions have the same value for v = 0,
which means that this inclination equally distributes among both cables the load required
for reaching the final point. Conversely, an inclination v # 0 yields a cable supporting
more load at the expense of the other (see factor (wy + v) in egs. (1.33) and (1.34)), which
results in a larger minimum feasible number of oscillations to account for the cable whose
lower pseudotension envelope is the lowest. Hence, for the planar mechanism, the horizontal
trajectory is the unequivocal optimal inclination leading to the overall minimum feasible value

of N. Accordingly, substituting v = 0 into eq. (1.48) yields

N(0) = max <2w§ims(7)2 +A"(1) + wmmc\/1111757227%8(7)4 + 44 ([D)s(r)2 + C(T)2> . (153)

Wmaz = maX(|w1|7 |w2|) = ’@\1| (154)

For large values of wpqz, the minimum feasible number of oscillations n obtained from the

combination of eqgs. (1.53) and (1.40) can be efficiently approximated by the expression

n(0) = (wn:m> TIél[%,)i] s(7), (1.55)

which constitutes a linear equation in w,,., whose slope depends on the amplitude function

being used.

In a nutshell, the minimum feasible value of N of the trajectory defined by eqgs. (1.20) and
(1.21) is given for a prescribed inclination |v| < 1 by eq. (1.48). This trajectory is the fastest
for v = 0, for which the latter equation reduces to eq. (1.53). Once the desired value of N is
computed, its square root is extracted and the resulting value is ceiled to the nearest integer

to produce the minimum feasible number of oscillations, n.

1.4.5 Reverse Dynamic to Static Transition Trajectory

After a static to dynamic transition trajectory or a point-to-point trajectory segment, the

end-effector is in a dynamic state and must be brought back to rest in the static workspace
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through a dynamic to static transition motion. This motion has an initial nonzero acceleration
that must correspond to the final acceleration of the preceding trajectory segment in order to
avoid undesirable discontinuous cable forces. If eq. (1.17) is imposed on this initial kinematic
state and on the final state of rest, the reverse trajectory of that proposed in Section 1.4.3

can be used, namely

8
S5
—~

o~
S~—

I

Szy (t/T) = Sz, (T) = 52(1 —7) (1.56)

Yp(t) = 8y, (t/T) = sy,(T) =5

<
—~
—_
|
9
~—
—~
—_
(@)
S|
~—

where s,(7) and s,(7) are given by eq. (1.20) and (1.21), respectively. For the rectilinear
motion defined above, the continuity of the acceleration is fully accounted for provided that
the trajectory is aligned with the initial acceleration vector, in which case xg is given by, using

to simplify,
g

g—1I

where eq. (1.17) was used for simplification, and where #; is the initial vertical acceleration,

o = T, (1.58)

obtained from the previous trajectory segment. Hence xg is no longer arbitrary in a dynamic
to static transition trajectory and must satisfy eq. (1.19). In such a case, the minimum
feasible number of oscillations can be obtained through eq. (1.48). However, should the
initial kinematic state be such that constraint (1.19) fails to be met, the state of rest cannot
be reached through the proposed trajectory formulation. In this instance, other methods

must be employed.

1.5 Spatial Mechanism

1.5.1 Mechanism Modelling

A spatial three-degree-of-freedom (3-dof) cable-suspended mechanism is represented schemat-
ically in Fig. 1.5. The mechanism consists of three actuated spools mounted on a fixed struc-
ture which are used to control the extension of three cables. The cables are attached to a
common end-effector which is considered as a point-mass. By controlling the extension of the
cables, the position of the point-mass in a three-dimensional space can be controlled. The
mechanism includes three actuators and three degrees of freedom and is therefore fully actu-
ated. However, and as is the case with the planar mechanism, constraints must be imposed
on the Cartesian trajectory prescribed at the end-effector in order to ensure that a given

trajectory is feasible, i.e., that it does not require compression forces in the cables.
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Figure 1.5 — Spatial three-dof cable-suspended mechanism.

Referring to the three-dof cable-suspended mechanism of Fig. 1.5, a fixed reference frame is
first defined on the base of the mechanism. The X axis of the fixed reference frame is pointing
downwards, i.e., in the direction of gravity. The points corresponding to the cable outputs of
the spools are assumed to be fixed — in practice an eyelet or a pulley can be used — and are
noted Ag, with k& = 1,2,3. The vector connecting the origin of the fixed reference frame to
point Ay is noted aj and the position of the end-effector of mass m with respect to the origin

of the fixed reference frame is noted p = [z, v, 2]7.

The cable lengths, which are used as joint coordinates, are respectively noted pr, k = 1,2, 3.

The inverse kinematic model can therefore be simply written as

Pr = \/(ak -p)f(ar—p), k=123 (1.59)

Similarly to the planar mechanism, the dynamic model of the spatial mechanism is obtained
by considering the force balance on the point-mass end-effector, which can be written in

matrix form as

Mp =p —g, (1.60)
with -
1
p— L {fl i fi”] , (1.61)
mLp1 P2 pP3
and where matrix M is defined as
M = [P1 P2 P3] ) (1.62)
with vectors p;,, k =1,2,3, given by eq. (1.6). Solving eq. (1.60) for p yields
p=M1(p-g) =0, (1.63)
where the inverse of matrix M is given by eq. (1.8) with, for the spatial mechanism,
det(M) = (p; x ps)" py (1.64)
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and
(P2 x p3)”
Adj(M) = |(p3 x p1)" | - (1.65)
(p1 % po)T
Similarly to the planar mechanism, the determinant of matrix M is positive as long as the end-
effector remains below the plane passing through the fixed cable spools. Using this assumption

to simplify the positive tension constraints (1.63) yields, upon rearranging (Gosselin, 2013)

k1= [p X (ag —a3z) + (ag x a3)]” (p—g) >0 (1.66)
ko = [p x (a3 —ay) + (ag x a;)]’ (p—g) >0 (1.67)
ks = [p x (a; —ag) + (a; x az)]” (p—g) > 0. (1.68)

The above inequalities represent the necessary and sufficient conditions to be satisfied in
order to ensure that the cables are kept under tension. Despite having different units than
egs. (1.13)—(1.14), the above quantities can be considered as their spatial counterparts and

are therefore referred to as pseudotensions.

1.5.2 The pendulum constraint

This section aims at deriving the equation of the median of the unbounded feasible region
defined by inegs. (1.66)-(1.68). As is the case with eq. (1.17), this relation can be thought of
as the locus of ideal kinematic states and can be put to good use in dynamic trajectory plan-
ning. The desired expression can be obtained from the property pointed out in Section 1.4.2
according to which a kinematic state satisfying this property admits equal pseudotensions.

Accordingly one can write

K1 — R3 = 0 (1.69)
K92 — R1 = 0 (1.70)
R3 — Rg = 0. (1.71)

The above expressions can be expanded as

ri—ry==3[(p—c)x (c—a)]" (p—g) =0 (1.72)
Ry — k1= =3[(p—c)x (c—ag)]" (p—g) =0 (1.73)
k3 — k2= =3[(p—c)x (c—a)]" (p—g) =0 (1.74)

where ¢ stands for the position vector of the centroid of the cable spools, namely
_aitatag (1.75)

3
Eqgs (1.72)—(1.74) can be written in matrix form as

3ATh =0, (1.76)
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where matrix A and vector h are respectively defined as

A=lc—ai) (c—a) (c—a3), (1.77)
and
h=(p—c)x(p-—g). (1.78)
In order for eq. (1.76) to be satisfied, vector h must either be the zero vector or be a nonzero
vector belonging to the left-nullspace of A. The latter possibility implies that all vectors
orthogonal to h belong to the column space of A, because the left-nullspace and the column
space of any matrix are orthogonal complements of one another. Vector (p — c) is one vector
orthogonal to h by virtue of eq. (1.78), and it cannot belong to the column space of A since 1)
it is assumed that the end-effector remains below the plane of the cable spools; and 2) by
virtue of eq. (1.77), the column space of A corresponds to the plane passing by the cable
spools. Therefore, vector (p — ¢) does not belong to the column space of A, vector h does
not lie in the left-nullspace of A, and thus eq. (1.76) is only satisfied if h = 0, namely
(p—c)x(p—g)=0. (1.79)
The above expression is the equation of the median of the unbounded region defined by
constraints (1.66)—(1.68). Kinematic states satisfying this relation admit pseudotensions of
equal value, and are thus the least likely to fall into negative tension states if an external force
disturbance were to occur. It can be shown that the pseudotension associated with eq. (1.79)
is
K= %(al X ag 4 ag x a3 +az x a))’ (p — g). (1.80)
Furthermore, eq. (1.79) corresponds from a physical point of view to the dynamic model,
written in Cartesian coordinates, of a spatial pendulum suspended from point c¢. Conse-
quently, a kinematic state satisfying eq. (1.79) features the same properties as those stated in
Section 1.4.2, and such a relation can be used in the same manner to maximize the likelihood

of obtaining feasible trajectory segments.

1.5.3 Specific Mechanism Architecture

In order to provide physical insight, a special symmetric mechanism architecture is used for
the remainder of the paper. In this architecture, the three spools are located on the vertices
of a horizontal equilateral triangle whose centroid is at the origin of the fixed reference frame.

The geometry is therefore defined as

[ V3a a T
a; =g XY= _Z 1.81
=05 : (1.81)
\/ga a r
as = Y= _Z 1.82
2 _0 5 5 ( )
- T
a;=[0 0 df (1.83)
c=0, (1.84)
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where a corresponds to the distance from a spool measured to the centroid. Substituting the

above geometric parameters into inequalities (1.66) to (1.68), the latter can be rewritten as

K1 = —?a((a—i-\/gy—z)(a’c'—g) —|—x(z—\/§y)> >0 (1.85)

ngz—?a«a—\/gy—z)(a'é—g)—i—x(é—i-\/gy)) >0 (1.86)
K3 = —?a((a +22)(% —g) — 29:2) > 0, (1.87)

while the pendulum constraint becomes in scalar form:

F-g § %
==z (1.88)
y

X

z

A trajectory planning algorithm is developed in the next section for this symmetric architec-

ture.

1.5.4 Static to Dynamic Transition Trajectory Planning

Similarly to a planar transition trajectory segment, a spatial static to dynamic transition
trajectory segment connects an initial point at rest in the static workspace of the mechanism

T
to a target point in the dynamic workspace. Let pg = {a:o %0 zo} be the coordinates of

the initial (static) kinematic state, and let p; = [331 Y1 zl]T be the position vector of the
final kinematic state, to be reached with a zero instantaneous velocity. Using eq. (1.88) on the
initial point to maximize the likelihood of obtaining a feasible trajectory yields yg = zg = 0,
while zg remains undetermined. Like the planar trajectory, the proposed motion connecting
point pg to point p; consists of progressively increasing oscillations centred at the initial

point, and therefore it can be devised as egs. (1.20)—(1.21) along with
2(t) = s,(t)T) — s.(1) = z1A(T) cos(2mnT), (1.89)

where the variables that are involved in the latter expression are defined in Section 1.4.3.
Similarly to the planar motion, the opposite point of the final point along the rectilinear tra-
jectory, point p_1, must remain below the spools, and hence constraint (1.19) equally applies.
In addition to egs. (1.24)—(1.25), the spatial trajectory must satisfy boundary conditions rep-
resenting the initial state of rest and the final dynamic state in the Z—direction that can be
written as

z(0) = 2(0) = £2(0) = 0, 2(T) ==z, 2(T)=0. (1.90)

Furthermore, eq. (1.88) is applied on the final kinematic state instead of eq. (1.17) to maximize

the likelihood of obtaining a feasible subsequent trajectory segment, yielding

(1.91)
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Eqgs. (1.90)—(1.91) represent additional constraints that the spatial trajectory must satisfy with
respect to the planar trajectory. However, since the boundary conditions on the amplitude
function derived for the planar mechanism, eqs. (1.27)—(1.28), correctly yield eq. (1.90), and
since the expression for the duration of the trajectory obtained from the planar pendulum
constraint, eq. (1.29), also satisfies the spatial pendulum constraint, eq. (1.91), the additional
constraints (1.90)—(1.91) result in no supplementary condition imposed on the trajectory

parameters.

1.5.5 Positive Tension Constraints

The positive tension constraints for the spatial mechanism can be obtained by first substitut-
ing the parametric trajectory and its time derivatives into the pseudotensions, egs. (1.85)—
(1.87). The duration of the trajectory T is thereafter eliminated from the resulting expressions

by virtue of eq. (1.29). Then, using the substitutions

7 Rk v Tr1 — Xo ?/J\ Y1 ~ Z1
k = NG ) = ) 1 )
3 42
79‘1 i) a

(1.92)

I
|
S
I
|

the (normalized) pseudotensions can be written as eq. (1.32), k = 1, 2,3, where Cf, Sk, ¢(7),
and s(7) are respectively given by eqs. (1.33)—(1.36), and with

w1 = 21 — \/g@\l, wy = 21 + \/5@1, w3 = —221. (1.93)

The above parameters, referred to as the weighted trajectory parameters, are closely related to
the architecture of the mechanism since the coefficients multiplying the final point coordinates
71 and z; depend on the position of the cable spools relative to one another. Hence, if a
different mechanism architecture than the one presented in Section 1.5.3 is to be used, only
the expressions for the weighted trajectory parameters differ; the form of the pseudotension

expressions remains identical.

Considering the identical form of the normalized pseudotensions for the planar and spatial
mechanisms, eq. (1.32), the expressions for the lower envelopes of the spatial pseudotensions
are also given by eqgs. (1.39), this time for k£ = 1,2, 3. Such identical equation forms mean that
spatial trajectory feasibility is determined using the same geometric constraint as for planar
trajectory feasibility, namely through eq. (1.43). Likewise, the minimum feasible value of N
for a given inclination v for spatial trajectories is given by

N(v) = max( max Nj(v,7), max Na(v, T), max Ng(U,T)), (1.94)

r€[0,1] r€[0,1] r€[0,1]

where Ni(v,7), k=1,2,3, is given by eq. (1.44).

The horizontal trajectory

Unlike the horizontal trajectory produced by a planar mechanism, the horizontal trajectory

generated by a spatial mechanism is not the unequivocal inclination allowing the final kine-
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matic state to be reached the fastest. Nonetheless, the study of this special case for the specific
mechanism architecture of Section 1.5.3 remains relevant since it reveals the impact that the
weighted trajectory parameters have on trajectories. Similarly to the planar trajectory, the
horizontal lower pseudotension envelopes for the spatial trajectory are given by egs. (1.50),
this time for k = 1,2, 3. Moreover, the minimum feasible value of IV for a horizontal trajectory

is obtained by substituting v = 0 into eq. (1.94), yielding eq. (1.53) with
Wmax = max(\w1|, |’LU2’, ’w?") (195)

Unlike those of the planar mechanism, the weighted trajectory parameters of spatial mech-
anisms are not all of the same magnitude for a given final kinematic state. Referring to
eq. (1.93), the weighted trajectory parameter with the largest magnitude—and thus the corre-
sponding cable—can be identified from the outset. For the mechanism of Section 1.5.3, Fig. 1.6
illustrates the portions of the 7;Zz; —plane where each cable admits the lowest pseudotension
in a horizontal trajectory along with the projection of the attachment points Ay, k = 1,2, 3.
The (open) regions are bounded by dashed straight lines whose linear equations are simply

obtained by solving:
wi] = |wal, |wa| = ws], lws| = |wi]. (1.96)

Also depicted in Fig. 1.6 in the form of a regular hexagon is the locus of final points yielding
a constant wy,qz, namely
Wimaz = 2R, (1.97)

where 2R is the diameter of the inscribed circle. Figure 1.6 also shows the coordinates and the
value of the weighted trajectory parameters for two representative final points on the locus:
point Hy is at the intersection of the hexagon and a boundary line, and point H; is located
at the intersection of the hexagon and the straight line passing through an attachment point

and the centroid of all three attachment points (not illustrated).
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wo = 2R

Figure 1.6 — Geometric interpretation of the weighted trajectory parameters.

As it can be observed from Fig. 1.6, the weighted trajectory parameter with the largest
magnitude is the one whose corresponding attachment point is located in the region (or
opposite region) of the final point. Moreover, it is negative if the final point is in the region

of the k-th attachment point and positive if the final point is in the opposite region.

Referring to eq. (1.53), the minimum feasible value of N in a horizontal trajectory depends
solely on the numerical value of w4, for a given amplitude function. Therefore, the hexagonal
locus represented in Fig. 1.6 also corresponds to the set of final points that have an identical
minimum feasible number of oscillations in a horizontal trajectory for a given amplitude
function. As it is shown below however, this value of N leads to the minimum value for the
minimum feasible number of oscillations for only some of these final points, i.e., some final
points have an inclination v that allows a minimum feasible number of oscillations lower than

the one required to perform a horizontal trajectory.

Referring to eq. (1.50), a horizontal trajectory aiming at a final kinematic state satisfying any
of egs. (1.96) admits two equally low pseudotension envelopes in the corresponding cables.
For such a final point, the remaining cable has a zero weighted trajectory parameter that
produces a constant unitary pseudotension. Specifically, the remaining pseudotension does
not fluctuate throughout this rectilinear trajectory since the latter is perpendicular to the
straight line passing through the centroid of the cable spools and the attachment point of the
corresponding cable, i.e., ap X p = a X P = 0 (see eqgs. (1.66)—(1.68)). Therefore, as it is
the case with the final points of the planar trajectory formulation of Section 1.4, final points
satisfying any of egs. (1.96) generate nonzero weighted trajectory parameters of opposite

signs but of identical magnitude that cause the lowest pseudotension envelope of a horizontal
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trajectory to be equally shared by all possible cables. For this reason, the horizontal trajectory
constitutes in both cases the optimal inclination that leads to the minimum value for the
minimum feasible number of oscillations. The planar trajectory formulation of Section 1.4
can therefore be construed as a special case of spatial trajectories and is treated as such in
the remainder of the paper. With regard to Fig. 1.6, point Hy has an optimal horizontal
inclination and thereby represents the farthest points from the centroid of the cable spools

that can be reached through a horizontal motion for a given wy,q;-

For final points not satisfying any of egs. (1.96), the magnitude of the weighted trajectory
parameters all differ from one another and the inclination v can be set to a nonzero value to
reduce the adverse effect that the weighted trajectory parameter with the largest magnitude
has on its pseudotension envelope. Actually, as parameters wy, k = 1,2, 3, appear in the form
of Jwi+v| in egs. (1.39) and on the numerator of egs. (1.44), the sign of the optimal inclination
v depends on the sign of the weighted trajectory parameter with the largest magnitude as
given by eq. (1.112). Consequently, the horizontal trajectory cannot be the inclination that
allows the final kinematic state to be reached the fastest for final points not satisfying any of
egs. (1.96). However, an increasing magnitude of v has a compounding adverse effect on the
number of oscillations by virtue of the amplitude function. This impact can be seen in factor
—vA(T) that appears in egs. (1.33) and most significantly on the denominator of egs. (1.44).
The optimal inclination v is therefore a tradeoff between these two absolutes. It depends
on the final point and on the choice of the amplitude function and can be obtained numer-
ically from the optimization over v of eq. (1.94) temporally discretized along the trajectory.
For a final point admitting weighted trajectory parameters with the most disparate magni-
tudes, its optimal inclination has the largest magnitude—and is the farthest from a horizontal
trajectory—, and thereby point H; in Fig. 1.6 is the closest point from the centroid of the

cable spools that can be reached through a horizontal motion for a given wy,qz-

1.5.6 Reverse Dynamic to Static Transition Trajectory

If the end-effector is stationary and meets eq. (1.88), it can be brought back to rest in the

static workspace through the reverse trajectory of that proposed in Section 1.5.4, namely

xp(t) = 84, (t/T) = Sz, (7) = 52(1 —7) (1.98)
Yp(t) = sy, (t/T) = sy, () = 5y(1 = 7) (1.99)
2p(t) = 55, (t/T) = 55,(1) = s5,(1 —7), (1.100)

where s,(7), s,(7) and s.(7) are given by egs. (1.20), (1.21) and (1.89), respectively, and
where z(t), yp(t) and 2,(t) define the reverse trajectory. For the rectilinear motion defined
above, the mandatory continuity of the acceleration is fully accounted for provided that the
trajectory is aligned with the initial acceleration vector, in which case zg is no longer arbitrary

but given by eq. (1.58). If this value is such that it satisfies eq. (1.42), the corresponding
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minimum feasible number of oscillations is given by egs. (1.94) and (1.40); otherwise, the
state of rest cannot be reached through the trajectory defined by egs. (1.98)—(1.100) and

numerical methods must be employed.

1.6 The amplitude function

As stated in Section 1.4.3, the amplitude function can be any smooth function on the interval

7 € [0,1] that satisfies the conditions given in egs. (1.27) and (1.28), for instance:
Al(1) = =374 +473,  Ay(1) = 67° — 1571 +1073,  As(r) =270 — 77t + 67, (1.101)

Although the expression that can be used as an amplitude function is not unique, all valid
functions do not produce the same results, i.e., some are better suited than others to perform
a given trajectory. Specifically, the role of the amplitude function is to shape the distribution
throughout time of the load required for reaching the final point. As a result, the more evenly
a given amplitude function distributes this load along a given trajectory, the more efficient it is
in performing such trajectory and the lower the minimum feasible number of oscillations will
be. In this section, the decoupling of the amplitude function from the weighted trajectory
parameters in the horizontal pseudotension envelopes (egs. (1.50)) is exploited to derive a

zero-tension amplitude function for horizontal trajectories.

1.6.1 Zero-Tension Amplitude Function for the Horizontal Trajectory

The horizontal pseudotension envelopes can be used to derive a zero-tension amplitude func-
tion for horizontal trajectories, i.e., one for which the lower envelope of the lowest pseudoten-
sion is held at a constant zero value at all instants of a trajectory passing by the initial and
final points. Considering the form of eqgs. (1.50), such an amplitude function is a solution of

the equation
1 — wWma VC?+5%2=0, Vr7el01], with A(0)=0, A(1)=1. (1.102)

The above problem consists of a second order nonlinear ordinary differential equation with

Dirichlet boundary conditions and unknown parameter n. Its particular solution is given by:
Ajar(T) = 7, (1.103)
and

il = w”;‘””, (1.104)

where A;q and n;g respectively stand for the zero-tension amplitude function and its corre-
sponding value of n. As it can be seen, eq. (1.103) does not satisfy the first and second order
boundary conditions of egs. (1.27) and (1.28), and thereby cannot be used in practice. How-

ever, the value for parameter n obtained concurrently is of great use as it constitutes a lower
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bound for the minimum feasible number of oscillations of horizontal trajectories. Indeed,
the value of n given by eq. (1.104) is obtained from an amplitude function that distributes
to perfection the load required for reaching the final point at each instant of the motion,
and therefore no other amplitude function can yield a smaller minimum feasible number of
oscillations for a given final point to be reached by a horizontal motion. As a result, the effec-
tiveness of practical amplitude functions in performing horizontal trajectories can be assessed
by comparing the value of n obtained from egs. (1.53) and (1.40) to the one obtained from
eq. (1.104) for a given final point. Appendix A (Section 1.9) provides a piecewise-defined
amplitude function that exploits the benefits of the zero-tension amplitude function while
satisfying the first and second order boundary conditions of egs. (1.27) and (1.28) so that it

can be used in practice.

1.6.2 Zero-Tension Amplitude Function for Nonhorizontal Trajectories

Defined analogously as that for horizontal trajectories, the zero-tension amplitude function
for nonhorizontal trajectories allows, with the appropriate value for parameter n, the lower
envelope of the lowest pseudotension to admit a (constant) zero value at all instants of a
nonhorizontal trajectory. The expression that solves the corresponding nonlinear second order
ordinary differential equation was not found but if it exists, it invariably depends on the
weighted trajectory parameters wy and the inclination v of the trajectory since both are

coupled to the amplitude function derivatives in eq. (1.39).

In the absence of such a solution, the zero-tension amplitude function for horizontal tra-
jectories, eq. (1.103), can nevertheless be used to study nonhorizontal trajectories. Indeed,
its simple mathematical form leads to analytic formulas for the optimal inclination and its
corresponding value of n whose behaviours are assumed to be similar to those produced by
similar practical amplitude functions, such as those given in eq. (1.101). This study, which is
presented in Appendix B (Section 1.10), notably concludes that, for a nonhorizontal motion,
choosing the minimum value for the minimum feasible number of oscillations over the one
obtained from a horizontal motion yields a negligible gain. This result is important since it
allows in practice to use the simpler horizontal trajectory and have the effectiveness of the

optimal inclined trajectory.

1.7 Examples

Example simulations for three types of trajectories are conducted, each one being designed
to highlight the impact of the variation of one parameter on the minimum feasible number
of oscillations, namely the magnitude of the largest weighted trajectory parameter for the

planar and spatial mechanisms, the inclination v, and the amplitude function being used.
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1.7.1 Comparison of the Planar and Spatial Mechanisms

For a given amplitude function, the minimum feasible number of oscillations in a horizontal
trajectory is solely determined by the magnitude of the largest weighted trajectory parameter.
The expression for this parameter varies depending on the type of mechanism being used,
planar or spatial, and, for the latter mechanism, on the direction in the horizontal plane
in which the trajectory occurs. The first simulation illustrates this dependency for a final
point located at a given distance d = 4 from the vertical axis passing through the centroid
of the cable spools. Table 1.1 presents the expression for the largest weighted trajectory
parameter as a function of d along with the corresponding nonceiled minimum feasible number
of oscillations for the planar mechanism and for final points corresponding to points Hy and
H; in Fig. 1.6. This simulation was conducted for a horizontal trajectory performed with the
amplitude function A;(7) given in eq. (1.101). The nonceiled minimum feasible numbers of
oscillations are thus obtained from egs. (1.53) and (1.40). The amplitude function A;(7) is
the polynomial function of minimal degree that satisfies all the boundary constraints (1.27)
and (1.28).

Planar Spatial Mechanism
Mechanism  Hy H,
n 2.15 3.86 4.47

Table 1.1 — Nonceiled minimum feasible number of oscillations obtained for reaching—with a
horizontal trajectory—a final point located at a distance d = 4 from the vertical axis passing
through the centroid of the cable spools with the amplitude function A;(7) for the planar
mechanism and for final points corresponding to points Hy and H7 of the spatial mechanism.

Hence for a final point located at a distance d = 4 from the central vertical axis of the
mechanism, the (nonceiled) minimum feasible number of oscillations is reduced by 14% if the
trajectory is performed in the direction of point Hy instead of in the direction of point Hi,
and by 44.31% over this improved result if the trajectory is instead performed with the planar
mechanism. For target points all located in a single plane, it is therefore advantageous to use

a planar mechanism.

1.7.2 Experimental Validation

In order to validate the proposed trajectory formulation, the trajectory corresponding to the
middle column of Table 1.1 is performed experimentally using the three-dof spatial cable-
suspended mechanism shown in Fig. 1.7. The distance between the centroid of the cable
spools and one attachment point is a = 0.693 m, and thereby the final point of the performed

trajectory has the Cartesian coordinates (0,2.77,0) m. Three servo-controlled winches are
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used to control the length of the cables. The motion performed by the end-effector of mass
m = 0.129 kg consists of the transition trajectory given by egs. (1.20), (1.21) and (1.89),
then continues with three oscillations of constant amplitude obtained by setting A(7) =1 in
the aforementioned equations, and concludes by the reverse transition trajectory described in
Section 1.5.6. The parametric trajectory is shown in Fig. 1.8a, while Fig. 1.8b provides the
cable tensions per unit mass throughout the trajectory. As expected, the first figure shows
that the end-effector oscillates horizontally with increasingly large amplitudes until it reaches
its target point. Figure 1.8b shows that the tensions in the cables are positive at all instants
of the trajectory, which confirms that the value of n obtained from eq. (1.53) is sufficiently
large. Moreover, the lowest tension is positive—rather than zero—because the value of n
used is ceiled to the nearest integer in performing the trajectory and because, as it can be
recalled, such a value of n ensures nonnegativity in the tension envelopes, which is a sufficient
but not necessary condition for positive cable tensions. A video showing this experimentation
(Chap1__3dofTransitionTrajectory.mp4) is available under [46] Pascal Dion-Gauvin at:
https://robot.gmc.ulaval. ca/ publications/ these-de- doctorat.

Figure 1.7 — Spatial mechanism used to perform the experimental validation.

1.7.3 Comparison of Trajectories Performed with various Inclinations

As demonstrated in Appendix B (Section 1.10), the gain in number of oscillations obtained by
choosing the optimal inclination over the horizontal motion for a trajectory performed with
an amplitude function similar to eq. (1.103) is negligible for all final points. Simulation results
are now presented that aim to validate this statement for practical amplitude functions. To
this end, a final point for which this gain is believed to be the most significant is desired. In
this regard, Fig. 1.11b shows that such a final point has the coordinates (c R = 1,£ = 1) for the
amplitude function given by eq. (1.103), and thereby this point is heuristically selected for the
amplitude functions A;(7), A2(7), and A3(7). The amplitude function As(7) is the polynomial
function of minimal degree that satisfies all the boundary constraints and that ensures A”(1) =
0, while the amplitude function As(7) is the polynomial function of degree 5 that generally

yields the lowest minimum feasible number of oscillations in horizontal trajectories, i.e., the
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Figure 1.8 — Simulation results of the experimental validation.

one with the lowest maximum slope s(7) on the interval 7 € [0,1] (see eq. (1.55)). The
optimal inclination for reaching this final point is obtained by the numerical optimization over
v of eq. (1.94) temporally discretized along the trajectory. Table 1.2 presents the nonceiled
minimum feasible number of oscillations for this inclination and for various others. Values of
n for nonhorizontal trajectories are computed numerically using eq. (1.94), while that for the

horizontal trajectory is calculated with eq. (1.53).

Inclination v —Vopt 0 Vopt 0.8 0.999

Min. feas. value of n for A;(7) (vept = 0.5681) 1.21 085 0.69 0.76 2.82
Min. feas. value of n for Aa(7) (vepr = 0.48798) 1.54 1.1 093 1.29 8.25
Min. feas. value of n for Az(7) (vepr = 0.71002) 1.41 090 0.61 0.73 1.62

Table 1.2 — Nonceiled minimum feasible number of oscillations obtained for reaching the final
point (cR = 1,£ = 1) with various amplitude functions and inclinations.

Hence the final point for which it is the most advantageous to use the optimal inclination
over the horizontal inclination is (¢cR = 1,£ = 1), and for this final point the values of n
corresponding to the optimal inclination are only slightly lower than the one required for a
horizontal trajectory. Considering that the values of n must be ceiled to the nearest integer
in order for the final kinematic state to be reached with a zero velocity, it must be concluded
that choosing the optimal inclination over the horizontal inclination leads to an actual gain in
the number of oscillations for only an insignificant number of final points. This result allows
in practice to use the simpler horizontal trajectory and have the effectiveness of the optimal

inclined trajectory.
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1.7.4 Comparison of Trajectories Performed by various Amplitude

Functions

Simulation results are now presented to investigate the effectiveness of various amplitude
functions in performing a horizontal trajectory aiming at the final point (¢ R = 5, = 0). The
amplitude functions considered in this simulation consist of those given in eq. (1.101) along
with the piecewise-defined function defined in Appendix A (Section 1.9). The piecewise-
defined amplitude function is used with its optimal value for parameter €, and from the
numerical optimization of eq. (1.53) temporally discretized along the trajectory, ¢ = 0.0399
is obtained for the considered final point. Table 1.3 presents the nonceiled minimum feasible
number of oscillations obtained for reaching the final point with each of the aforementioned

amplitude functions along with the lower bound of n as obtained from eq. (1.104).

Amplitude function A Ai(7) Ao(r) Asz(r) Aecpp(7)
Min. feas. value of n 2.76  4.85 .17 4.72 2.94

Table 1.3 — Nonceiled minimum feasible number of oscillations obtained for reaching the final
point (0 R = 5,£ = 0) horizontally with various amplitude functions.

Hence for the trajectory performed in this simulation, the amplitude functions given in
eq. (1.101) all lead to similar minimum feasible numbers of oscillations, whereas the piecewise-
defined function of eq. (1.110) yields a significantly lower value, near the lower bound predicted
by eq. (1.104). These results are evidenced by Fig. 1.9, where the lower envelope of the lowest
pseudotension obtained for each amplitude function is plotted using its nonceiled value for
n. As expected, it can be observed that the average value of the lowest of egs. (1.50) for
the piecewise-defined amplitude function is significantly lower than the one produced by the
other amplitude functions, thereby confirming that the load required for reaching the final
point is distributed more evenly with eq. (1.110) than it is with any of the functions defined
in eq. (1.101). Referring to eq. (1.55), values of n obtained from these amplitude functions
for other final points admit relative differences among them that are similar to those found
in Table 1.3, and therefore the effectiveness of the amplitude functions determined in this
simulation extend to all horizontal trajectories. As a result, considering that the ceiling of the
minimum feasible number of oscillations mitigates the gain resulting from using a horizontally-
effective amplitude function, it must be concluded that using the piecewise-defined amplitude
function is particularly worthwhile for high values of n, i.e., for reaching final points that are

located far from the centroid of the cable spools.

1.8 Conclusion

This paper proposes a transition trajectory formulation for planar two-dof and spatial three-

dof cable-suspended mechanisms with point-mass end-effectors. This transition trajectory
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Figure 1.9 — Lower envelope of the lowest pseudotension for various amplitude functions
performing the same horizontal trajectory.

connects an initial point at rest in the static workspace of the mechanisms to a final point to
be reached with a zero velocity and nonzero acceleration. First, the tension equations of each
mechanism are used to obtain the locus of ideal kinematic states, which corresponds to that of
a simple pendulum suspended from the centroid of the cable spools. In a context of point-to-
point trajectory planning constructed as a sequence of trajectory segments, prescribing these
kinematic states at the endpoints of a point-to-point trajectory increases the likelihood of
obtaining feasible subsequent trajectory segments, and therefore such relation constitutes in
itself an important result of the paper. Using the latter constraint, the proposed motion is then
defined. It consists of oscillations of progressively increasing amplitude centred at the initial
point, whereby a minimum feasible number of oscillations is determined by ensuring positive
tensions in all cables throughout the trajectory. It is found that the horizontal trajectory is
the unequivocal minimum-time inclination for the planar mechanism, while it is the optimal
inclination for the spatial mechanism in only certain orientations. Additionally, an amplitude
function that allows the lowest tension envelope to be zero at all instants of the motion is
analytically derived for horizontal trajectories. Although such an amplitude function cannot
be used in practice, it leads to a lower bound for the minimum feasible number of oscillations
that can be used to assess the efficiency of various amplitude functions in reaching a given
final point. Finally, simulation examples are given. One of the simulations conducted was
also successfully performed experimentally, which validates the proposed approach. This
study opens the avenue for using cable-suspended mechanisms beyond their static workspace.
Current work includes the dynamic point-to-point trajectory planning of a point-mass end-

effector in three dimensional space.
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1.9 Appendix A: Derivation of an effective amplitude

function

The zero-tension amplitude function for horizontal trajectories, eq. (1.103), can inspire the
design of a highly effective amplitude function that can be used in practice. As represented in
Fig. 1.10, the proposed solution consists of a piecewise-defined function with three segments,
the second of which is linear. It is akin to the third order polynomial s-curve (Nguyen et al.,
2008), since both have similar velocity profiles and ensure continuity up to the acceleration
level at the connections of the segments. On the interval 7 € [0, ], the amplitude function
satisfies the boundary conditions (1.27) along with having a zero curvature at 7 = ¢ to
ensure the continuity of the acceleration with the linear segment. Additionally, to make the
proposed amplitude function effective, a strictly increasing slope from a zero value at 7 = (
to a maximum value in 7 = ¢ is desired. The linear function defined on the second interval
T € [e,1 — €] ensures continuity and smoothness with the preceding segment, and its slope is
thereby given by the final slope of the previous interval. The function defined over the last
interval matches at 7 = 1 —¢ the final conditions of the linear segment to ensure continuity up
to the acceleration level and satisfies at 7 = 1 the boundary conditions (1.28). Additionally, a
zero acceleration is prescribed at the end of the considered time interval (4”(1) = 0) in order
to make the piecewise-defined amplitude function symmetric. Finally, a strictly decreasing
slope throughout the last interval is desired to make the proposed amplitude function effective.

A(r) A
] |
|
|
|

Segment 1 Segment 2 Segment 3

|

|

|

|

|

T T
€ 1—-¢ 1

Ay

Figure 1.10 — Piecewise-defined amplitude function.

Rewriting the acceleration constraints effective on the first segment yields zero curvature at
the endpoints of the interval and strictly positive curvature in between. Defining fi(7) as the

amplitude function on the interval 7 € [0, ], one can set

"(r) = %’”T(T — o), (1.105)
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where it can be readily shown that m is the slope of the linear segment of the amplitude func-
tion. Integrating twice the above expression while satisfying the boundary conditions (1.27)

yields
m73(1 — 2¢)
Alr)=——%5— (1.106)
On the second interval, the amplitude function can be defined as
me

fa(m) =m(T — &) + =, (1.107)

where %mfs is the value of the amplitude function at the beginning of the second interval as
obtained from the previous segment. On the third interval, the constraints—in particular,
zero curvature at the endpoints of the interval and strictly negative curvature in between—are
analogous to those of the first interval, and thereby the function that applies on the third

interval f3(7) can be defined as the reverse of that of the first interval. This leads to

fa(r)=1— f1(1 —71). (1.108)
Ensuring that the above expression is continuous and smooth with the linear segment yields:
! (1.109)
m= . .
1-¢
Collecting eqs. (1.106)—(1.109), the proposed amplitude function can be written as
3
7°(2e — 7)
— f 0
231 — o) or 7 € 0,¢€]
21 —¢
Aeff(T) = m for T € [8,1—5] (1110)
1-7)302e—(1-1))
1— f 1—¢,1
2551 —e) orTe[l—el1],

where ¢ €]0,0.5] is a free parameter.

Althought the amplitude function defined above is based on the properties of the horizontal
pseudotension expressions, it can obviously be employed to perform nonhorizontal trajecto-
ries. Moreover, the choice of € as a free parameter is a convenient one. Indeed, referring to
eq. (1.110), a small value of € leads to a small slope in the second interval at the expense of
large curvatures in the first and third intervals, and vice-versa. Yet since wyqz is only multi-
plied by s(7) in the numerator of eq. (1.53), the slope has a greater incidence on the number
of oscillations for final points admitting large values of w4, Whereas the curvature-related
¢(7) has a greater incidence on the number of oscillations for final points admitting small
values of wy,... Hence the relation between the optimal € and the distance from the centroid
of the cable spools to final point is unequivocal: the optimal £ decreases as wyq, increases. In
practice, the numerical value of the optimal e for a given position of the final kinematic state
and its corresponding minimum feasible number of oscillations can be obtained numerically

from the optimization of eq. (1.53) temporally discretized along the trajectory.
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1.10 Appendix B: Study of nonhorizontal trajectories with
the zero-tension amplitude function for horizontal

trajectories

Symmetric Representation

A convenient way to represent the position of final points considering the symmetry of the
mechanism presented in Section 1.5.3 is to express them in a (o0R, &) coordinate system. In
doing so, two symmetric final points having different (71, 21) coordinates but identical char-
acteristics will admit a unique (0 R, §) representation. This coordinate system thus facilitates

the synthesis and is used for this purpose in this section.

Referring to Fig. 1.6, a normalized coordinate £ € [0, 1] can be defined to denote the position
of the points H¢ measured linearly from a sector boundary (£ = 0) up to its bisector (§ = 1).
Because of the symmetry of the locus, twelve final points have an identical set of numerical
values of parameters |wg|, k = 1,2, 3, for a given R and thus admit a common £ coordinate,

which can be found by the relation

min(|wy |, |wal, |ws])

= - ,

(1.111)

with R given by eq. (1.97). Hence final points that have a horizontal optimal inclination
admit & = 0, while final points that have a nonhorizontal optimal inclination have £ # 0.
At this point it remains to discriminate the final points whose weighted trajectory parameter
with the largest magnitude is positive from those whose weighted trajectory parameter with
the largest magnitude is negative. Since the weighted trajectory parameters all add up to 0
by definition, the sign o of the weighted trajectory parameter with the largest magnitude can
be obtained by:

o = altsgn(wywaws), (1.112)

where the alternate signum function altsgn(z) is defined as

+1 forz =0
altsgn(z) = (1.113)

sgn(z) otherwise,
i.e., such that altsgn?(xz) = 1 is continuous on R. Hence a unique (oR,&) representation
encompasses all final points that have identical optimal inclination and minimum feasible
number of oscillations. This representation can be used to rewrite the weighted trajectory

parameters, which yields, referring to Fig. 1.6:
wa = 20R — oRE, wp = oRE, we = —20R, (1.114)

where each of w4, wp, and we represents either wy, we or ws, depending on the region of the

(Y1, 21) plane where the final point is located.
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Prescribed Final Point and Inclination

The value of parameter n for a nonhorizontal trajectory performed by the zero-tension ampli-
tude function for horizontal trajectories is obtained by substituting eq. (1.103) into eq. (1.94).

Its minimum value, occurring at 7 = 1, is given by:

_ max(|wy 4 vl, |wa 4 v], |ws 4 v])
Trodl = V=2 '

For a prescribed final point and a prescribed inclination, the above equation yields the min-

(1.115)

imum value of n for which the zero-tension amplitude function for horizontal trajectories
produces nonnegative pseudotension envelopes throughout the interval 7 € [0,1]. Hence
eq. (1.104) is retrieved for v = 0, but since the above expression originates from an amplitude
function that does not produce zero tension for nonhorizontal trajectories, its numerical value
can only be used as a guideline, and not as a lower bound, for minimum feasible numbers of

oscillations of nonhorizontal trajectories.

As it can be observed from eq. (1.115), the index nyq is determined by the largest of the
terms |wy, 4 v| for a prescribed inclination, and therefore does not necessarily originate from
the cable whose weighted trajectory parameter has the largest magnitude. More precisely, it
is either determined by the weighted trajectory parameter with the largest positive value or
by the one with the largest negative value (depending on the sign of v), and therefore can
only come from two of the three cables for a given final point. Substituting eq. (1.114) into

eq. (1.115), the latter can be rewritten as a function of the determining cable, namely

|20 R — 0 R€ + v for v ooy
P B z7RE (1.116)
gdl = |—20R + v| v '
— for <1.

V1 — v? %aRf -

In the above equation, a division by zero can only occur in the subdomain definition of the
function when the normalized coordinate & is zero. In this case, the two weighted trajectory
parameters have the same magnitude but bear opposite signs, and in this regard eq. (1.116)
coherently predicts that the determining cable is the one whose weighted trajectory parameter

has the sign of the prescribed inclination.

Optimal Inclination for a Prescribed Final Point

The optimal inclination for a given final point corresponds to the minimum point of eq. (1.116).
Therefore, it is found either where its derivative with respect to v is zero or at the common

boundary of the subfunctions’ respective domain. A thorough analysis leads to:

O'% for R?%¢ <1
Vgdl,min = 1 (1117)
O'ﬁ for R%¢ > 1.
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Substituting the optimal inclination into eq. (1.116) leads to the minimum value of nyq as a

function of v, namely

4-9R

————=2 " forR%*¢ <1
T4 — R2£2 =
Ngdl,min = 1R° 1 (1118)
VEU T for R% > 1.

The above two equations are analytic formulas respectively yielding the optimal inclination
and the minimum value of nyg as a function of the final point for a trajectory performed
with the zero-tension amplitude function for horizontal trajectories. In particular, an optimal
horizontal inclination and its corresponding value of n, eq. (1.104), is retrieved for £ = 0.
Since eq. (1.103) is similar to the majority of practical amplitude functions—such as those
given in eq. (1.101)—, values produced by egs. (1.117)—(1.118) are representative of those
obtained in real trajectories and are thereby represented graphically in Fig. 1.11. First, the
boundary delimiting the two subdomains of these equations, R%2¢ = 1, is depicted in Fig. 1.11a
in the Cartesian 7121 —plane along with the projection of the attachment points Ay, k& =
1,2,3, and the dashed straight lines of the locus of final points satisfying & = 0. Numerical
simulations conducted with practical amplitude functions show that such boundaries exist
for real trajectories. Figure 1.11b illustrates in the o Rv—plane the optimal inclination as
given by eq. (1.117) for three values of £. For R2¢ < 1, the optimal inclination is found
at the common linear boundary of the regions corresponding to the determining cable (see
eq. (1.116)), which generates two equal pseudotension envelopes. For R2¢ > 1, the minimum
value of nyq is produced by a unique cable, the one with the largest weighted trajectory
parameter, and thereby the optimal inclination is obtained by equating to zero the derivative
of the corresponding subfunction of eq. (1.116) with respect to v. It is remarkable that
the optimal inclination on this interval is not affected in any means by the coordinate &.
Moreover, this graph illustrates that for values of R and v of the same order of magnitude,
the magnitude of the optimal inclination increases when £ increases, in accordance with what
is explained in Section 1.5.5. Finally, Fig. 1.11c illustrates in the Rn—plane the value of
Ngdl,min given by eq. (1.118) for three values of {. It can be observed that the minimum
value of nyq increases approximately linearly with R, which demonstrates the applicability
of eq. (1.55). Moreover, even though the optimal inclination varies greatly with £ for values
of R and v of the same order of magnitude, eq. (1.118) remains only slightly affected by this
coordinate. As a result, recalling that the value of 1441 min for { = 0 corresponds to eq. (1.104),
a lower bound for the minimum feasible number of oscillations of horizontal trajectories for
any final point located on a hexagonal locus of apothem R, it can be concluded that the gain
in number of oscillations obtained by choosing the optimal inclination over the horizontal one
is minimal. Since it allows to use the simpler horizontal trajectory and have the effectiveness
of the optimal inclined trajectory, this result is important and should be considered when

performing real trajectories.
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Figure 1.11 — Optimal inclination and its corresponding value of n for a trajectory performed
with the zero-tension amplitude function for horizontal trajectories.
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Chapitre 2

Dynamic point-to-point trajectory
planning of a three-dof
cable-suspended mechanism using

the hypocycloid curve

2.1 Résumé

Cet article propose une planification de trajectoire pour le mouvement point & point de méca-
nismes a cables suspendus spatiaux a 3 ddl. Le tracé de la trajectoire consiste en une courbe
hypocycloidale inscrite dans le plan défini par le vecteur d’accélération au point initial et le
point final. Le mouvement résultant assure une vitesse instantanée nulle & chacun des points
cibles et la continuité de l'accélération, alors que les forces de tension dans les cébles sont
garanties par un choix judicieux du nombre d’arcs de ’hypocycloide. La formulation de tra-
jectoire proposée peut étre utilisée en séquence pour relier consécutivement des points cibles
qui peuvent se trouver a l'extérieur de l’espace de travail statique du mécanisme. Compa-
rativement & d’autres approches présentées dans le passé, la technique développée dans cet
article produit de tres grandes régions de points atteignables. En particulier, il est démontré
que les trajectoires horizontales sont nécessairement réalisables, et ce peu importe la posi-
tion des points cibles a atteindre. Des résultats de simulation d’une trajectoire exemple sont
présentés afin d’illustrer I’approche proposée, et une démonstration vidéo d’une validation

expérimentale réalisée sur un prototype est incluse.

2.2 Abstract

This paper proposes a dynamic trajectory planning technique for the point-to-point motion

of three-degree-of-freedom (three-dof) cable-suspended mechanisms. The trajectory path is
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inspired from a hypocycloid curve that is embedded in the plane defined by the acceleration
vector at the initial point and the final point. The proposed motion ensures zero instantaneous
velocity at each of the endpoints and continuity of the acceleration, while positive cable
tensions are guaranteed through a proper choice of the number of arcs of the hypocycloid.
The trajectory can be used in sequence to connect consecutive target points that may lie
beyond the static workspace of the mechanism. Compared to previously proposed approaches,
the technique developed in this paper produces very large regions of attainable target points.
In particular, it is proven that horizontal trajectories are always feasible, for any prescribed
target point. Simulation results of an example trajectory are included in order to illustrate the
approach, along with a video demonstration of an experimental validation performed using a

prototype.

2.3 Introduction

A cable-suspended parallel mechanism consists of a platform that is suspended by cables,
and that is put into motion by the winding and unwinding of these cables on their respective
servo-controlled winch. Unlike fully constrained cable-driven parallel mechanisms that have
more cables than dofs (see for instance Lim et al., 2009; Gouttefarde et al., 2008; and many
others), cable-suspended mechanisms have the same number of cables as dofs and rely on
gravity to maintain tension in the cables. Cable-suspended parallel mechanisms can be used
in applications that require very large workspaces, such as cranes (Albus et al., 1993) or camera
support systems (Cone, 1985). Examples of some of the first cable-suspended mechanisms
are presented in Alp and Agrawal (2002); Pusey et al. (2004); Bouchard and Gosselin (2010).
More recent cable-suspended mechanisms that deal with trajectory planning were studied
in Korayem and Tourajizadeh (2011); Kevac et al. (2017).

In most cases reported in the literature, cable-suspended mechanisms are assumed to work in
static or quasi-static conditions, which implies that their workspace—referred to as the static
workspace (Riechel and Ebert-Uphoff, 2004)—is limited by the footprint of the mechanism.
However, using the notion of dynamic workspace (Barrette and Gosselin, 2005), it is possible to
envision the dynamic control of cable-suspended parallel mechanisms. The dynamic workspace
is defined as the set of poses that the platform can reach with a controlled kinematic state

(position, velocity and acceleration) while maintaining all cables under tension.

In this context, the planning of trajectories that extend beyond the static workspace was first
developed for underactuated cable-suspended mechanisms (Cunningham and Asada, 2009;
Lefrangois and Gosselin, 2010; Zanotto et al., 2011; Zoso and Gosselin, 2012). To avoid
the online numerical integration of the dynamic equations, trajectory planning approaches
for fully actuated cable-suspended mechanisms were later proposed. In this case, since all

dofs can be controlled, cable tension constraints are accounted for at the trajectory planning
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stage instead of in the control loop, which makes the trajectory feasibility verification more
transparent. In Gosselin et al. (2012); Gosselin (2013); Jiang and Gosselin (2014, 2016a),
periodic trajectories were designed as a first attempt to explore the dynamic workspace. In
practice however, cable-suspended mechanisms are most likely required to connect target
points in sequence with a zero instantaneous velocity at each of the points. Dynamic point-
to-point trajectory planning that satisfy these boundary conditions while maintaining cable
tension was thereafter addressed in Gosselin and Foucault (2014); Jiang and Gosselin (2016b);
Dion-Gauvin and Gosselin (2017).

In this paper, a dynamic point-to-point trajectory formulation is developed for a fully actuated
spatial three-dof mechanism with a point mass end-effector. The proposed motion connecting
two points in the dynamic workspace of the mechanism ensures zero instantaneous velocity
at each of the endpoints as well as continuity of the acceleration to avoid undesirable dis-
continuous cable forces. The proposed motion is based on a hypocycloid curve, whereby the
number of arcs of the hypocycloid is determined such that positive cable tension is guaran-
teed throughout the trajectory. The proposed trajectory can be used in sequence to connect

a series of target points consecutively.

This paper provides an alternative approach to the point-to-point trajectory planning tech-
nique for three-dof cable-suspended mechanisms presented in Jiang and Gosselin (2016b) that
alleviates the drawbacks of the latter while featuring new advantages. Specifically, the in-
troduction of a free variable in the proposed formulation, namely the number of arcs of the
hypocycloid, produces attainable regions of target points that are much larger, thus making
less frequent the need to introduce an intermediate point to reach the desired final point.
Moreover, the use of the pendulum constraints (Dion-Gauvin and Gosselin, 2017) allows to
naturally derive an expression for the duration of the trajectory, which is an improvement
over Jiang and Gosselin (2016b) wherein it is chosen heuristically. Finally, a sufficient but
not necessary condition for trajectory feasibility is developed, which gives an indication of the
feasibility of the motion. This test allows to demonstrate that this new formulation produces

feasible horizontal trajectories for any target point.

As pointed out in Gosselin and Foucault (2014), cable-suspended mechanisms that can move
outside of their static workspace can be very useful in applications where the footprint of
the mechanism is limited by obstacles. Pick-and-place operations can be performed with
such mechanisms. Also, mechanisms with such dynamic capabilities can find applications in

entertainment systems or in the production of artistic performances.

This paper is structured as follows. Section 2.4 presents the kinematic and dynamic mod-
elling of the three-dof mechanism. Section 2.5 describes the trajectory plane, in which any
plane curve connecting the initial point to the final point is located. Section 2.6 introduces

the formulation of the hypocycloid curve, which is the plane curve upon which the trajectory
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is built, while Section 2.7 formally describes the time-based motion. Section 2.8 addresses
the determination of the number of arcs of the hypocycloid that ensures positive tension in
the cables along the motion. Section 2.9 provides simulation results of an example trajec-
tory that connects a series of target points in sequence. Finally, a video demonstrating the

implementation on a prototype is provided in order to validate the approach.

2.4 Mechanism Modelling

A spatial 3-dof cable-suspended mechanism is represented schematically in Fig. 2.1. The
mechanism consists of three actuated spools mounted on a fixed structure which are used to
control the extension of three cables. The cables are attached to a common end-effector which
is considered as a point mass. By controlling the extension of the cables, the position of the
point mass in a three-dimensional space can be controlled. The mechanism includes three
actuators and three degrees of freedom and is therefore fully actuated. However, constraints
must be imposed on the trajectory of the end-effector in order to ensure that it is feasible,

i.e., that the trajectory does not require compression forces in the cables.

Figure 2.1 — Spatial three-dof cable-suspended mechanism.

Referring to the three-dof cable-suspended mechanism of Fig. 2.1, a fixed reference frame
is first defined on the base of the mechanism. The Z axis of this reference frame points
downwards, i.e., in the direction of gravity. The points corresponding to the cable outputs of
the spools are noted Ay, k = 1,2,3, and the vector connecting the origin of the mechanism’s
fixed reference frame to point Ay is noted aj. The position vector of the end-effector of mass
m with respect to the origin of the fixed reference frame is noted p = [z,, z]7. The cable
lengths, which are used as joint coordinates, are respectively noted pg, k = 1,2,3. The inverse

kinematic model can therefore be simply written as

Pk = \/(ak -p)l(ar—p), k=123 (2.1)
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Since the mass and elasticity of the cables are neglected, the dynamic model of the mechanism
is obtained by considering the force balance on the point-mass end-effector, namely (Gosselin,
2013)

i (ak_p>fk+mg=mii, (2.2)

k=1 Pk

T
where f; is the tension in cable k, and g = [0 0 g] is the vector of gravitational acceler-

ation. Equation (2.2) can be rewritten in matrix form as

Mp =p—g, (2.3)
with T
1
u:[fl f2 f3] , (2.4)
mlpr P2 pP3
and where matrix M is defined as
M = [01 P2 P2] ) (2.5)
with
prL = ar — p, k=1,23. (2.6)

Solving eq. (2.3) for vector p yields expressions for the cable forces, which must be positive

to ensure dynamically feasible trajectories. One obtains
p=M"(p-g) =0, (2.7)

where = stands for the componentwise inequality. The inverse of matrix M is given by

_ Adj(M)
M l="—"""2 2.8
det(M)’ (28)
where Adj (M) stands for the adjoint matrix of M and det (M) is its determinant. Referring

to eq. (2.5), the latter is given by

det (M) = (p; x po)" ps. (2.9)

It can be noted, from eq. (2.9), that the determinant is positive as long as the end-effector
remains below the plane passing through the fixed cable spools. This assumption is used here

to simplify the positive tension constraints (2.7), yielding
k= Adj(M)(p —g) = 0, (2.10)

where the quantities k = [m K2 /@3}T, referred to as pseudotensions, bear the same sign
as the cable tensions and are introduced to simplify the analysis. The adjoint matrix of M
being given by

(P2 % p3)"
Adj(M) = | (ps x p1)" |, (2.11)

(p1 x po)T
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the pseudotensions can be expanded in the form (Gosselin, 2013)

k1 =[p x (ag —a3) + (ag x a3)]" (p—g) >0 (2.12)
ko = [p x (a3 —a1) + (a3 x a1)]" (p—g) >0 (2.13)
ks = [p x (a1 —a) + (a1 x a2)]T (p—g) > 0. (2.14)

The above inequalities represent the necessary and sufficient conditions to be satisfied in order
to ensure that the cables are kept under tension. Therefore, satisfying the above inequalities
at all points of a given trajectory ensures that the cables remain under tension throughout

the trajectory.

2.4.1 Pendulum Constraint

As shown in Dion-Gauvin and Gosselin (2017), special kinematic states are obtained when

the pseudotensions in the three cables are equal, namely
K1 = K2 = R3. (2.15)

For such kinematic states, the resulting force produced by the three cables is directed toward
the centroid of the cable spools, at the centre of the positive tension pyramid defined by the
three cables. As a consequence, such kinematics states are the least likely to fall into negative
tension states if an external disturbance were to occur and are thereby as dynamically stable
as possible. It can be shown that such kinematic states satisfy the relation (Dion-Gauvin and
Gosselin, 2017)

(P—c)x(P—g) =0, (2.16)

where ¢ stands for the position vector of the centroid of the cable spools. From a physical
point of view, the foregone equation corresponds to the dynamic model, written in Cartesian
coordinates, of a spatial pendulum suspended from point c. Notably, a kinematic state that
satifies eq. (2.16) has its acceleration vector pointing toward the vertical axis passing through
the centroid of the cable spools. In dynamic trajectory planning, imposing this condition on
end-point kinematic states maximizes the likelihood of obtaining feasible subsequent trajec-

tory segments. This constraint is used in this manner in the proposed trajectory formulation.

2.4.2 Mechanism Architecture

The dynamic model and inequalities given above are general and do not assume a specific
geometry. Moreover, the technique proposed here is general and can be applied to different
mechanism geometries. However, in order to provide physical insight, a special symmetric
mechanism architecture is used for the remainder of the paper. In this architecture, the three

spools are located on the vertices of a horizontal equilateral triangle whose centroid is at the
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origin of the fixed reference frame. The geometry is therefore defined as

\/ga a r
a = | V3¢ _@ 92.17
1 [2 “ o (2.17)
3a a r
aa=|_Y7" _Z 9 2.18
) [ o (2.18)
T
az=[0 a 0|, (2.19)

where a corresponds to the distance from one of the spools to the centroid. Substituting
the above geometric parameters into inequalities (2.12) to (2.14), these inequalities can be

rewritten as

/3

K1 = —73@<(a+\/§x—y)(é—g) +z(y—\/§a'é)> >0 (2.20)
Ko = —?a((a—\/gx—y)(é—g) +z(y+\/§i)> >0 (2.21)
K3 = —‘fa((a +2y)(% - g) - 22)) > 0, (2.22)

while the pendulum constraint (2.16), applied at the initial and final points of a point-to-point
trajectory, is given in scalar form by:
G789 _ Y% o9 (2.23)
Zj Yj Ly
where j = 1 refers to the initial point of the trajectory and j = 2 refers to its final point.
In the next section, this relation is used to derive an expression for the acceleration at the

endpoints of the trajectory.

2.5 Plane of the Trajectory

Let p; and p2 be the position vectors of the initial and final points, respectively, and let
p1 be the initial acceleration vector, which satisfies eq. (2.23) and which must correspond
to the final acceleration of the preceding trajectory segment in order to ensure continuity in
the cable forces. As it can be seen in Fig. 2.2, in three-dimensional space, the acceleration
vector at the initial point (defining a line) as well as the final point (defining a point) define
together a plane in which the proposed planar trajectory is embedded. The final acceleration
vector po, albeit undetermined yet, also lies in that plane. Let point pg = [O 0 ZO]T be
defined as the intersection of the trajectory plane with the Z axis. Since the initial and final
acceleration vectors intersect the Z axis by virtue of eq. (2.23), they point toward point pg

and thereby can be written as

b;=-A(pj—po), =12 (2.24)

where the known parameter A\ and the undetermined parameter Ao are positive definite. The
foregone equation can be rewritten in scalar form as
\j=——2 =21 = _yJ, j=1,2. (2.25)
zj—Z0  Tj Y
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Comparing eq. (2.25) with eq. (2.23) leads to expressions for zp, namely:

g . _9
g=7%

20 = j=1,2, (2.26)
and its value can be directly obtained by setting 7 = 1. Moreover, the value of zy being
unique, eq. (2.26) leads to:

Al=X= A (2.27)

The above equation states that, by virtue of eq. (2.23) and of the trajectory being constrained
to a plane, the final acceleration—and, in a context of point-to-point trajectory planning con-
structed as a sequence of trajectory segments, the acceleration at each subsequent target
point—is no longer a free parameter but is rather completely determined by the initial kine-

matic state.

Figure 2.2 — Plane of the trajectory. The trajectory plane is defined by the quantities that are
prescribed from the outset, i.e., the initial and final point, as well as the acceleration vector
at the initial point. For the trajectory to be planar, the final acceleration vector must also lie
in the plane.

A planar fixed reference frame is defined on the trajectory plane, whose origin is chosen to
be at point pg and whose X}, axis points in the direction of the initial point. The Y}, axis of
this reference frame is located in the half of the trajectory plane that contains the final point
(and is orthogonal to the X} axis). The trajectory plane is spanned by vectors (p; — pg) and
(P2 — po). This can be expressed by matrix A, defined as

A= [(Pl —po) (P2-— PO)} : (2.28)

Hence the matrix that maps the XY-plane of the mechanism reference frame onto the tra-
jectory reference frame, denoted Qp, is composed of the first two columns of the orthogonal
matrix obtained in the QR decomposition of A. By virtue of the Gram-Schmidt process, this
matrix is given by:

Qn = {%1 %2] ; (2.29)
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with .
_ 1_ _
P1 — Po - ( thqi%l)(pZ Po) ‘ (2.30)
H(l — dn19y;) (P2 — PO)H

S | B T —
IP1 — pol|
Hence, let ¢ € R? be a vector written in the trajectory reference frame and let p € R? be the

same vector written in the mechanism reference frame, one has:

P= th + Po- (231)

This relation is used in the following to write the parametric trajectory in the mechanism

reference frame.

2.6 Hypocycloid Curve

In the trajectory plane, it is proposed that the point-to-point motion be following a hypocy-
cloidal path. This curve has cusps that can be matched to the trajectory endpoints to satisfy
the zero velocity constraints. The general parametric equations for a hypocycloid curve having

a cusp at point (1,0) can be written as (Lawrence, 1972)

_ (np — 1) cos(0n7) + cos((ny — 1)0,7)
nh
o(r) = (np, — 1) sin(6,7) — sin((ny, — 1)0;17')7 (2.33)

np

(2.32)

where u(7) and v(7) are the parametric equations in the X}, and Y} directions respectively,
angle 6, is the plotting range of the curve, and 7 € [0,1] is the normalized parametric
coordinate. Parameter nj > 2 that appears in egs. (2.32) and (2.33) corresponds to the
number of arcs (cusps) that the curve traces (reaches) over one lap before closing in on itself.

Figure 2.3 illustrates the hypocycloid curve for 6 = —%" and np = 3.

As it can be seen from Fig. 2.3, the hypocycloid curve can be easily adjusted to be used as
a point-to-point trajectory with an arbitrary number of arcs p € N by matching two of its
cusps to the trajectory endpoints. Expressing angle 6, and parameter ny as functions of the

number of arcs yields

—1

O = U + (—1)P 27 [1’2] =123, .. (2.34)

and 5
ny, = 1P p=1,2,3,.... (2.35)

6]
In eq. (2.34), angle vy, is the smallest angle formed by vectors (p1 —po) and (p2 —po), namely:
_ T _
1, = arccos ( (P1 = Po)_ (P2 = Po) ) . (2.36)
[(P1 — o)l I(P2 — Po) |l
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1.5~

Figure 2.3 — Hypocycloid curve for 8, = —2% and nj, = 3. The curve has 2 arcs over 2/3 laps,

3
yielding np = 3.

1.5~

Figure 2.4 — Hypocycloid curve connecting two points having v, = § with one, two, and
three arcs respectively.

Figure 2.4 illustrates the hypocycloid curve connecting two points having ¢, = § with one,

two, and three arcs respectively. The advantage of this formulation is that as the number of
arcs p increases, so does the likelihood of generating a feasible curve. Specifically, computing
the limit of parameter ny as the number of arcs approaches infinity yields

lim n;, = 2. (2.37)

p—00

A hypocycloid curve admitting a value of np = 2 arcs per lap has each of its arcs being

rectilinear and running parallel to the acceleration vector at its cusp. For this reason, one
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could conjecture that a point-to-point trajectory based on the hypocycloid curve induces
strictly positive cable tensions at all points of the motion as p — oo. This assumption is

verified in Section 2.8.1.

2.7 Proposed Trajectory

Considering the hypocyloid curve defined in the preceding section, the proposed trajectory is

given, in its reference frame, by:

t
ith == 2.
] wi T= 7 (2.38)

r(7)u(r)

c(t) = [

r(T)v(r

where ¢ is the time, T is the duration of the trajectory, and r(7) is an amplitude function
that allows to connect points located at different distances from the origin of the trajectory

plane. Defining
r1 = [|p1 — poll r2 = |[p2 — poll , (2.39)

the proposed trajectory must meet boundary conditions that can be written as

c(0) = H , &0)=0,  &0)=—xc(0), (2.40)

and

c(1) = l:z:’;((zgl . e1)=0,  &1) = —Ac(l), (2.41)

where the acceleration constraints of egs. (2.40) and (2.41) are obtained using eq. (2.24) along
with eq. (2.31). On the other hand, the first two derivatives of eq. (2.38) are given by:

&(t) = (2.42)

and

&(6) = - T2 , (2.43)

where f'(-) stands for the derivative of f with respect to its argument. Moreover, referring
to eqgs. (2.32) and (2.33), it can be easily found that:

u(0) =1, u(1) = cos(br), W' (0) = u/(1) =0,
u”(0) = =03 (ny — 1), u"(1) = =03 (ny — 1) cos(6y,), (2.44)
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and

v(0) =0, v(1) = sin(6y,), v (0) ='(1) =0,
v"(0) = 0, v"(1) = —0%(ny, — 1) sin(6),). (2.45)

Considering eqs. (2.44) and (2.45), the substitution of egs. (2.40) and (2.41) into eqs. (2.38),
(2.42), and (2.43) leads to

r(0) = ry, r(1) = 7o, r(0) =7'(1) =" (0) =7"(1) = 0, (2.46)

and )
T2 — Oy (nn — 1)
A )
where it can be seen that the duration of the trajectory is positive definite, as desired. Con-

(2.47)

sidering eq. (2.46), the amplitude function r(7) can be rewritten as
(1) = (r2 —r1)A(T) + 71, (2.48)
where A(7) is any normalized amplitude function that satisfies the boundary conditions
A(0) =0, A(l) =1, AN(0) = A'(1) = A"(0) = A"(1) =0, (2.49)

such as
A(T) = 67° — 1571 + 1073, (2.50)

which is the polynomial function of minimal degree that satisfies eq. (2.49) (Gosselin and Hadj-

Messaoud, 1993). This amplitude function is used in the example trajectory of Section 2.9.

2.8 Trajectory Feasibility

As shown above, the selection of a proper amplitude function ensures that the trajectory
meets all end-point kinematic conditions. However, it is left to verify that the tensions in the
cables remain positive throughout the motion. To this end, the parametric trajectory given
by eq. (2.38) is first written in the mechanism reference frame using eq. (2.31). The resulting
expression and its second time derivative are thereafter substituted into the pseudotensions,
egs. (2.20)—(2.22). Finally, the duration of the trajectory T is eliminated from the set of
equations using eq. (2.47), yielding pseudotensions that can be written as
V3

K = 7ga2 — By + Ap cos(0,7) + By sin(0,7) + Ck cos((np, — 1)0,7) +

Dk sin((nh — 1)9h7') + Ek Cos(nthT) + Fk Sin(nheh’l'), k= 1, 2, 3,

(2.51)

where the expressions for coefficients Ay, By, ..., F}, are too cumbersome to be explicited here
but depend on zp, matrix Qp, the amplitude function r(7), and the number of arcs p. While

the former three parameters are obtained using egs. (2.26), (2.29), and (2.46) respectively,
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the latter, i.e., the minimum number of arcs p that yields strictly positive cable tension, if
it exists, is determined by computing eq. (2.51) with a candidate value and by ensuring that
the three expressions are positive on the considered time interval. Starting with p = 1, the
candidate for minimum feasible number of arcs is either conserved if all the pseudotensions
are positive on 7 € [0, 1], or increased by one if otherwise. This process is repeated until a
feasible number of arcs is found, or until the candidate value is deemed unfit (too large) to

be used in practice.

2.8.1 Feasibility at Infinity

It was seen previously that, as the number of arcs increases, each arc of the hypocycloid curve
tends to become rectilinear and to run parallel to the acceleration vector at its cusp, which
increases the likelihood of obtaining a feasible trajectory. In this section, the pseudotensions
in the cables are investigated as p — oco. First, the linear combination of the sine and cosine

functions in eq. (2.51) can be rewritten as

3 /
KL = \ggcﬂ — Ep + Ak2 + Bkz COS(@hT + Ozk) +

\/Ci? 4+ D% cos((n, — )07 + Bi) + \/ Ex2 + F? cos(np0p + ), k=1,2,3,

(2.52)

where «ay, Ok, and g, K = 1,2,3, are phase shifts. Given the bounds on trigonometric

functions, the pseudotensions are positive definite if

3
ek = \ggaQ — |Ey| — \/A;ﬁ + B2 — \/Ck2 + D% — \/Ek2 +F2>0, k=1,2,3. (2.53)

The above expressions represent the time-dependent lower envelope of the pseudotensions.
On the considered time interval, these inequalities constitute a sufficient (but not necessary)
condition for positive cable tensions. While using eq. (2.53) to determine a feasible number
of arcs p would provide a too conservative value, the pseudotension lower envelopes are well
suited for taking the limit as p approaches infinity since they do not contain sine nor cosine
functions. Hence computing this limit for each inequality of eq. (2.53) yields the unique

expression for k =1,2,3:

lim Keyp =
p—00 e,k

V) P
\éggcﬂ <1 - 7’(7)(1’1‘%1——’_%32 > 0, (2.54)

20

where gr31 and gp39 are the corresponding components of matrix Q. For a monotonic ampli-
tude function such as that of eq. (2.50), the left-hand side of the above inequality reaches its
minimum value over the considered time interval at either trajectory endpoints, i.e., at 7 =0

or 7 = 1. Ensuring that this minimum is positive definite leads to

Van31? + qn32?

> 0. 2.55
- (255)

1 — max(ry,r2)
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The above equation corresponds to a circle of radius r = max(rq,r2) centred at the origin of
the trajectory plane pp—which is illustrated in Fig. 2.3 for » = 1-—that must be completely
located below the spools for the inequality to be satisfied. Ensuring that eq. (2.55) is verified
before computing the pseudotensions at each instant of the trajectory implies that a finite
feasible number of arcs p can be found. However, since the above condition is predicated on
the pseudotension lower envelopes constituting a sufficient but not necessary condition for

trajectory feasibility, a number of arcs p may still exist when the above test fails.

2.8.2 Horizontal Trajectory

A horizontal trajectory occurs when the initial point, the final point and the initial acceleration
vector are all located in the same horizontal plane. In such a case, computing matrix Qy using
eq. (2.29) leads to

qn31 = qn32 = 0, (2.56)

and correspondingly eq. (2.55) becomes
1> 0, (2.57)

i.e., any horizontal trajectory is feasible. This is an important advantage of the proposed
trajectory formulation. In particular, previously proposed formulations cannot guarantee
such feasibility and generally fail for demanding horizontal trajectories. For example, the
approach devised in Jiang and Gosselin (2016b) can only connect endpoints that are located
at about the same distance from the central vertical axis—that is, having r; ~ ro—and that
form an angle v, of about 7 radians. Hence the technique proposed here presents substantial

improvements over existing formulations.

2.9 Example Trajectory

The proposed formulation was thoroughly validated in simulation for target points that are
located asymetrically and at different distances with respect to the central vertical axis.
This section presents the simulation that was performed experimentally to further verify
the method. A prototype of a three-dof cable-suspended mechanism that was built for this
purpose is shown in Fig. 2.5. Three servo-controlled winches are used to control the length of
the cables. The distance between the centroid of the cable spools and one attachment point
is @ = 0.26 m, and the mass of the end-effector is m = 0.198 kg. The example trajectory
is described in Table 2.1 as a list of target points that must be reached in sequence. At
the beginning and at the end of the sequence, the first target point and the state of rest
can be reached with either a transition trajectory (Dion-Gauvin and Gosselin, 2017) or the
formulation proposed in this paper. Indeed, it can be shown that the point-to-point technique

developed here reduces to the transition trajectories of Dion-Gauvin and Gosselin (2017) with
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Figure 2.5 — Spatial 3-dof cable-suspended mechanism used to perform the experimental
validation.

the appropriate changes of variables when either the initial point or the final point admits a

zero acceleration.

Unlike in the modelling presented in the previous sections wherein the acceleration at point
P1 is given, in practice no acceleration is imposed at the first of a sequence of target points.
Referring to eq. (2.26), this implies that the position of point pg in the static workspace can
be chosen, and this selection governs the acceleration at each of the target points. Moreover,
using point pg as the static endpoint of the transition trajectories ensures continuity of the

acceleration at the first and last target points.

In the selection of point pg, one approach consists in using a conservative value for zy that
ensures from the outset that each segment is feasible. Considering the physical interpreta-

tion of eq. (2.55), such value for zp must satisfy, for a sequence of m target points noted

P1,P2,---,Pm,

T T T
Pi'P1 P2'P2  Pm pm). (2.58)

20 > max ..
0 ( 221 229 7 2z

Therefore, provided that the value for 2y satisfies the above constraint, strictly positive cable
tension can be ensured throughout any trajectory described as a sequence of target points.
However, depending on the target points chosen, such a value for zy might not be usable in
practice, i.e., the motion that it yields, or even point pg itself, may interfere with the floor.
Besides, it may not lead to the most efficient motion, i.e., that which minimizes the minimum

feasible number of arcs for each segment. Hence the decision on whether to use a value for zg
that satisfies eq. (2.58) should be taken with discernment.

If a smaller value for zg is preferred, it should nevertheless be chosen sufficiently large such
that none of the target points is proven from the outset to be unattainable. Referring to

eq. (2.55), the value for zp must be larger that the half of the largest Z coordinate of all the
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target points, i.e.:

2’5’...’ 2

Zp > max ( (2.59)

21 29 zm>
Referring to the target points of Table 2.1, using the conservative value for zy provided by
eq. (2.58) yielded trajectories that reached z = 4.74 m, whereas the floor was located at
z = 3.5 m. Consequently, the average of the Z coordinate of the target points of Table 2.1

was calculated and, since it satisfies eq. (2.59), it was selected as the value for zy for the

T
experimentation, yielding pg = [0 0 1.7} m.

The value for zg being determined, matrix Qp, angle vy, r1, and ro are first calculated for
each trajectory segment with eqs. (2.29), (2.36) and (2.39) respectively. The feasibility of
each segment can then be verified using eq. (2.55), and the corresponding minimum feasible
number of arcs is determined following the procedure explained in Section 2.8 for an amplitude
function satisfying eq. (2.49). Table 2.1 shows the result of the feasibility test at infinity, the
minimum feasible number of arcs, as well as the duration of each segment for zg = 1.7 m and
the amplitude function given by eq. (2.50). As it can be seen, a feasible number of arcs can
still exist when the feasibility test fails. In the event that a feasible number of arcs cannot be
found to connect a given segment, another value for zy can be used, or intermediate points

can be inserted in the sequence.

Target Point ~ Coordinates p—o00 p T(s)
1 (0.7,0.7,3)  -0.1557 5 6.54
2 (-1.1,-1.1,0.5) -0.1416 2 2.61
3 (-1.1,-0.9, 1.5) 0.2057 5 6.54
4 (0.8,0.5,1.5) 0.8208 5 6.53
5 (-0.6,0.1,1.9) 0.8494 5 6.52
6 (0.1,-0.6,1.8) 05425 6 7.85
7 (0, -1.1, 1.7) —

Table 2.1 — Feasibility test and minimum feasible number of arcs required for reaching the
target points with a = 0.26 m, zp = 1.7 m, and for the amplitude function given by eq. (2.50).

The resulting trajectory, computed with the number of arcs of Table 2.1 along with egs. (2.32),
(2.33) and (2.31), is illustrated in Fig. 2.6, while Fig. 2.7 presents the tensions throughout
the motion. It is clear from Fig. 2.6 that the end-effector reaches points that are located far
beyond its static workspace. From Fig. 2.7, it can be observed that the tensions in the cables

are continuous and positive at all instants of the trajectory.

In the experiment, the segment connecting the third and fourth target points was performed
using 7 arcs instead of the minimum feasible value of 5 to reinforce that the value of p obtained
from the procedure explained in Section 2.8 constitutes a lower bound for the feasible number

of arcs. (The number of arcs was increased by an even number to ensure that angle 6, given
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(a) Top view of the example trajectory. (b) Front view of the example trajectory.

Figure 2.6 — Example trajectory.

12 T=25 T=6
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10 — — —-Cable 2
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D

Time (s)

Figure 2.7 — Computed tensions along the trajectory.

by eq. (2.34) does not swap sign.) Figure 2.8 compares the tensions along this segment for
these two numbers of arcs respectively. As it can be observed, the minimum tension reached
along this segment is larger with 7 arcs than it is with 5 arcs, which enhances the dynamic
stability of the end-effector. By virtue of the ideas developed in Section 2.8.1, augmenting the
number of arcs of the hypocycloid by an even number is guaranteed to increase the minimum
tension in the cables for any segment that satisfies eq. (2.55). In practice, this technique can
therefore be used to avoid losing cable tension due to experimental and control error. A video
showing this experimentation (Chap2_3dofPointToPointTrajectory.mp/) is available under
[46] Pascal Dion-Gauvin at:
https://robot.gmc.ulaval.ca/ publications/ these-de-doctorat.
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Chap2_3dofPointToPointTrajectory.mp4
https://robot.gmc.ulaval.ca/publications/these-de-doctorat
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Figure 2.8 — Computed tensions along the third segment with 5 and 7 arcs respectively.

2.10 Conclusion

This paper proposes a point-to-point trajectory formulation for spatial three-dof cable-sus-
pended mechanisms. The trajectory can be used in sequence to connect consecutive target
points with zero instantaneous velocity that may lie beyond the static workspace of the mech-
anism. Moreover, the technique ensures continuity up to the acceleration level at the target
points to avoid discontinuous cable forces. Compared to existing references, the proposed
technique produces attainable regions of target points that are much larger. In particular,
any horizontal trajectory is guaranteed to be feasible. The proposed trajectory path consists
of a hypocycloidal curve that is located in the plane defined by the acceleration vector at the
initial point and the final point. This curve is coupled to an amplitude function in order to
connect target points that are located at different distances from point pg, defined on the
vertical central axis. The trajectory parameters are designed such that the likelihood of gen-
erating a feasible trajectory increases with the number of arcs of the hypocycloid. An iterative
procedure is thus provided to determine the minimum number of arcs allowing positive cable
tensions for given initial and final points. In addition, a test derived from a sufficient but not
necessary condition for trajectory feasibility is provided. This test demonstrates that target
points located in the same horizontal plane can always be connected in sequence. Further-
more, it leads to a value for zg for which the proposed trajectory can successfully connect any
sequence of target points. Because this value may not be usable in practice, other guidelines
are provided to ensure a proper choice of zy. Finally, the simulation results of an exam-
ple trajectory are presented. This example trajectory was performed experimentally, which
validates the approach. Broadly, the proposed approach appears to be well suited for any
point-to-point trajectory whereby the acceleration at each target point is proportional to its
distance from a unique point in space (e.g.: point pg in the paper). Current work includes the

dynamic point-to-point trajectory planning for six-dof cable-suspended parallel mechanisms.
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Chapitre 3

Beyond-the-static-workspace
point-to-point trajectory planning
of a 6-dof cable-suspended

mechanism using oscillating SLERP

3.1 Résumé

Cet article présente un cadre général pour la planification de mouvements point & point
s’étendant au-dela de ’espace de travail statique de mécanismes a cables suspendus a 6 ddl.
D’une part, la composante translationnelle du mouvement est basée sur une généralisation du
mouvement hypocycloidal introduit précédemment pour des mécanismes a cables suspendus
a effecteur ponctuel a 3 ddl. D’autre part, la composante rotationnelle du mouvement repose
sur l'interpolation linéaire sphérique, alors qu'une formulation novatrice est proposée afin de
relier deux orientations complétement arbitraires par des oscillations angulaires passant par
Porientation de référence de l'effecteur. Pour les deux composantes du mouvement, la conti-
nuité de I'accélération est assurée aux poses cibles. Egalement, le concept d’états cinématiques
idéaux est utilisé pour maximiser la probabilité de produire des trajectoires réalisables dyna-
miquement, soit des trajectoires induisant des forces exclusivement de tension dans les cables.
Il est montré que I'impact de la composante translationnelle du mouvement sur les contraintes
de tension est dominant, comparativement a celui de la composante rotationnelle. Une procé-
dure d’évaluation de la faisabilité de la trajectoire, qui inclut la vérification des interférences
mécaniques et la détection des singularités, est aussi présentée. Finalement, un repere cylin-
drique décrivant de maniére trés intuitive la configuration du mécanisme est proposé, et des

résultats de simulation sont présentés afin d’illustrer la pertinence de I'approche proposée.
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3.2 Abstract

This paper presents a general framework for the planning of point-to-point motions that ex-
tend beyond the static workspace of 6-dof cable-suspended parallel mechanisms. The trans-
lational component of the motion is based on a generalization of the hypocycloidal motion
previously introduced for 3-dof cable-suspended mechanisms. The rotational component of the
trajectories uses spherical linear interpolation to connect two arbitrary orientations through
oscillations going through the reference orientation. For both components of the motion, the
continuity of the acceleration is ensured at the endpoints. Also, the concept of ideal kinematic
state is used to maximize the chances of obtaining feasible trajectories, i.e., trajectories in
which tension is maintained in the cables. It is shown that the impact of the translational
trajectories on the tension constraints is largely dominant, compared to that of the rotational
trajectories. A procedure for verifying the feasibility of the trajectory, which includes the
detection of mechanical interferences and singularities, is provided. Finally, a natural cylin-
drical coordinate frame that yields a very intuitive description of the configuration of the
mechanism is introduced and simulation results are given to illustrate the effectiveness of the

proposed approach.

3.3 Introduction

Cable-suspended parallel robots (CSPRs) are a class of cable-driven parallel robots in which
cable tension is generated by the gravitational force acting on the moving platform. Examples
of application of CSPRs include the SkyCam (Cone, 1985), the NIST RoboCrane (Albus et al.,
1993) and the FAST radio telescope (Zi et al., 2008). Most CSPRs are designed to be operated
within their static workspace, namely the set of configurations in which the platform can be
brought to rest with all cables in tension. Algorithms have been proposed for the trajectory
planning and control of CSPRs in such a context (see for instance Barnett and Gosselin, 2015;
Korayem and Bamdad, 2009). However, this approach limits the workspace of the platform
to the footprint of the attachment points of the fixed winches.

In order to extend the capabilities and applications of CSPRs, researchers proposed the con-
cept of dynamic workspace (Barrette and Gosselin, 2005), which includes all poses of the
platform that can be reached with a controlled kinematic state (position, velocity, accel-
eration) while maintaining all cables in tension. Including kinematic states with non-zero
acceleration drastically extends the workspace beyond the static workspace. This concept
was first investigated for underactuated cable-suspended mechanisms. In Cunningham and
Asada (2009), a basic model was developed and the necessity of using numerical integration
was pointed out. In Lefrancgois and Gosselin (2010), a 3-dof underactuated robot was devel-
oped and demonstrated experimentally. In Zanotto et al. (2011), some inconsistencies in the

model proposed in Lefrancois and Gosselin (2010) were pointed out and a novel design was
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introduced. In Zoso and Gosselin (2012), point-to-point motion planning was addressed and
the concepts were generalized in Scalera et al. (2020) and Ida et al. (2019). Underactuated
CSPRs yield complex control schemes requiring on-line numerical integration (Zanotto et al.,
2011). In order to simplify the control, the concept was then applied to fully actuated CSPRs
in Gosselin et al. (2012) and Gosselin (2013) where successful trajectories reaching target
points beyond the static workspace were first demonstrated and mathematical techniques to

globally assess the feasibility of trajectories were presented.

One of the challenges in the exploitation of the dynamic workspace of CSPRs is the design
of trajectories that effectively reach prescribed poses of the platform while maintaining the
cables in tension. Several techniques were proposed to design such trajectories for either
periodic or point-to-point trajectories (see for instance Schmidt et al. (2014) and Zhang and
Shang (2016) where ad hoc techniques are developed, Zhang et al. (2017) where a geometric
approach is used, and Jiang et al. (2019) and Xiang et al. (2020b) where more standard

numerical techniques are used).

In Mottola et al. (2019), such techniques were specifically developed for a purely translational
CSPR based on parallelogram cable loops. In Mottola et al. (2018), elliptical trajectories
were considered as a means of generalizing the trajectory planning. Also, in Xiang et al.
(2021), trajectories going through singular orientations were treated and the application of

the trajectory planning to throwing operations was addressed in Lin et al. (2020).

Among other proposed approaches, the analytical integration of the equations of motion
was presented in Jiang and Gosselin (2016b,a), the use of natural frequencies was described
in Jiang et al. (2018b,a) and the use of model predictive control was proposed in Xiang et al.
(2020a).

In Dion-Gauvin and Gosselin (2017), the concepts of ideal kinematic states (pendulum con-
straint) and pseudo-tensions were introduced. These concepts provide great insight into the
trajectory planning and provide tools for the development of globally effective approaches (Dion-
Gauvin and Gosselin, 2017, 2018). Based on these results, the use of hypocycloidal trajectories
was proposed in Dion-Gauvin and Gosselin (2018) for the trajectory planning of 3-dof CSPRs.

In this paper, the hypocycloidal trajectory proposed in Dion-Gauvin and Gosselin (2018) is
generalized and a more flexible formulation is developed for the translational trajectories while
remaining consistent with the pendulum constraint. In order to make the method applicable
to 6-dof CSPRs, rotational trajectories are also handled. The proposed approach significantly
extends the capabilities of existing methods: it can connect arbitrarily specified poses between
which all six dofs are varied and controlled. Trajectory feasibility is ensured, including the
detection of mechanical interferences and singularities and simulation results are provided to
demonstrate the effectiveness of the proposed approach. Another important contribution of

this paper is the definition of a cylindrical coordinate system that provides a very natural
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means of computing and illustrating trajectories of CSPRs.

The paper is structured as follows. Section 3.4 recalls the kinematic and dynamic models,
the architecture of 6-dof CSPRs and the ideal kinematic states. In Section 3.5, properties of
quaternions and spherical linear interpolation are recalled. Sections 3.6 and 3.7 respectively
present the proposed translational and rotational trajectories. Section 3.8 proposes relations
on the trajectory endpoints to maximize the likelihood that the trajectory induces tensile-only
forces in the cables. In Section 3.9, static-to-dynamic transition trajectories and the selection
of the trajectory’s starting and ending poses at rest in the static workspace are discussed.
Section 3.10 deals with the workspace of cable-suspended mechanism while Section 3.11 dis-
cusses trajectory feasibility. Finally, Section 3.12 introduces the cylindrical coordinate system

and presents simulation results to demonstrate the effectiveness of the proposed approach.

3.4 Introductory Concepts

3.4.1 Geometric Modelling

A general 6-dof cable-suspended parallel mechanism is represented schematically in Fig. 3.1.
Six fixed actuated spools, whose cable outputs are represented by points By, k = 1,...,6
on the figure, are used to control the length of the cables, which are attached to a common
platform at the attachment points Ay, k = 1,...,6. By adjusting the extension of the cables,
the position and orientation of the platform can thus be controlled. The mechanism includes
six actuators and six dofs and is therefore fully actuated. However, because of the unilaterality
of the cable forces, the platform is not fully constrained and conditions must be imposed on
the trajectory of the end-effector to ensure that it does not require compression forces in the

cables.

Referring to Fig. 3.1, a fixed reference frame OXY Z is defined on the base of the mechanism
and a moving reference frame PX'Y’Z’ is attached to the centre of mass C; of the platform.
Without loss of generality, the origin of the fixed coordinate system is placed at the centroid of
the cable spools ! and the Z—axis is aligned with the direction of the gravity vector g. In this
reference frame, the position vector of point By is noted by, while in the moving reference
frame, the position vector of point Ay with respect to point P is noted a;. The position
of the moving reference frame in the fixed reference frame—and thereby the position of the
Cyr of the platform in the fixed reference frame—is given by vector p = [:c Y Z}T, while
the orientation of the moving reference frame with respect to the fixed reference frame—and
thereby the orientation of the platform in the fixed reference frame—, is given by the rotation

matrix Q.

1. In the schematic representation of Fig. 3.1, the fixed frame is not located at the centroid of the spools,
for better clarity of the figure, but all vectors are consistently defined.
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Figure 3.1 — Schematic representation of a general 6-dof cable-suspended parallel mechanism.

3.4.2 Kinematic and Dynamic Modelling
Vector p,;, connecting point By to point Ay along the k-th cable can be written as
pr =P+ Qag — by, k=1,2,...,6, (3.1)
and hence the inverse kinematic model of the mechanism is given by:
pr=(p+Qar—bp) (p+Qar—by), k=126, (3.2)

where pi stands for the magnitude of vector p,. Upon differentiating with respect to time

and simplifying, one obtains

prpr = PP + (Qag x py)T w, kE=1,2,..,6, (3.3)

where w stands for the angular velocity of the platform expressed in the fixed reference frame
of the mechanism. Writing the above expressions in matrix form yields the velocity equation

of the mechanism, namely

Kp = Jt, (3.4)
with
pl (Qai x py)”
K = diag ([pl po ... pﬁ}) and J= : , (3.5)
pE (Qag x pg)”

T
where K and J are the Jacobian matrices of the mechanism, p = [/’)1 P2 ... p6:| is the
T
vector of joint velocities and t = {pT wT} is the vector of Cartesian velocities of the

platform.

The dynamic model of the mechanism, obtained with the Newton-Euler equations of motion,

can be written in the fixed reference frame of the mechanism as:
6

kz::l (— chZ) +mg =mp (3.6)
3 (Qak X (— k‘;’;)) — hg (3.7)

k=1
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with
he = QIQ w + w x QIzQ w. (3.8)
In the above equations, f, represents the tension in the k-th cable, m is the mass of the

platform, and I is the inertia tensor of the platform with respect to the C'y; of the platform

and written in the reference frame attached to the platform. Referring to eq. (3.5) and defining

T=1f1 fo ... fG} as the vector of joint (cable) forces, egs. (3.6) and (3.7) can be simply
written as
~ITK T =m P8 (3.9)
m G
where matrix K is invertible as long as none of the cable lengths goes to zero. Using the
substitution .
1 ,
p=—KTr= [fl o f(’} : (3.10)
m mpy1  mp2 mpe
the dynamic model of the platform finally becomes
3= P (3.11)
miG

where vector p comprises the tensions in the cables per unit mass per unit cable length. For
the sake of brevity however, this quantity is henceforth referred to simply as cable tensions,
while tension forces measured in Newtons are referred to as actual cable tensions. Therefore,

the positive tension constraints are obtained by inverting eq. (3.11) and by ensuring that
pn =0, (3.12)

where > stands for the componentwise inequality. These constraints must be satisfied at all

points of the trajectory for it to be feasible.

3.4.3 Architecture

In some other works on dynamic trajectory planning of cable-suspended mechanisms (Jiang
et al., 2018b,a; Xiang et al., 2020b), the architecture (geometric arrangement) that is put
forward is one that maximizes the static workspace of cable-suspended hexapods (Bouchard
and Gosselin, 2010). However, standard architectures of 6-dof parallel mechanisms for which
the base and the platform are coplanar, such as the TSSM architecture, the MSSM archi-
tecture (Merlet, 1988), or any architecture whose base and platform consist of semi-regular
hexagons, should be preferred for dynamic trajectories. First of all, in order to maximize the
static workspace, the architecture developed in Bouchard and Gosselin (2010) has its cables
crisscrossing in between the platform and the base, thereby making the architecture more
prone to interference between the cables when the platform is outside the static workspace.
It is incidentally for this reason that Jiang et al. (2018b,a) and Xiang et al. (2020b) avoid

planning trajectories that perform torsional motions. By contrast, standard architectures
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of hexapods have their legs placed on the periphery of the space enclosed by the base and
the platform, which circumscribes cable-intersecting poses to extreme configurations of the
mechanism. Moreover, this arrangement of the legs effectively makes standard architectures
articulated polyhedra, which offers the added advantage of yielding a reduced singularity locus
since only non-convex configurations of polyhedra can be singular (Cauchy, 1813). Finally,
the platform considered in Jiang et al. (2018b,a) and Xiang et al. (2020b) has its centre of
mass, point C'ys, positioned at a distance d below the centroid of the cable attachment points,
noted C'4. Since point Cy is the estimated point of application of the resultant force applied
by the cables, this geometry creates a lever arm between point C'4 and point C)ys that typi-
cally results in cable forces of similar magnitude exerting a moment of force with respect to
the centre of mass of the platform. This is detrimental for dynamic trajectory planning since,
conversely, applying a zero net moment of force to the platform so as to induce a purely trans-
lational motion can hardly be achieved, especially while ensuring tensile-only forces in the
cables. Therefore, platforms with distinct centre of mass and centroid of the cable attachment
points should be avoided when performing dynamic trajectories, and standard architectures
of 6-dof parallel mechanisms with coinciding C'4 and Cjs should instead be preferred. In this
paper, a cable-suspended mechanism satisfying these conditions with a horizontal base plane
is assumed. Moreover, the reference orientation of the mechanism is defined as the orientation
whereby the plane formed by the cable attachment points on the platform, is orthogonal to
the direction of the gravity vector, and whereby the sum of the norms of the projection onto
this horizontal plane of the unit vectors defined along each cable, is minimal. These cable

attachment points thus all lie in the XY’ plane of the moving reference frame.

3.4.4 Ideal Kinematic States

For cable-suspended mechanisms, the kinematic states (pose, translational and angular ve-
locity, acceleration) that are the least likely to yield a negative tension in one of the cables
if an external disturbance were to occur can be considered as ideal and deserve special con-
sideration. As pointed out in Dion-Gauvin and Gosselin (2017, 2018), end-effectors of cable
mechanisms are as steady as the smallest tension relative to the others. Correspondingly, the
locus of ideal kinematic states consists of the poses, velocities and accelerations that induce
equal tensions in all cables. Therefore, substituting u = %, k=1,...,6,into eq. (3.11) leads

to the general expression

p+Qca—cp
Qcy X p—% (Qay, x bg)

P g] , (3.13)
1ha

m

where cp is the position vector of the centroid of the cable spools on the base expressed
in the fixed reference frame and cy4 is the position vector of the C4 of the platform with
respect to its Cj; expressed in the moving reference frame. Referring to the model presented

in Section 3.4.1 and the assumptions made in Section 3.4.3, the fixed reference frame has its
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origin placed at the centroid of the cable spools cg = 0 and the Cy of the platform coincides

with its Cj; ca = 0, thus simplifying the above expression into

—-p b-g
7 = ll N I (3.14)
with
m =} Y (Qay x by). (3.15)

Egs. (3.13) and (3.14) represent respectively a general and a simplified version of the ideal
kinematic states relation for parallel cable-suspended mechanisms. They yield, for a given
pose of the platform, the angular velocity and angular and translational accelerations of the
end-effector that correspond to the state in which the cables are the least likely to have
negative tension. These expressions reveal that, to allow end-effectors to be as dynamically
stable as possible, the gravito-inertial vector appearing in the right-hand side of egs. (3.13)
and (3.14) must be parallel to the vector on the left-hand side of egs. (3.13) and (3.14). This
relation is restrictive, since it makes the rotational motion of the end-effector depend on its
inertia matrix and on the architectural parameters a; and by of the mechanism. For this
reason, if at all possible, it would be very challenging to develop an analytical rotational
trajectory formulation that complies with eq. (3.14). Nevertheless, this principle remains of
great relevance by its very nature and in that respect, it is exploited in Section 3.8 to ensure
that trajectory endpoints are located as far as possible from the zero-tension locus. Hence, the

notion of ideal kinematic states should be kept in mind when working with cable mechanisms.

3.5 Properties of Quaternions

As one of the mathematical formalisms used to represent rotations in three dimensions,
quaternions are particularly effective for handling general three-dimensional rotational mo-
tion. Thanks to their vector notation, quaternions allow for simple and powerful interpolation
methods that are independent from the choice of coordinate system. Moreover, unlike Euler
angles, quaternions are not subject to gimbal lock, which is a loss of dof occurring when two
of the three Euler angles become dependent. Also, the correspondence between an orienta-
tion and the quaternion to be used in a quaternion-based trajectory can easily be established,
whereas there is no clear basis for determining which of the two Euler angle triples correspond-
ing to a given endpoint orientation should be used in a rotational trajectory formulation for the
resulting motion to be feasible. In the following, the relations and properties of quaternions

that are used in Section 3.7 to devise the rotational trajectory are recalled.
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3.5.1 General Properties
Quaternions can be viewed as a four-dimensional extension of complex numbers comprising
a scalar real part and a three-dimensional imaginary part that is written as

a=q+qi+qj+tgk (3.16)

Alternatively, to allow matrix algebra operations, quaternions are also often given in vector

form as

q”} , (3.17)
qQv

T
where gg and q, = {ql q2 q3} are the scalar and vector parts of the quaternion, respec-
tively. While quaternion addition and substraction are performed componentwise, quaternion

multiplication, noted with o, is defined as
I Tyt
qod — [ ot — au" /] (3.18)
qoqd, + qo Qv +Qqy X q

which, due to its vector product, is non-commutative. The multiplicative identity of this

number system, denoted in this paper by qg and having the property qoocoq =qoqy = q, is

1
0
9= |, (3.19)
0
or, expressed in a more intuitive way,
Q=1+0:+05+0k=1. (3.20)
In terms of qg, the scalar part of a general quaternion q is thus given by
% = q 9, (3.21)
while its vector part can be expressed as the matrix product
qv = Tq, (3.22)

where T is the 3 x 4 matrix extracting the last three components of a four-dimensional vector,

namely:
T = [03 13X3} . (3.23)

T
Analogously to complex numbers, the conjugate of a quaternion q = [qo qUT} , noted q*,
q- = [ do
—Qu
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is defined as

, (3.24)




which can be expressed in terms of qg as

q" = —q + 29090 = —q + 2(qg q)go = (2q0qy — 1)q. (3.25)
Finally, defining the norm of a quaternion as

lall = Va*oca=+vaoaq* = /q*+alq, (3.26)

1

1 1

the inverse of a quaternion q, denoted q~" and having the property qoq™ =q~ " oq = qo,
is .
qt=-1_ (3.27)
lall

and hence the inverse of a unit quaternion is also its conjugate. By virtue of eq. (3.25), the

inverse of a unit quaternion can therefore also be written in terms of qg as

a '=q" = (2quqj — 1)q for [|q| = 1. (3.28)

This expression is used in the formulation of the rotational trajectory.

3.5.2 Quaternion as a Representation of the Orientation

Let a rotation be described by a unit vector e representing the axis of rotation and a scalar -

representing the angle of rotation, whose matrix representation is the well-known expression
Q = eel + (1 —ee’) cos(y) + Esin(y), (3.29)

with E denoting the cross-product matrix of vector e. The quaternion operator performing

this rotation on a position vector p in R? is

01 oq, (3.30)

where p’ is the resulting rotated vector and where q is the unit quaternion

q= [005(7/2) ] '

esin(7/2) (3:31)

The expression given in eq. (3.31) is the quaternion representation of a rotation. In this pa-
per, it is used to describe the orientation of the platform by encapsulating the rotation of the
moving reference frame with respect to the fixed reference frame of the mechanism. While
any multiple of eq. (3.31) represents the same rotation and would yield the correct rotated
vector in eq. (3.30), in practice only unit quaternions are employed. Hence in R?, the set of
quaternions used to represent 3D orientations forms the surface of the four-dimensional unit
sphere. Also, as it can be seen from the definition (3.31), the identity quaternion qg unsur-

prisingly corresponds to the null rotation (reference orientation), while the inverse quaternion
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q ! describes the opposite orientation from that encoded by the quaternion q, as it represents
the rotation relative to the same axis of rotation e but by the opposite angle, —v. Finally, it
can be observed from the definition (3.31) and the rotation operator (3.30) that the quater-
nion q and its negative —q both describe the same orientation, and hence the quaternion to

be used in a quaternion-based trajectory must imperatively be specified.

Let the quaternion q given by eq. (3.31) be varying over time, so as to denote the orientational
motion of a rotating object, represented by its body frame, relative to a fixed reference frame.
The angular velocity of the moving reference frame, obtained by differentiating eq. (3.30) with

respect to time, is given in the fixed reference frame by (Graf, 2008)
w=2T(qoq ). (3.32)

Likewise, differentiating the above relation with respect to time yields the expression for the
angular acceleration of the moving reference frame expressed in the fixed reference frame,
namely

w=2T(qoq ), (3.33)

since it can be shown that 2T(¢qoq~!) = 0.

3.5.3 Spherical Linear Interpolation

Spherical linear interpolation (SLERP) is an interpolation technique devised to connect two
orientations expressed as quaternions. It links any two orientations through the straightest
and shortest possible path (Dam et al., 1998). To the best of our knowledge, it is the only
interpolation method having this property, which is why quaternions are adopted here to
represent the orientation of the platform. Let quaternions qo and qos denote the two end
orientations to be connected, and let a(7) be a time function monotically increasing between
0 and 1 on the interval 7 € [0,1]. The SLERP joining qo to qor can be written as (Shoemake,
1985)

_ sin (Y(1 - a(r))) sin (Pa(r))
q(T) =qo Sin (D) + qor Sn(D) 0<a(r)<1 (3.34)
with
¥ = arccos(qo’ qor). (3.35)

The above equation is the expression for SLERP that is put forward in this paper. It differs
from the formulation usually seen in the literature in that the standard time parameter 7 is
replaced by the generic time function «(7) so as to allow the interpolated curve to satisfy
the desired position, velocity and acceleration constraints (Jiang et al., 2018a). On the unit
quaternion sphere, SLERP forms a great circle arc between the two end quaternions, and
thereby follows the straightest and shortest path between two points on a sphere (Dam et al.,
1998). For this shortest path between unit quaternions to also correspond to the shortest path

between the two end orientations, it suffices that, of the two opposite quaternions q and —q
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that represent either end orientation, the pair chosen to appear in eq. (3.34) is one forming an
acute angle, i.e., one satisfying qo’ qor > 0. The motion thus obtained consists of a fixed-axis
rotation of minimal angular amplitude between the two end orientations which is performed,

if the conventional time function «(7) = 7 is used, with a constant angular velocity.

The formulation presented in eq. (3.34) can be used to generate a path that extends beyond
the quaternions qo and qor by not restricting the output range of the time function a(7) to
the interval [0, 1]. For instance, the SLERP given by

sin (U(1 — B(1))) sin (¥5(7))
sin(W) +do sin(W)

q(7) = qo —1<p(r) <1 (3.36)

with
¥ = arccos(qo’ qo), (3.37)

T
where qg = [1 OT} is the reference orientation and where (1) is a continuous time function
whose output covers the interval [~1,1], yields an interpolation curve connecting qo to qo !

through qp. Indeed, substituting 5(7) = —1 into eq. (3.36) leads to

a = (2qoa} — 1)qo, (3.38)

which corresponds to the opposite orientation of qo by virtue of eq. (3.28). This extended
version of SLERP is used in Section 3.7 in the rotational trajectory formulation of the plat-

form.

3.6 Translational Trajectory

The translational motion connects the prescribed initial point of the trajectory to the pre-
scribed final point with zero instantaneous velocity at both endpoints. It also ensures the
continuity of the acceleration at these endpoints to avoid discontinuous cable forces with the
preceding and following trajectory segments. As demonstrated in Dion-Gauvin and Gosselin
(2018) for point-mass end-effectors, a translational trajectory based on a hypocycloid curve is
perfectly suited for connecting different target positions in 3D space since matching the initial
and final cusps of the hypocycloid to the trajectory endpoints readily satisfies the zero ve-
locity constraints. The trajectory developed in the above reference, however, fails to produce
cusps of zero velocity between the arcs of the hypocycloid when connecting endpoints located
at different distances from the centre of the curve. In addition, it imparts to each arc of the
curve a travelling time that depends on its length, which is not consistent with the motion of
a simple pendulum whose natural frequency, as it may be recalled, does not depend on the
amplitude of the oscillation. In this paper, an upgraded version of the trajectory based on
the (standard) hypocycloid presented in Dion-Gauvin and Gosselin (2018) is proposed. This
newly developed hypocycloid of variable amplitude allows intermediate zero-velocity cusps to

be generated when endpoints located at different distances from the centre of the curve are
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to be connected. These cusps occurring at regular time intervals, the hypocyloid of variable
amplitude also allows the travelling time along each arc to remain constant along the curve
and independent from arc length. It is consequently observed empirically that the low cable
tensions generated by the hypocycloid derived in this paper are of higher magnitude than
those produced by the trajectory proposed in Dion-Gauvin and Gosselin (2018), which is the
intended objective. In the next section, the plane in which the hypocycloid-based trajectory

is embedded is defined. Then, the translational trajectory is established.

3.6.1 Plane of the Trajectory

Let p1 and p2 be the position vector of the initial point P; and final point P of the trajectory,
respectively. Also, let p; be the initial acceleration vector, which must correspond to the final
acceleration of the preceding trajectory segment in order to ensure continuity in the cable
forces. As it can be observed from Fig. 3.2, the trajectory plane can be defined as the plane
that contains both the acceleration vector at the initial point (defining a line), and the final
point (defining a point). The acceleration vector at the final point Po, albeit undetermined
yet, also lies in the trajectory plane. As a result, the two acceleration vectors necessarily meet
at some point Py of the plane. Considering that these vectors must both be pointing toward
the footprint of the base for tensile-only forces to be present in the cables, it is imposed—as
is done in Dion-Gauvin and Gosselin (2018)—that they intersect on the central vertical axis
of the static workspace of the mechanism, which passes through theTcentroid of the cable
spools. Denoting the position vector of point Py as pg = [O 0 zo} , the initial and final

acceleration vectors can be written as

b =-Aj(pj—po), =12 (3.39)

where the known parameter A1 and the undetermined parameter Ay are positive definite.
Hence the trajectory plane can alternatively be described as the plane containing points P,
P, and Py. The value of zg is determined in the implementation phase of trajectory planning
as a function of the target points to ensure that the resulting translational motion remains

entirely below the plane of the cable spools.

A planar fixed reference frame is defined on the trajectory plane, whose origin is chosen to
be at point Py and whose X}, axis points in the direction of the initial point. The Y}, axis of
this reference frame is located in the half of the trajectory plane that contains the final point
(and is orthogonal to the X}, axis). The trajectory plane is thus spanned by vectors (p1 — po)

and (p2 — po), which can be expressed by matrix A as

A=[(p1-po) (P2—po)- (3.40)

Hence the matrix that maps the XY plane of the mechanism reference frame onto the tra-

jectory reference frame, denoted Qp, is composed of the first two columns of the orthogonal
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Figure 3.2 — Plane of the trajectory.

matrix obtained in the QR decomposition of A. By virtue of the Gram-Schmidt process, this

matrix is given by:

Qn = {th th} ; (3.41)
with T
P1 — Po (1 — dn19j,)(P2 — Po)
Q=7 Q= . (3.42)
p1 — pol| (1 = anaf;) (P2 — po)||

Hence, let ¢ € R? be a vector written in the trajectory reference frame and let p € R3 be the

same vector written in the mechanism reference frame, one has:

p = Q¢ + po. (3.43)

This relation is used in the following to write the parametric trajectory in the mechanism

reference frame.

3.6.2 Hypocycloid Trajectory

In the trajectory plane, the general parametric equations of the hypocycloid of variable am-
plitude, whose complete derivation is provided in the Appendix (Section 3.14), can be written
for a curve centred at point Py as

t) 1 |7r(7)0h ((np, — 1) cos(,7) + cos((np — 1)0,7))
C =
)

110 | ()0 (ng, — 1) sin(@y7) — sin((ny, — 1)047)

(3.44)
— /(1) (sin(6y7) + sin((ny, — 1)0,7))
+7/(7) (cos(OnT) — cos((n — 1)0uT))|
with t
=t (3.45)

where t is the time, T is the duration of the trajectory, 7 € [0, 1] is the normalized parametric

coordinate, and r(7) is the normalized expression of the spiral-like envelope of the curve. In
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addition, angle 0}, that appears in eq. (3.44) is the plotting range of the curve while parameter
np > 2 corresponds to the number of arcs (cusps) that the curve traces (reaches) over one lap
before closing in on itself. Figure 3.3 illustrates the hypocycloid curve of variable amplitude
and its spiral-like envelope for 6, = —%”, np, = 3, r(0) = 1, and r(1) = 1.5. As it can be
observed from the figure, it is the spiral-like nature of the envelope of the hypocycloid that
enables points located at different distances from the origin to be connected. This spiral-like

envelope also allows the velocity and acceleration boundary constraints to be satisfied.

1.5

0.5+

Y,
[en)

Figure 3.3 — Hypocycloid curve for 8, = —%’r and ny, = 3. The curve has 2 arcs over 2/3 laps,

yielding ny = 3.

Defining r; and r9 as

r1 = ||p1 — poll ro = ||p2 — poll » (3.46)

the boundary conditions of the translational motion can be written in the trajectory reference

frame as
c(0) = H , &(0) = 0, &(0) = —Mic(0), (3.47)
and

&(T) =0, &(T) = —Xae(T), (3.48)

o(T) = |"I“2 cos(@h)]

o sin(6y,)

where the acceleration constraints of eqs. (3.47)-(3.48) are obtained using eq. (3.39) along
with eq. (3.43). Substituting egs. (3.47)—(3.48) into eq. (3.44) and its first two time derivatives

leads to conditions on the spiral-like envelope of the hypocycloid, namely

r(0) = rq, r(1) = ro, r(0) =7'(1) =7"(0) =+"(1) = 0, (3.49)
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as well as an expression for A\; and Ag, given by

_ 9]21(71}1 — 1)

A=A =

=\ (3.50)
Considering eq. (3.49), the amplitude function r(7) can be rewritten as
r(1) = (ra — 1) A(T) + 71, (3.51)
where A(7) is any normalized amplitude function that satisfies the boundary conditions
A(0) =0, A(l) =1, A'(0) = A'(1) = A"(0) = A" (1) = 0, (3.52)

such as
A(1) = 67° — 157* 4+ 1072, (3.53)

which is the polynomial function of minimal degree that satisfies eq. (3.52). This amplitude

function is used in the example trajectory of Section 3.12.

The spiral-like envelope of the hypocycloid being set, the initial and final points of the trajec-
tory can be connected as illustrated in Fig. 3.4 through an arbitrary number of arcs p € N
by matching two of the hypocycloid cusps to the trajectory endpoints. Angle 6, and pa-
rameter ny, being governed by the number of arcs of the hypocycloid, they can be written
as (Dion-Gauvin and Gosselin, 2018)

1
O = by + (—1)P 121 VQW p=1,2,3,.., (3.54)
and )
ny, = TP p=1,2,3,.., (3.55)
|0n|

where angle ¢, in eq. (3.54) is the smallest angle formed by vectors (p; — po) and (p2 — po),

namely

— recos (p1 — po)’ (P2 — Po)
¥h = <u<p1 ~ o) (P2~ P0)||> | (3.56)

As it can be observed from Fig. 3.4, the advantage of devising a translational trajectory based
on the number of arcs p is that as this parameter is increased, each arc of the hypocycloid curve
tends to become rectilinear and to run parallel to the acceleration vector at its cusp, which
in turn increases the likelihood that the trajectory induces positive tensions in the cables. In
that respect, it is demonstrated in Dion-Gauvin and Gosselin (2018) that for a point-mass
end-effector following a hypocycloidal path, a number of arcs p yielding positive tensions in
the cables can always be found provided that the outer circle of the standard hypocycloid
is completely located below the spools. This condition can be cast for the hypocycloid of

variable amplitude of this paper as

V312 + qn32?

1 — max(ry,r2) ”

> 0, (3.57)
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Figure 3.4 — Hypocycloid curve connecting two points having 1, = 2& with one, two, and

3
three arcs respectively.

where zg is the Z-coordinate of point Py, and where gp3; and gp3s are the corresponding
components of matrix Qp. In particular, the above condition is always met for horizontal
trajectories in which the initial and final points as well as the initial acceleration vector
are located in the same horizontal plane. Hence it can be asserted that the translational
component of the proposed trajectory never produces horizontal motions that would yield

negative tensions in the cables.

It should be pointed out that this is an important advantage of the trajectory defined in
eq. (3.44). In particular, previously proposed formulations cannot guarantee such feasibility
and generally fail for demanding horizontal trajectories. For example, the approach devised
in Jiang et al. (2018a) can only connect endpoints that are located at about the same distance
from the central vertical axis—that is, having 1 ~ ro—and that form an angle ¢, of about =
radians. Hence, the technique proposed here presents substantial improvements over existing

formulations.

3.7 Rotational Trajectory

The rotational trajectory yields the orientation of the platform at each instant of the motion.
It connects the prescribed orientation of the platform at the initial point of the trajectory to
the prescribed orientation at the final point with zero instantaneous angular velocity at both
endpoints. It must also ensure the continuity of the angular acceleration at both endpoints
to avoid undesirable discontinuous cable forces between trajectory segments. In addition, the
rotational trajectory being performed while the platform undergoes the motion devised in

the preceding section, its formulation must be based on the hypocycloidal curve since the

80



orientations it prescribes are enforced at the positions visited by the translational motion. In
this context, one could conjecture that a likely feasible rotational motion for the platform is
one in which it oscillates between opposite orientations along the arcs of the hypocycloidal
trajectory. On any given arc, this motion reduces to connecting the orientation given at the
first cusp to its opposite at the following cusp. The configuration at the beginning of the arc
is assumed to be attainable since it has been reached by the preceding trajectory segment,
while the configuration at the end of the arc is considered to be attainable since it is the exact
symmetric counterpart of the configuration at the beginning of the arc. Moreover, these two
orientations can be connected by a fixed-axis rotation (see Section 3.5.3) passing through the
reference orientation. Hence, by replicating this rotation along each arc, a motion in which the
platform alternates between opposite orientations at each cusp in sync with the oscillations
of the hypocycloidal trajectory, is obtained. This proposition going hand-in-hand with the
hypocycloidal nature of the translational trajectory, all that remains is to ensure that the
kinematic constraints are satisfied at the endpoints. This can be accomplished by allowing
the orientation at the cusps to slowly vary so as to match the initial and final boundary

constraints at the first and last cusp of the hypocycloid, respectively.

It should be noted at this point that, since the orientation at the cusps is not kept constant
throughout the motion to satisfy the boundary constraints, the orientation reached at the
end of each arc does not quite correspond to the opposite of the orientation existing at the
beginning of these arcs. This gap between the orientation at one cusp and its opposite at
the following cusp however gets reduced as the number of arcs increases, since the increase in
the number of arcs allows the difference between the prescribed initial and final orientations
of the trajectory to be divided into a larger number of intermediate cusp orientations. As a
result, increasing the number of arcs of the trajectory can be used as a strategy to increase
the likelihood that the resulting motion be feasible. The design of the rotational motion
is therefore consistent with that of its translational counterpart since, as it can be recalled,
increasing the number of arcs also increases the likelihood that the trajectory be feasible (since
it causes each arc of the hypocycloid to tend to become rectilinear and to run parallel to the

acceleration vector at its cusp).

The proposed rotational motion is represented schematically in Fig. 3.5 for odd and even
numbers of arcs. Quaternions q; and qg as defined in eq. (3.31) denote respectively the
prescribed initial and final orientations of the platform in the fixed reference frame with, for
the rotational oscillations to be of minimal angular amplitude, 71,72 € [—m, 7w|. As depicted
in the figure, the rotational motion of the platform q(7) has its oscillations bounded by the
curves passing by the orientation at the cusps, which thus constitute the envelopes of the
oscillating trajectory. Accordingly, they are denoted Qeny(7) and q—_eny(7), where Qeny(7)
is defined as the envelope passing through qi, and with q_cp,(7) = qem}(T)*l. It can also

be observed from Fig. 3.5 that envelope Qeny(7) ends at qo for even numbers of arcs and at
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Figure 3.5 — Schematic representation of the proposed rotational trajectory.

q_2 = q2~ ! for odd numbers of arcs. Hence, the final point of envelope ey, (7), denoted q42,

can be expressed in compact form as

COS (F);)
2) = qoad a2 + (=1)P(1 — qoq} )2, (3.58)

(—1)Peysin (é

q+2 =

which is valid whether the number of arcs p is odd or even, and where eq. (3.28) has been
employed to write the rightmost side of the above relation. As a result, envelope Qepy(7) can
be modeled using the standard definition of SLERP (3.34) as

sin (Geny (1 — Ao (7)) sin(OcnvAo(T))
sin(Oenv) 2 sin(Oeny) 7

Qenv (7_) =q1 (359)

with
Oeny = arccos(qquig), (3.60)

and where the amplitude function Ap(7) is a smooth monotonic function that admits
Ao(0) =0 and Ao(l) =1 (3.61)

for envelope (3.59) to satisfy qeny(0) = q1 and qeny(1) = g2, as required. In addition, it can

be shown that function Ap(7) must also have
Ay(0) = Ap(1) = AB(0) = Ab(1) =0, (3.6

where f/(-) stands for the derivative of f with respect to its argument. The above equation
ensures that the trajectory admits a zero angular velocity at its endpoints and the continuity of
the angular acceleration at the junction with the preceding and following trajectory segments.
Indeed, the endpoint angular acceleration can be different from zero despite having A} (0) =
A} (1) = 0 because of the form of eq. (3.59). In light of eq. (3.52) and egs. (3.61)—(3.62), the
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same amplitude function can be used for both the translational and rotational motion, i.e.,
one can use

Ao(1) = A(7). (3.63)
This approach is used in the simulations of Section 3.12.

The expressions for the envelopes qeny(7) and q—_eny(7) being determined, the oscillating
motion of the platform between them can be cast, by virtue of eq. (3.36), as an extended

SLERP between qo and geny(7) in which the time function 5(7) oscillates between 1 and —1,

namely
~sin(0(1)(1 - B(1))) . sin (©(7)5(7)) B -
q(T) =qo Sin(@(T)) + qem)( ) Sin(@i(T)) 1< ,8( ) < 1, (364)
with
O(r) = arccos(ngem(T)), (3.65)

where q(7) = qp when the oscillating function B(7) = 0, q(7) = Qenv(7) When S(7) = 1
and (7) = q—eny(7) when §(7) = —1. Naturally, function §(7) must be oscillating with the
same frequency and in phase with the translational motion and, for eq. (3.64) to satisfy the
boundary constraints, must in addition have §(0) = 1, 8(1) = (—1)?, and 5'(0) = /(1) = 0.

Numerous continuous functions meet these constraints, for instance

B1(1) = cos(pr) (3.66)

_ 9cos(pnT) — cos(3pnT)
B 8

Bo(7) (3.67)

(9 + ﬁ;@) cos(pnT) — (1 + ﬁ%) cos(3pmT)
By(r) = ) :
The expressions defined above are put forward as candidates for the oscillating time function

(3.68)

of the rotational motion since they each exhibit a special characteristic in addition to satisfying
the aforementioned constraints. First of all, eq. (3.66) is a function that uses only one term
to match all kinematic constraints, which in itself is worth pointing out. Secondly, function
Bo(T) is a simple function that ensures 5”(0) = B”(1) = 0 in addition to satisfying the
mandatory constraints, thus making the angular acceleration vanish at the endpoints. Finally,
eq. (3.68) keeps the value of its second derivative free at the endpoints so that it can be fixed
independently for each point-to-point trajectory by adjusting parameter Bep. In the next
section, among other things, a procedure for selecting the value of Bep that maximizes the

likelihood of generating a feasible trajectory is proposed.

3.8 Trajectory Endpoints

For cable-suspended mechanisms, special attention must be devoted to endpoints of point-to-

point trajectories since the prescribed pose and zero velocity constraint ensure that only the

83



translational and angular accelerations can be adjusted to guarantee positive tensions in the

cables. Specifically, the zero angular velocity constraint reshapes eq. (3.11) as

T

3T = (3.69)

Dep — & ]
LQIQ W,y
where the subscript ep stands for the endpoint pose of the platform. The above expression
encapsulates the six equations of the dynamic model of the mechanism at a trajectory end-
point. These expressions comprise two free parameters, the acceleration vector p., and the
angular acceleration vector wep, which account for six independent variables. Therefore, by
fixing these six parameters appropriately, the six equations of eq. (3.69) can be satisfied for
any given endpoint pose of the platform for any vector of positive tension g > 0. Hence,
the unilaterality of the forces in the cables does not prevent any endpoint pose from being
accessed with a zero endpoint velocity. In particular, vectors pe, and we, can be set such
that the ideal kinematic states—relation (3.14)—is fulfilled at the endpoint. In doing so,
the endpoint kinematic state is the farthest away from zero-tension loci, thereby maximizing
the likelihood that the next trajectory segment be achieved with tensile-only forces in the
cables (Dion-Gauvin and Gosselin, 2017, 2018). Therefore, the following important result is
obtained: in cable-suspended parallel mechanisms, the unilaterality constraint of the forces in
the cables does mot limit the space of end-effector poses that can be reached with zero velocity
and, furthermore, the translational and angular accelerations at a given pose can be adjusted
to maximize the likelihood that the incoming and outgoing trajectory segments be achieved

with tenstile-only forces in the cables.

This statement, however, does not hold for endpoints reached by the trajectory planning
procedure developed in this paper. Specifically, the trajectory formulation presented in Sec-
tions 3.6 and 3.7 does not keep the endpoint translational and angular accelerations free but

rather sets them to, respectively,

. 02(n, — 1
Pep = _h(;@)(pep - pO) (3'70)
and .
2 € €
Gep = BJ{”J Legy. (3.71)

In egs. (3.70)—(3.71), parameters ny, 0p, Po, Pep, Yep, and € all either depend on the trajec-
tory or the endpoint pose, and hence only the duration of the trajectory 7" and parameter Bep
can be adjusted to generate positive tensions in the cables. Since, for a trajectory connecting
two endpoint poses, eq. (3.69) comprises more constraint equations at the endpoints (12) than
there are parameters to be adjusted (3) 2, it cannot be guaranteed that there exists values of
these parameters that induce positive tensions in the six cables at the two endpoint poses of

a trajectory. In particular, the direction of the angular acceleration being fully determined

2. a unique duration T (1) and parameters 51 and (2 at the initial and final points (2).
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by the trajectory formulation, the ideal kinematic states relation (3.14) can only be fulfilled
for certain endpoint poses of the platform. Still, this idea remains key to generating tensile-
only trajectory segments and in the next sections, it is nevertheless put to use to determine,
when they exist, the values of T" and Bep that bring endpoint kinematic states as far from

zero-tension loci as the trajectory formulation permits it.

3.8.1 Duration of the Trajectory

While the ideal kinematic states relation (3.14) cannot be fully imposed at the endpoints of a
trajectory performed under the proposed formulation, the duration of the trajectory 17" can be
set such that the translational components of eq. (3.14) be equal to one another. Moreover,
these components being much greater than their rotational counterparts, prescribing that
they be equal essentially fulfills eq. (3.14). Reproducing for quick reference the ideal kinematic
states relation (3.14) as

—-p
m

" , (3.72)

_|P—8
mhe

it can be observed, for typical point-to-point motions of cable-suspended mechanisms 3, that

ol Ip-sll _ g, (3.73)
[mfl = Lhe]

Hence the rotational components of the ideal kinematic states relation are negligible in com-

parison to their translational counterparts. Neglecting their contribution in eq. (3.72) leads

0

which can be described as the translational approximation of the ideal kinematic states rela-

to the relation

o | (3.74)

e

tion. The accuracy of this approximation with respect to the exact relation can be estimated
by evaluating the relative error between the vectors on the left-hand side (or the right-hand

side) of the two expressions, namely

0 m m
= _ ~ [mll (3.75)
- o1~ el
m m
and thus amounts to, by virtue of eq. (3.73),
e < 0.02. (3.76)

3. For example, for the mechanism used in the example trajectory (see Section 3.12.2), a position of the end-

effector p = [1.5b 1.5 1.5] T, and an orientation in the T&T angle convention (¢ = 45°,0 = 30°,0 = 15°),
one gets IIPll/|m| > 100 .
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Hence the relative error made by using the translational approximation of the ideal kinematic
states relation in place of the exact expression corresponds to the ratio of the magnitudes
of the rotational components to the translational components obtained in eq. (3.73) and is
below 2%. Correspondingly, applying eq. (3.74) at a trajectory endpoint instead of the exact
relation equivalently maximizes the likelihood that the preceding and following trajectory
segments be achieved with tensile-only forces in the cables. Solving eq. (3.74) at a trajectory

endpoint for the duration of the trajectory T yields, using eq. (3.70),

T2 = 62(ny, — 1)%, (3.77)
along with
_9
n= - (3.78)

The above two equations represent respectively the duration of trajectory and the combined
tension in the six cables that allow the ideal kinematic states relation to be nearly fulfilled at
the trajectory endpoints. For this reason, eq. (3.77) is used to set the duration of the trajectory
with the proposed formulation. Moreover, considering that, by virtue of egs. (3.54)—(3.55),
02 (nj, — 1) ~ w?p? for all but small values of p, it is apparent that eq. (3.77) is akin to the
equation of the period of a simple pendulum, in that the duration increases linearly with the

number of arcs (half-oscillations).

3.8.2 Parameter Bep

Parameter Bep represents the value of the second derivative of the interpolation function 3(7)
at the endpoint. Referring to eq. (3.71), this parameter governs the magnitude of angular
acceleration at the endpoint, and thereby opting for an interpolation function 3(7) that keeps
this parameter free allows to control the magnitude of the rotational component of the force-
balance equation (3.69) at the endpoint. This expression can be rewritten, using egs. (3.71),
(3.74), (3.77) and (3.78), as

_ipe
I = |0 (3.79)
Bepd)ep
where vector ¢, and parameter Bep are respectively given by
29
¢ep = E%’YepQIGeep (3'80)
and i
B Bep (3.81)

P P — 1)

and where parameter Bep is a function of parameter Bep and the trajectory parameters 6,
and ny that remain to be determined. Hence, by determining parameter Bep first, parameter

Bep can be retrieved from eq. (3.81) once a feasible number of arcs is found. In this regard,

86



recalling that ideal kinematic states are characterized by having equal tension in all six cables,
a sensible approach for fixing Eep is to minimize the sum of the squared differences between
each cable tension pu; and the tension 7/6 of the preceding section that nearly fulfils the
ideal kinematic states relation. Specifically, letting vector § = |§; 2 ... 66]T denote the

deviation of each cable tension with respect to the tension of reference, namely

n

T
where 1,, = {1 1 ... 1| € R", the previously described objective function can be ex-
pressed as .
f(Bep) = §5T57 (383)
and correspondingly the optimization problem can be formulated as
= 1
minimize f(Bep) = §5T5 (3.84a)
subject to un= gl(; + 9, (3.84Db)
_lpe
I =27 (3.84c)
/Bep¢ep
w = 0. (3.84d)

The above problem consists of a univariate quadratic program that can be solved analytically.
First of all, substituting eq. (3.84b) into the force balance equation at the endpoint (3.84c)
and making use of the ideal kinematic states relation yield an equation depending only on
vector , namely
—JTs = H , (3.85)
§
with R
€ = Bupep — . (3.86)

Moreover, eq. (3.85) having its first three components equal to zero, a symbolic expression

for vector d is readily obtained as

—~A"'BE™!
6= ¢ , (3.87)
E-'¢
where the 3 x 3 matrices A, B, C, and D partition matrix —J7 as
A B
—JT = l ] , (3.88)
C D

and where E = D — CA~!B is the Schur complement of block A of matrix —J? (Zhang,
2005). Finally, rewriting eq. (3.87) as

§=u+p,v, (3.89)
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with

and

a [A‘lBE_lm] (3.90)

v —A‘lBE_lqbep ’
—E'm

E_1¢ep
the substitution of eq. (3.89) into the objective function and into the equation setting to zero

the first derivative of f with respect to Bep yields, upon solving for Bep,

UTV

/g)ep == (391)

vy’
The above equation is the expression of the lone critical point of eq. (3.84a). It can be
shown that it corresponds to the global minimum of the objective function f, and hence it
is the solution to the optimization problem (3.84) provided that it satisfies the inequality
constraints (3.84d). Using eq. (3.84b) and eq. (3.89), these constraints can be expressed in

terms of parameter 3., as

nle +u+ f,,v = 0, (3.92)

which describes the interval of values of ﬁep that lead to positive tensions in the six cables.
The value for Eep given by eq. (3.91) is the preferred solution in the trajectory formulation,
provided that it lies in this interval. However, should this not be the case, then either other
solutions for Eep exist, in which case a central point of the interval can be used, or eq. (3.92)
corresponds to the empty interval, in which case no value of Eep produces tensile-only forces
at the endpoint and the proposed formulation cannot be employed to reach the considered
endpoint pose. Obviously, if the interval (3.92) is non-empty but the selected value fails to
produce a feasible motion, other values of Eep in the interval can be tested before inferring
that the proposed trajectory formulation cannot be used to reach the considered endpoint

pose.

Hence, the procedure described above yields the best value of parameter Eep for given initial
and final poses of the point-to-point trajectory. However, this is problematic since the oscil-
lating functions (1) developed in Section 3.7 are based on sinusoidal functions that admit
the same second derivative at both endpoints. To circumvent this issue, the following can be

used
Bir (1) = (L= 7)Bp1(7) + 7Bpa(T), (3.93)

where Bf1(7) and Byo(7) are the interpolation function 8f(7) given in eq. (3.68) in which
parameter Bep takes the value obtained for the initial and final endpoint pose, respectively.
As expected, the above expression complies with all the necessary boundary constraints since
it consists of a linear combination of function S (7) that satisfies the conditions at the initial
pose and (f2(7) that satisfies the conditions at the final pose. The effectiveness of the relations

derived in this section is demonstrated in Section 3.12.
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3.9 Static-to-Dynamic Transition Trajectory

Static-to-dynamic transition trajectories constitute a special case of point-to-point trajecto-
ries, whereby a pose with non-zero final acceleration in the dynamic workspace is reached
from a pose at rest in the static workspace of the mechanism. A static-to-dynamic trajectory
segment can be used to reach the first of a series of target poses in a dynamic state or, by
reversing it, to return the end-effector to the static workspace once all prescribed target poses

have been reached.

By contrast with trajectory planning intended for general parallel mechanisms, great care must
be taken in the selection of the pose at rest in the static workspace for trajectory planning
of cable-suspended mechanisms. Specifically, because of the unilaterality of the cable forces,
it must be ensured that the starting and ending poses of the trajectory correspond to static

equilibrium poses of the platform.

The trajectory formulation derived in the preceding sections can be integrally used to perform
static-to-dynamic transition trajectories. The resulting motion consists of translational and
rotational oscillations of progressively increasing amplitude centred at the static pose, similar
in its translational component to the formulation derived in Dion-Gauvin and Gosselin (2017)
for the point-mass end-effector of a 3-dof cable-suspended mechanism. With regards to the
determination of the pose at rest in the static workspace, the translational component of the
transition trajectory must start or end at point Fy in the static workspace for the translational
acceleration to be continuous at the pose to be reached in a dynamic state. For this static
position, the platform is in static equilibrium when the plane of its cable attachment points
is parallel to the horizontal base plane and when the sum of the projections of unit vectors
defined along the cables onto this horizontal plane is minimal, i.e., when the platform is in
the reference orientation, and hence this orientation imposes itself as the starting and ending
orientation at rest of the end-effector. These static position and orientation of the platform
together satisfy the ideal kinematic states relation (3.14), thereby increasing the likelihood

that the transition trajectory be feasible.

3.10 Workspace Analysis

Before evaluating the feasibility of the above trajectory formulation for different target poses,
the workspace of the mechanism must be determined in order to identify which final poses of
the platform may or may not be attainable by the cable-suspended mechanism. For general
parallel mechanisms, the workspace is usually defined as the set of all poses of the platform
that are accessible without the (active and passive) joints exceeding their mechanical lim-
its nor the legs and platform interfering (colliding) with one another. For cable-suspended
mechanisms however, the passive rotational joints consisting of eyelets on the base and on

the platform, along with the commonly accepted assumption that the cables, the actuated
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translational joints, are of infinite length, ensure that neither passive nor active joints have a
restricted range of motion. As a result, only the interference between the cables and with the
platform circumscribes the workspace of cable-driven mechanisms. However, since singulari-
ties usually complexify navigating through this workspace, its subregions whose access entails
their crossing are sometimes not considered as belonging to the set of accessible poses, leading
to the notion of singularity-free workspace. Since, to the best of our knowledge, no general
trajectory planning procedure exists for crossing singularities of cable-suspended hexapods
whose actuators can only exert unilateral forces, the detection of this type of singularity is

added here to the determination of the workspace.

3.10.1 Translational Workspace

The translational workspace consists of the set of all the positions of the platform that can be
reached with at least one orientation. Considering the absence of restriction on the range of
cable-mechanism joints, the translational workspace of cable-suspended mechanisms is quite
large, which is a well-known non-negligible advantage of this type of mechanism. Moreover,
for standard polyhedral architectures, any configuration with the reference orientation Q = 1
is indeed convex (see Section 3.4.3), which prevents cable interference, platform interference,
and singularities from occurring below the plane of the base. Thus the translational workspace
of cable-suspended hexapods is limited by neither joint ranges, nor mechanical interferences,
nor singularity crossings and hence comprises all the points that are located below the plane

of the cable spools.

3.10.2 Orientational Workspace

The orientational workspace is defined as the set of all the accessible orientations of the plat-
form about a predetermined point. The algorithm proposed by Bonev (Bonev and Ryu, 2001)
is perfectly suited for computing the orientational workspace of cable-suspended mechanisms.
This algorithm exploits the benefits of the tilt and torsion (T&T) angle convention, which is
a convention that uses two rotations defined by three angles to represent an arbitrary orienta-
tion: first, a tilt by an angle 6 about an axis of rotation which is constrained to a given plane
and whose direction in that plane is given by the azimuth angle ¢; and second, a torsion by
an angle o about an axis perpendicular to the (now rotated) plane. With respect to general
parallel mechanisms, ensuring that the tilt axis is contained in the base plane allows the tilt
and torsion rotations to correspond to the actual physical rotations of the platform, thus
making the T&T convention ideal for representing the orientation for this type of mechanism.
The T&T angle convention is equivalent to the ZyXyZ,_4 Euler angle convention for a base
plane normal to the fixed Z-axis and an azimuth angle ¢ measured with respect to the positive

direction of the X—axis.

The workspace algorithm developed by Bonev unveils feasible orientations by iterating through
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the (¢,60,0) space from a starting orientation (¢s,0s,0s) that is accessible from the static
workspace. Referring to the translational workspace analysis, the reference orientation Q = 1
is known to be accessible regardless of the position of the platform, and hence it constitutes a
suitable choice for the starting point of the algorithm. First, the starting value of the torsion
angle o, is incremented toward 7 and then toward —7 to obtain the upper and lower part of
the orientational workspace, respectively. For each value of angle o, a scan of the azimuth
angle ¢ is performed; for each value of angle ¢, the tilt angle 0 is incremented from 65 toward
0s + m, until either mechanical interferences or singularities are detected. The maximum fea-
sible value of angle # for each (¢, o) pair is then recorded. Once each cross-section o = const
is completed, its geometric center (¢, 0.) is calculated for it to be used as the first orientation
to be tested for the next value of angle o, (¢s,6s) < (¢, 6.). This is of particular importance
for cable-suspended mechanisms since the zero-tilt of the reference orientation (¢s, 65) = (0,0)
gets farther from the centre of each cross-section o = const as the platform gets farther from
the static workspace. As a whole, the stored (¢, 0, 0) values constitute the envelope of the

orientational workspace for the chosen position of the platform.

It should be pointed out here that, unlike for general parallel mechanisms, the purely ro-
tating motion connecting two orientations of a given orientation workspace is not feasible
for cable-suspended mechanisms. Indeed, except in the very special case where the platform
is in the static workspace, a purely rotational motion of the platform requires compressive
forces in some of the cables to ensure that the centre of mass remains stationary. In order
to connect two orientations belonging to the same orientational workspace, it is therefore
necessary that the platform also perform a translational motion, either by returning to the
static workspace or, referring to the notion of translational workspace, by moving to any
other pose that is accessible from the static workspace. Nonetheless, the determination of the
orientational workspace remains relevant for cable-suspended mechanisms since it provides all
the target orientations of a predetermined point that are accessible from any other position of
the translational workspace. In the next sections, tests detecting cable interference, platform

interference, and singularities are presented.

Cable Interference

Poses that are inaccessible because of cable interference are poses that cannot be attained
from the initial configuration of the mechanism without cables previously colliding with one
another. For a given pair of cables, let d be the vector of shortest distance connecting
the vectors p;, associated with the two cables. Then, cable interference can be verified for
each pair of cables that may collide by comparing, between two neighbouring poses, the
direction of vector d at the two poses. This method is preferred here over the more common
approach of calculating the minimum distance between each cable since the latter would

require a prohibitively small discretization to reliably detect all cable interferences, whereas
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a reasonably-sized mesh can be used with the approach preferred in this paper. For every
pair of cables, vector d is obtained by first determining the vector of shortest distance that
connects the two straight lines supporting these vectors, which is orthogonal to both straight
lines. Then, if necessary, each endpoint of this vector is slid along its respective straight line
until it finds itself on the line segment coinciding with vector p;, yielding vector d. Let d; be
the vector for the pose currently visited by the algorithm, and let d;_; be the vector for an

adjacent pose that is known to be accessible.

PB PB
d;_
d
/ IS
Pa Pa
(a) Position at pose i — 1. (b) Position at pose 1.

Figure 3.6 — Relative position of two given vectors p; for corresponding cables interfering
between poses ¢ — 1 and 1.

Then, as it is indicated in Fig. 3.6, two cables colliding with one another between poses
i — 1 and ¢ have vectors d;—; and d; pointing in opposite directions, which is to say that
vectors d;—1 and d; pointing toward the same direction denotes cables not interfering with
one another, namely

d; 17d; > 0. (3.94)

The above inequality is satisfied for a given pair of cables when no collision of these cables is
present between the current orientation and the rest of the workspace?. Therefore, it must
be satisfied for all the combinations of two cables of the mechanism for an orientation not to

be ruled out from the workspace because of cable interference.

Platform Interference

Poses that are inaccessible because of platform interference are poses that cannot be attained
from the initial configuration of the mechanism without at least one cable colliding with the
platform. For each cable k, let v, = —p;. be the vector associated with the corresponding
cable that emanates from the cable attachment point A on the platform. Then, as the
trajectory is carried out, the motion of vector v, in three dimensional space defines a surface

and platform interference can be verified by determining whether this surface intersects the

4. Although unlikely, a very brief interference between two cables with a very short ‘crossing’ distance could
still go undetected by the method presented here. However, in practice, the compliance of the cable mechanism
can be assumed to passively and easily handle this situation. This is often advocated as an advantage of cable
mechanisms. It is deemed reasonable to neglect such a case.
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platform. As it can be observed from Fig. 3.7, this surface can be approximated between two
neighbouring poses by the plane spanned by the vectors v at the two poses, respectively
denoted vy ;1 and vy ;, while a second plane can also be constructed for representing the
platform, namely by defining the vectors sg; and sy connecting the attachment point Ay to
the two adjacent attachment points along the edges of the platform. Clearly, these two planes
necessarily intersect since they share a common point Ay, and hence verifying the interference
between the platform and the k-th cable amounts to determining whether the straight line
intersecting the two planes is both 1) in the portion of the plane spanned by vector v that is
actually swept by this vector between poses i — 1 and 4; and 2) in the portion of the platform
plane that is physically occupied by the platform. While the equation of the straight line
belonging to both planes is readily obtained, it suffices that it can be written as both a linear
combination with positive weights of the vectors vy, ;1 and vy, ;, and a linear combination with
positive weights of the vectors sg; and sgo, for this straight line to be located in the critical
region of each plane. In this instance, the cable associated with the corresponding vector vy
collides with the platform between poses i — 1 and 7 and, if one of these poses is known to be
accessible, the other can be excluded from the workspace with certainty. Ensuring that no
platform interference occurs with any of the cables is necessary for a pose not to be ruled out

from the orientational workspace because of platform interference.

Vik,i—1

Platform

Ay Sk2

Vi,

Figure 3.7 — Position of vector vy for a corresponding cable k interfering with the platform
between poses i — 1 and 1.

It should be pointed out that using this platform interference detection technique corresponds
exactly to testing whether each cable k intersects the edges of the platform that are not
incident to its attachment point Ay, i. e., segment Ay_1 A1 on the platform. Therefore,
employing this technique along with the cable interference detection technique on cable k —

1, segment Ap_ 1By 1, and cable k + 1, segment Agy1Bj.1, creates for each cable k& an

impenetrable boundary By_1Ax—1Ak+1Brs1 that prevents from being connectable any two
poses for which any cable would have to go around the platform. Hence, each cable k cannot

go around the platform without interfering with its adjacent cables £ — 1 or k + 1.
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Singularities

Singular configurations are poses of a mechanism for which not all velocities can be produced
at the end-effector or poses for which some non-zero velocities are possible at the end-effector
with zero velocities of the actuators. Recalling eq. (3.4), Type I singularities are characterised
by det(K) = 0, while Type II singularities are characterised by det(J) = 0. Singularities may

impede the trajectory planning of the end-effector.

It should be pointed out, however, that it is not impossible for an end-effector to cross
Type II singularities (Hesselbach et al., 2002; Hill et al., 2017). Indeed, it suffices that, as
in nonsingular configurations, the velocity relation (3.4) and the dynamic model (3.11) be
satisfied by having their right-hand side vector in the column space of matrix J and J7
respectively; this is possible, despite the fact that the Jacobian matrix J is not of full rank in

singular configurations.

From a kinematic perspective, eq. (3.4), a singular matrix J implies the existence of a
nonempty nullspace, meaning that some velocity of the end-effector can be achieved with
zero velocity of the actuated joints. From a dynamic perspective, eq. (3.11), which is of
greater relevance for dynamic trajectory planning, a singular matrix J implies that some iner-
tial vector (or, in the static case, some external wrench) cannot be supported by the actuated
joints. Furthermore, still with regard to eq. (3.11), the Gaussian elimination of matrix J7
augmented by the gravito-inertial vector on the right-hand side of eq. (3.11) yields in singular
configurations a matrix whose last row(s) consist(s) of only zeros, except in the last column
where the corresponding entry(ies) contain(s) dynamic expression(s) depending on the iner-
tial properties of the platform, the angular velocity as well as the translational and angular
acceleration of the platform. This(These) dynamic equation(s) is(are) akin to the dynamic
expressions associated with the unactuated joints of an underactuated mechanism. Thus, a
fully-actuated mechanism in a singular configuration can be construed as a mechanism having
some of its dofs unactuated, and its other dofs redundantly actuated. Therefore, a trajectory
planning procedure intended for crossing Type II singularities must at a singularity satisfy the
dynamic equation of each unactuated dof as well as include a control strategy to manage the
actuation redundancy of the redundantly actuated dofs. For cable-suspended mechanisms,
this actuation redundancy means that the forces in the cables are no longer independent,
making it more challenging (if not impossible?) to ensure positive tensions in a number of

cables that is sufficient to maintain controllability.

All in all, there is, to our knowledge, no trajectory planning procedure meeting all the con-
straints required for crossing Type II singularities of cable-suspended hexapods. In particular,
the trajectory proposed in this paper and its oscillating nature were devised with the sole pur-
pose of maintaining positive tensions in the cables, and not with the aim of manoeuvering

through Type II singularities. Consequently, Type II singularity crossing is regarded from the
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outset as unfeasible, and thus any target pose separated by this type of singularity is deemed

inaccessible by the mechanism.

Regarding the determination of the orientational workspace, two orientations separated by
a Type II singularity admit Jacobian matrices J with determinants of opposite signs, and
therefore any orientation whose matrix J has a determinant that differs in sign from that of
an orientation known to be accessible, for example the reference orientation, is excluded from

the workspace.

3.11 Trajectory Feasibility

The workspace obtained by the method described in the preceding section provides the final
target poses that are accessible by cable-suspended hexapods. These target poses, however,
may not all be attainable with the trajectory planning procedure described in this paper.
In particular, for some target poses, the trajectory produced by the proposed formulation
may at some point of the motion be also going through mechanical interferences or Type
II singularities that prevent it from being feasible. Furthermore, the trajectory may induce
negative tension in one or more cables along its path, thus making it unusable for reaching
certain final poses of the platform. In the next section, tests detecting negative tension,
cable interference, platform interference, and Type II singularity crossing that occur along

the motion are provided.

3.11.1 Cable Tensions

Since the duration of a trajectory segment increases linearly with the number of arcs p (see
Section 3.8.1), assessing the feasibility of the trajectory with regards to cable tensions amounts
to determining, if it exists, the minimum number of arcs that yield positive tensions in all
cables throughout the motion. Correspondingly, the trajectory is first attempted for p = 1
arc, which is progressively increased until a tensile-only motion is found. On the one hand,
the translational trajectory given by eq. (3.44) is first written in the mechanism reference
frame using eq. (3.43) and is differentiated twice with respect to time to yield the acceleration
of the moving platform. The rotational trajectory, on the other hand, is obtained by first
determining the appropriate value for By and B with the procedure described in Section 3.8.2.
Then, the quaternions representing the orientations at the cusps qeny(7) and the rotational
trajectory q(7) are consecutively calculated using egs. (3.58)—(3.60) and egs. (3.68), (3.64)—
(3.65), respectively. The rotation matrix Q, as well as the angular velocity and acceleration are
thereafter determined with egs. (3.29), (3.31)—(3.33) respectively. Then, the translational and
rotational trajectories and their derivatives are temporally discretized. Then, for each time
step 7; € [0, 1], the discrete trajectory values are substituted into the dynamic model (3.11),

which is thereafter inverted numerically to yield the cable tensions at each time step, u;.
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If the components of this vector are all positive for all 7; € [0, 1], the trajectory is deemed
satisfying the cable forces constraint. If, however, a negative tension is found in one or more
cables at any particular time step, the trajectory is unfeasible and the computation of the
cable forces is repeated with a number of arcs increased by one. This process is carried on
until a number of arcs producing positive tensions in all cables is found, or until the candidate
value is deemed unfit (too large) to be used in practice. Trajectories that have no suitable
number of arcs that can produce tensile-only forces in all cables at all instants of the motion

are deemed unfeasible for the considered target pose.

3.11.2 Cable Interference

The cable interference detection technique proposed in Section 3.10.2 for the determination
of the orientational workspace can also be used to determine whether a given trajectory
is collision-free. At each time step 7;, vector d; is computed for each combination of two
cables and is compared with the corresponding one obtained at the preceding time step 7;_1.
If eq. (3.94) is violated for any pair of cables at any time step, the trajectory necessarily

includes a configuration where two cables intersect and is thereby unfeasible.

3.11.3 Platform Interference

Platform interference occurring along a trajectory can be assessed by applying the detection
technique developed in Section 3.10.2 between each time steps 7; and 7;_1 along the motion. If
such interference is detected between any time steps with any cable, the trajectory necessarily

includes an inadmissible configuration and is thereby unfeasible.

3.11.4 Singularities

Similarly to what was done for the determination of the orientational workspace, the determi-
nant of the Jacobian matrix J can be exploited to detect Type II singularity crossings occuring
along the trajectory. Specifically, if at any particular time step 7; € [0, 1] the determinant of
matrix J differs in sign from that of a pose known to be accessible, such as the initial pose of
reference, then the proposed trajectory includes Type II singularity configurations along its

path and is unfeasible.

3.12 Simulations

In this section, results of computer simulations are presented to 1) demonstrate the feasi-
bility of the proposed trajectory formulation and 2) assess the performance of the proposed

rotational formulation in reaching a wide range of orientations for a given final point. These
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simulations were performed for a MSSM architecture whose dimensions are given by

0 _V3 V3
2 2
bi=by=b|1]; by=bs=b|-1|: by=bg=b|-1], (3.95)
0 0 0
and
E] _V3 0
2 2
ai=ag=a % : as —as=a % : ay=as=a|—1]|. (3.96)
0 0 0

with b = 0.86 m and a = 0.173 m. Additionally, considering the triangular shape of the
end-effector and assuming a thin platform, it is readily found that the inertia matrix of the

platform with respect to its centre of mass is given in its reference frame by:

Lm(v/3a)? 0 0
=| o0 dmtE? o |. (397
0 0 Lm(v/3a)?

In the remainder of this section, the orientations are displayed using the T&T angle conven-
tion rather than in quaternion form to provide physical insight. Moreover, to illustrate the
orientations that the proposed formulation can reach with respect to the central vertical axis
of the mechanism, the T&T angle convention is expressed in a cylindrical coordinate system
rather than in the fixed reference frame of the mechanism. This cylindrical coordinate sys-
tem is introduced in the next subsection. Then, an example trajectory that comprises several
point-to-point trajectory segments connected in sequence is examined. Finally, the proportion
of orientations that can be reached from the static workspace by the proposed point-to-point
motion is provided for some positions of the platform as a means of demonstrating the rele-

vance of the proposed trajectory formulation.

3.12.1 Cylindrical Coordinate System

The proposed cylindrical reference frame is represented schematically in Fig. 3.8. Its origin
is positioned at the centroid of the base attachment points and the axial Z.—axis is perpen-
dicular to the base plane and points in the direction of the reference pose of the end-effector.
Moreover, the X .—axis is aligned with the projection of the position vector of the platform in
the XY -plane of the fixed reference frame such that the angle § defined between the X .—axis
and the fixed X—axis is given by

0 = atan2(y, ). (3.98)
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Figure 3.8 — Cylindrical reference frame.

Hence, expressing the orientation of the platform in the proposed cylindrical coordinate system
yields the representation of the orientation of the end-effector with respect to the axis normal
to the base plane passing by the centroid of the base attachment points, that is, with respect
to the central axis of the mechanism. The main advantage of the proposed coordinate frame
is that it is far more intuitive to envision orientations with respect to the central axis—
and conceptualize rotations with respect to the axial, radial, and circumferential axes of the
proposed cylindrical reference frame—than with respect to the arbitrary directions of the

horizontal axes of any fixed reference frame.

Figure 3.9 — Rotation with respect to the circumferential axis Y.

For example, consider the orientation illustrated in Fig. 3.9 whereby the platform is rotated
toward the base of the mechanism. This orientation corresponds, in the cylindrical reference
frame, to a rotation with respect to the circumferential axis Y. and that, regardless of the
position of the platform in the workspace. By contrast, no fixed reference frame provides a

unique and intuitive description of this orientation.

Furthermore, when the T&T angle convention is used to describe the orientation of a body,
casting this convention in the cylindrical reference frame makes it completely independent
from the directions of the axes of the fixed reference frame and thus yields a fully intuitive

understanding of the orientation. The importance of using such a representation should
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not be underestimated. Specifically, one of the valuable characteristics of the T&T angle
convention—and one of its main advantages over a standard Euler Angle representation—
is that both the tilt and torsion rotations have physical meanings that correspond to the
actual movement of the robot. By contrast, the rotations of a Euler Angle convention have
no real physical basis since they are defined with respect to the axes of a fixed coordinate
system, whose directions are fixed somewhat arbitrarily. Indeed, in order to reach a given
orientation, the platform of general parallel mechanisms performs rotations that correspond
to a pure tilt and a pure torsion, of magnitude respectively given by angles 8 and o that
are used in the T&T angle convention. The third angle of this convention however—the
azimuth angle ¢ representing the direction of the tilt axis in the base plane—has no real
physical meaning since it is usually defined with respect to either the X— or Y—axis of the
fixed coordinate frame. Accordingly, using the T&T angle convention in conjunction with the
proposed cylindrical coordinate system allows to set the baseline of the azimuth angle to either
the radial or circumferential axis, thereby providing a clear physical meaning to this angle,
namely the angle between the tilt axis and either the circumferential or the radial direction
of the mechanical system. In this framework, the T&T angle convention becomes completely
independent from the arbitrary directions of the horizontal axes of the fixed reference frame
and thus fully rooted in the physical reality of the mechanical system. In this respect, the
proposed cylindrical reference frame can be construed as a natural extension to the T&T
convention. In the next section, an example trajectory that connects a series of target points

in sequence is examined.

3.12.2 Point-to-Point Trajectory

The example trajectory is described in Table 3.1 as a list of prescribed target poses—all
located outside the static workspace—to be reached in sequence. The table, which also
includes the starting and ending poses of the trajectory at rest as defined in Section 3.9,
displays the endpoint positions of the platform in the fixed reference frame of the mechanism
and the endpoint orientations by their T&T angle representation (¢, 6, 0) in the cylindrical
reference frame. For this set of target positions, a value of zy5 = 1.4 m has been selected, which
satisfies the necessary condition for feasibility but not the sufficient condition for translational
feasibility. Specifically, as explained in Dion-Gauvin and Gosselin (2018), parameter zy must
satisfy

S z’”) (3.99)

Zg>max<2,2,...,2

for none of the m target points to be proven to be unattainable from the outset, while using

a value for zg that satisfies

T T T
p1"p1 p2'p2 Pm pm> (3.100)

20 > max
0 ( 221 1 229 T 2z,
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guarantees that the translational component of each trajectory segment can be performed by a
point-mass end-effector with tensile-only forces in the cables. However, a value of zg satisfying
condition (3.100) may not lead to the most efficient motion, i.e., that which minimizes the
minimum feasible number of arcs for each trajectory segment. Hence, the decision on whether

to use a value for 2z that satisfies eq. (3.100) should be taken with some care.

Endpoint Positions (m) Orientations (¢,0,0)

0 (0,0,1.4) (0,0,0)

1 (3.464,0,1.3) (5, %0)
2 (—0.866, —1.5,1.3) (™ 5, %)
3 (—1.732,3,1.7) (Cy
4 (—3,—1.732,1) (55 -1
5 (1.5,—0.866,1) 0,%,-3)
6 (0,1.732,1.7) (3,-%,0)
0 (0,0,1.4) (0,0,0)

Table 3.1 — Endpoint positions and orientations of the example trajectory.

The feasibility of each trajectory segment is verified following the procedure detailed in Sec-
tion 3.11. Table 3.2 presents the minimum feasible number of arcs obtained in this process
along with the duration of each trajectory segment and the feasible value of Eep used at each
endpoint for identical translational and rotational amplitude functions given by eq. (3.53). In
the event that a feasible number of arcs cannot be found to connect a given segment, other
values for Eep can be used, or intermediate points can be inserted in the sequence (Jiang
et al., 2018a). Alternatively, the whole trajectory can be reattempted from the start with a

different value of zj.

Target Point 8

p  Duration T'(s)

0 -1 8 9.4944
1 -2.9872 9 10.6739
2 -7.5394 9 10.6740
3 -0.1401 12 14.2291
4 -5.1933 9 10.6732
) -6.5391 13 15.4236
6 -14.6701 4 4.7472
0 -1 — —

Table 3.2 — Value of parameter 3 used at each endpoint, as well as number of arcs p and
duration T of each trajectory segment for a translational and a rotational amplitude function
given by eq. (3.53).

The translational and rotational components of the trajectory, computed with the number of

arcs of Table 3.2, are illustrated in Figs. 3.10 and 3.11 respectively, while Fig. 3.12 presents
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the tensions throughout the motion. It is clear from Fig. 3.10a that the platform reaches
positions that are located far beyond its static workspace. From Fig. 3.12, it can be observed
that the tensions in the cables are continuous and positive at all instants of the trajectory. In
this regard, it is recalled that the trajectory is devised such that, if the tensions are deemed
of unacceptably low magnitude along a given segment, augmenting the number of arcs of the
hypocycloid by an even number is guaranteed—if the newly generated motion is feasible—to
increase the minimum tension in the cables. Hence, this technique can be used in practice to

avoid losing cable tension due to experimental or control error.
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(a) Top view of the example trajectory. The dark (b) Side view of the example trajectory.

circles represent the fixed attachment points of the
mechanism (position of the spools).

Figure 3.10 — Translational component of the example trajectory.
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Figure 3.11 — Orientational component of the example trajectory.
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Tensions per unit mass (N/kg)

Figure 3.12 — Computed tensions along the trajectory.

3.12.3 Performance of the Rotational Trajectory Motion

In this section, the proportion of attainable target orientations is evaluated for some final
positions of the platform in order to assess the performance of the rotational trajectory mo-
tion. To this end, the orientational workspace of the mechanism is first computed for the said
position using the procedure described in Section 3.10.2. Then, the orientational workspace is
uniformly discretized and, for each discrete orientation, a horizontal static-to-dynamic transi-
tion trajectory is attempted using the proposed trajectory formulation for multiple numbers
of arcs p and values of parameter Bl at the final pose. If, for at least one pair of values of p
and Bl, no cable and platform interferences, singularity crossing and negative tension in the
cables is encountered along the motion, then the trajectory is deemed feasible by virtue of Sec-

tion 3.11 and the considered target orientation is considered to be attainable by the proposed
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formulation. Moreover, using the same discretization of the orientational workspace for more
than one final position of the platform, numbers of accessible and attainable orientations can

be compared for multiple final positions and conclusions can be drawn.

Table 3.3 presents the number of accessible orientations of the mechanism, as well as the
number and proportion of attainable orientations by the trajectory for some final positions
of the platform. In the computation of the orientational workspace, angles (¢,0,0) were
each incremented by steps of 7/32 rad until mechanical interferences or singularities were
encountered. This orientational workspace was only evaluated for target positions on the
X— and Y-axes since final positions on the Y—axis account for positions lying in a plane
passing by a cable spool and the central vertical axis of the mechanism (referred to as a
spool plane) while final positions on the X-—axis correspond to positions lying in a plane
bisecting two spool planes. Therefore, for a given final orientation defined with respect to
the central vertical axis of the mechanism, final positions on the X— and Y —axes generate the
two most different arrangements of cables possible, and as such can be expected to yield the
maximum and minimum proportions of attainable orientations by the proposed trajectory at

the corresponding distance from the central vertical axis.

1‘1:1.513 x1:3b 131:0 331:0

=17 p=0 y1=0 =15 y =3b

Number of
accessible 27610 32141 25788 30290
orientations

Number of
attainable 26816 29375 25482 28383
orientations

Proportion
of attainable 97.1% 91.4% 98.8% 93.7%

orientations

Table 3.3 — Number of accessible orientations, and number and proportion of attainable
orientations by the proposed trajectory for some final points.

Overall, Table 3.3 shows that the proposed trajectory can reach over 90% of the accessible
orientations of the mechanism for each of the four final positions evaluated. This result is
all the more significant that, as it should be reiterated, orientational workspaces of cable-
suspended mechanisms are quite large since neither the passive nor the active joints have a
restricted range of motion. For example, although not shown in any figure, the orientational
workspace of each final position of Table 3.3 comprises orientations whose tilt angle surpasses
90° everywhere in the range ¢ € [30°,150°] as well as orientations whose torsion angle exceeds

100° in both directions. These large orientational workspaces, combined with the high pro-
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portions of attainable orientations by the trajectory, imply that the proposed formulation is
capable of reaching orientations located far away from the reference orientation while keeping
tensile-only forces in the cables. As a matter of fact, it was observed, while processing the
data that led to Table 3.3, that the proposed trajectory can feasibly reach orientations with
torsion angle of 95° or tilt angles of 125° and this, for each position appearing in Table 3.3.

Specifically, the number of accessible orientations of the mechanism seems to increase as
the end-effector 1) gets closer to a plane passing by a cable spool and the central vertical
axis of the mechanism and 2) gets farther from the central vertical axis. Moreover, since
the additional accessible orientations that large orientational workspaces admit over smaller
orientational workspaces are not found near the reference orientation but rather on the outer
layer of the workspace, and since the proposed trajectory is less likely to yield a feasible
motion for these far away orientations, it should come as no surprise that final positions with
large orientational workspaces have a lower proportion of attainable orientations than final

positions with smaller orientational workspaces.

Moreover, since the final positions of Table 3.3 on the X— and Y—axes produce the two most
different arrangements of cables for a given orientation, it is expected that any other position
of the platform located between 1.5b and 3b from the central vertical axis would yield numbers
of accessible and attainable orientations bounded by the values given in Table 3.3. Corre-
spondingly, in the annulus defined by the two radii, it can be conjectured that the proposed
trajectory formulation is capable of reaching more than 90% of the accessible orientations of
every final position of the platform while maintaining tension in the cables. Table 3.4 gives the
minimum proportion of attainable orientations in the annulus defined by radii 1.56 and 3b for
different heights of the platform. As it can be observed from the table, comparable minimum
proportions of attainable orientations are obtained for the different heights of the end-effector,
and hence the performance of the trajectory is sustained inside the vertical hollow cylinder

defined by the radii 1.5b and 3b.

Minimum
proportion
of attainable
orientations

1 81.7%
14 88.0%
1.7 91.4%
2 92.8%
24 95.1%

z1 (m)

Table 3.4 — Minimum proportion of attainable orientations in the annulus defined by radii
1.5b and 3b for different heights of the platform.
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3.13 Conclusion

This paper proposes a general approach for the planning of point-to-point trajectories that
extend beyond the static workspace for 6-dof cable-suspended parallel mechanisms. First, it
is pointed out that, although it maximizes the static workspace, the architecture used in Jiang
et al. (2018b,a) and Xiang et al. (2020b) is not ideal for maximizing the dynamic workspace,
i.e., for producing trajectories that extend beyond the static workspace. A generalization of
the hypocycloidal trajectory proposed in Dion-Gauvin and Gosselin (2018) is presented for
the planning of the translational component of the trajectories. Quaternions and spherical
linear interpolation are then proposed for the rotational component of the trajectories and a
novel formulation to connect two arbitrary orientations through oscillations going through the
reference orientation is proposed. It is also shown that the impact of the translational compo-
nent of the trajectories on the cable tension constraints is much more significant than that of
the rotational component. A method is then presented for the verification of the feasibility of
the trajectory. A cylindrical coordinate system that provides a very natural description of the
trajectories is then proposed and simulation results are given. The proposed method is shown
to be very effective at generating feasible trajectories that can connect arbitrary points using
a minimum number of intermediate oscillations. Future work includes the implementation of
the method on a real cable-suspended robot. Potential applications include pick and place
tasks in industrial environments, the displacement of objects in entertainment systems and

the support of drones for extended flying time.
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3.14 Appendix: Derivation of the hypocycloid of variable

amplitude

The hypocycloid of variable amplitude consists of a generalization of the standard hypocy-
cloid (Lawrence, 1972) in which the cusps can be positioned at different distances from the
centre of the curve. As represented in Fig. 3.13, it is generated by the trace of a fixed point
on the circumference of a small circle whose radius varies as it rolls on the inside of a larger
spiral-like curve. While the spiral-like curve R(#) passes through the desired position of the
first and last cusp and thus must have its expression known from the outset, the variation

of the radius of the inner circle r(6) as it rolls without slipping is determined through the

derivation.
A
Y
ARS

/// rC/A \\\

/ rqg
}l 7“(6) 1/’ \ R(Q)
|

\ ¢ 2 /

\\ rp/c /

\\ /// 6 P/
- ¥ x A >
X

Figure 3.13 — Construction of the hypocycloid of variable amplitude.

Referring to Fig. 3.13, the parametric equations of the hypocycloid of variable amplitude are

given by the coordinates of point P, whose position vector rp can be decomposed as
rp=ra+rc/atrpc, (3.101)

where r 4 is the position vector of the contact point A between the circle and the spiral-like
shape R(0), rc/4 is the position vector of the centre of the circle with respect to point A, and

rp/c is the position vector of point P relative to point C. First of all, vector ry is readily

ra= lR(H) o8 9] . (3.102)

given by
R(0)sind

Considering that the tangent of the curve at point A is given by the derivative of the curve

at point A, namely

dra lR’(f)) cos  — R(6) sin 9] , (3.103)

9 |R'(0)sind + R(6) cosf
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vector rg/ 4, which is perpendicular to the tangent at point A, can be written as

ro/a = (3.104)

r(6) l—R’(G) sin® — R(0) cos 0]
R(0)2+ R'(0)2 | R'(f)cosf — R(A)sinf |’

which simply consists of eq. (3.103) rotated 90° counterclockwise with the appropriate scaling.

Finally, vector rp,c is readily written as

r(0) COS(p] ’ (3.105)

TP/C = [—T(G) sin ¢

where angle ¢ is the angle of vector rp/c with respect to the positive direction of the X-axis,
measured clockwise. In accordance with Fig. 3.13, defining S as the angle of the outward
perpendicular of the spiral-like curve at point A with respect to positive direction of the
X-axis and angle ¢ as the angle of vector rp,c with respect to vector —rc/4, measured

clockwise, angle ¢ can be written as

=19 —p, (3.106)

and hence vector rp,c becomes

7(0) cos 1) cos B+ r(0) siny sin 3 ] (3.107)

e [—q«(e) sin g cos § +1(0) cossin ]

Furthermore, observing from Fig. 3.13 that vector rc 4 given by eq. (3.104) can also be

written as
resa = —r(0) ﬁ:g] , (3.108)
angle f can be eliminated from eq. (3.107), yielding
r(6) R(0)(cos ) cos B + sinsin @) + R'(0)(cos 1 sin @ — sin ) cos 6)
TPIC T RO + R0 | R(0)(cos tsin 6 — sin o cos ) — R'(6)(cos v cos 0 + sin v sin 0) |
(3.109)

The above equation expresses the position vector of point P relative to point C as a function
of the angles 6 and ¢. On the small circle, point P is the point that is in contact with the
spiral-like curve at the start of the rolling motion, i.e., when # = 0. Therefore, were the circle
not having its radius vary along the spiral-like curve, the length of the irregular arc segment
on the spiral-like curve AP’ would correspond to the length of the circular arc AP. This

condition nevertheless remains true infinitesimally, namely
dSap = dSapr, (3.110)
where dS4p is a differential element of length along the circle, which is given by

dSap = r(0)dip, (3.111)
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and where, making use of the arc length formula in polar coordinates, a differential element

of length along the spiral-like curve dS4ps can be written as
dSap = R<0)2 +R/(9)2d6 (3112)

Equating the last two equations, separating the variables and integrating yields an expression

for v, namely

b= /0 "y R(e):(;)R/(W o, (3.113)

whose closed-form solution does not appear to exist for arbitrary spiral-like curve R(6) and
circle of variable radius r(#). However, setting the undetermined function r(6) such that the
integrand of the foregone equation does not depend on 6, i.e.,
R(0)? + R'(0)?
r(0)

= ny, = const., (3.114)

eq. (3.113) becomes
¥ = npb, (3.115)

which is an expression that is also found in the derivation of the standard hypocycloid.
Therefore, substituting eqgs. (3.114) and (3.115) into eq. (3.109) and adding the resulting
expression to egs. (3.102) and (3.104) to fulfill eq. (3.101) yields the equation for the position
vector of point P as a function of 6 only, namely

_ 1 R(0) ((np, — 1) cos O + cos((ny — 1)8)) — R'(0) (sin @ + sin((ny, — 1)0)) . (3.116)

np | R(0) (np, — 1) sinf — sin((ny, — 1)8)) + R/'(9) (cos § — cos((ny, — 1)0))

The above expression represents the parametric equations of the hypocyloid of variable ampli-
tude. As expected, these parametric equations simplify to those of the standard hypocycloid
for a spiral-like curve that reduces to a circle, as circles are described by the polar equation
R'(6) = 0. Using eq. (3.115), it can be shown that parameter n, appearing in eq. (3.116)
denotes the number of cusps per lap of the curve or, alternatively, its number of arcs per lap.
In Section 3.6, it is proposed to use this curve for the translational path of point-to-point

trajectories of 6-dof cable-suspended mechanisms.
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Conclusion

Résumé et contributions de la thése

La présente these propose des planifications de trajectoires analytiques de type point a point
pour des mécanismes a cables suspendus a 2, 3 et 6 degrés de liberté. Pour chacun des méca-
nismes étudiés, une relation d’états cinématiques idéaux permettant de positionner I'effecteur
le plus loin possible des lieux de tension nulle est développée. Ce concept général peut étre mis
a profit dans la résolution de problématiques variées relatives a tous les types de mécanismes
entrainés par céables, et constitue donc en soi un important résultat de ce travail de recherche.
En particulier, dans cette thése, pour chaque planification de trajectoire développée, la re-
lation d’états cinématiques idéaux ou une approximation de celle-ci est imposée aux points
limites de la trajectoire afin d’augmenter la probabilité que le mouvement résultant induise

des forces exclusivement de tension dans les cables.

Une trajectoire point a point de transition pour mécanismes a effecteur ponctuel & 2 et a 3
ddl est d’abord proposée dans le Chapitre 1. Celle-ci consiste en des oscillations rectilignes
d’amplitude croissante centrées a la pose au repos, dont il ne suffit que le tracé se trouve
entierement sous le plan des enrouleurs pour que sa faisabilité soit garantie. Cette trajectoire
constitue un cas particulier de la planification point a point classique pour mécanismes spa-
tiaux a 3 ddl qui est développée dans le Chapitre 2. Cette dernieére trajectoire consiste en
une hypocycloide augmentée d’une fonction d’amplitude qui peut joindre n’importe quelles
deux positions de ’espace tridimensionnel. Similairement aux mouvements de transition pro-
posés dans le Chapitre 1, il est démontré que la trajectoire hypocycloidale est nécessairement
réalisable lorsque son enveloppe circulaire demeure strictement sous le plan formé par les en-
rouleurs. Enfin, une évolution naturelle de cette formulation est articulée comme composante
translationnelle de la trajectoire a 6 ddl dans le Chapitre 3. Cette trajectoire en translation
est adjointe a une composante en rotation constituée d’oscillations angulaires le long des
arcs de 'hypocycloide. Les avantages et limites du tracé hypocycloidal étant évalués dans le
Chapitre 2, seule la pertinence de la composante rotationnelle du mouvement est examinée
dans le Chapitre 3 : il est obtenu que, au moyen d’une trajectoire horizontale partant d’une
pose au repos, cette planification parvient a joindre, pour certaines positions typiques de la

plate-forme, environ 90% de l’espace atteignable en orientation du mécanisme.
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Ainsi, chaque planification ayant comme assise les planifications de trajectoires plus élémen-
taires, les résultats obtenus des planifications comptant un plus petit nombre de degrés de
liberté tiennent également pour les planifications plus sophistiquées. Par exemple, la planifi-
cation de trajectoires de transition du Chapitre 1 établit des parametres de conception de la
fonction d’amplitude dans le but d’en améliorer I'efficacité, lesquels parametres de conception
s’appliquent également intégralement aux fonctions d’amplitude des planifications de trajec-
toires des mécanismes a 3 et a 6 ddl des Chapitres 2 et 3, parce que celles-ci sont développées
aux mémes fins et sont soumises aux mémes contraintes aux points limites. En outre, les
lignes directrices établies dans le Chapitre 2 visant a postionner le foyer de ’hypocycloide
de maniere a assurer la faisabilité de la trajectoire souhaitée, s’appliquent en totalité a la
planification du mécanisme hexapodal du Chapitre 3 puisque la composante translationnelle
de chacun des mouvements est de la méme nature. Enfin, dans le Chapitre 3, la planifica-
tion de trajectoire du mécanisme & 6 ddl présente une étude du mouvement en orientation
d’une plate-forme a l'extérieur de 'emprise de la base du mécanisme qui est & 'origine de
contributions pouvant s’étendre a d’autres travaux portant sur le méme type de mouvement.
Parmi ces contributions figurent 1) un exposé que les architectures classiques de mécanismes
hexapodaux sont & prioriser pour réaliser des trajectoires dynamiques avec des mécanismes
a cébles suspendus; 2) la démonstration que la contrainte de 'unilatéralité des forces dans
les cables ne restreint pas ’ensemble des poses qu’un mécanisme a cables suspendus peut
atteindre & vitesse nulle et accélération non-nulle; et 3) I'introduction d’un repére novateur

permettant une visualisation plus intuitive de la configuration du mécanisme.

Ainsi, les planifications de trajectoires développées dans le cadre de ce travail de recherche
répondent aux objectifs et forment un tout cohérent, complet et intégré. Il reste maintenant

a en dénicher des applications réelles afin d’en exploiter le plein potentiel.

Avenues de recherche futures

Les trajectoires proposées dans cette these s’appuyant sur le mouvement d’un pendule, elles
ne sont pas optimisées pour accomplir certains types de mouvement dans certains contextes.
Par exemple, comme un pendule, les trajectoires induisent une accélération translationnelle
maximale—a la pose cible a atteindre—et une vitesse translationnelle maximale—a la posi-
tion d’équilibre du systeme oscillant—qui sont proportionnelles & I’'amplitude du mouvement
oscillatoire. Par conséquent, d’importantes vitesses et accélérations maximales sont générées
lorsque la pose cible & atteindre se trouve a une grande distance de ’axe central vertical du
mécanisme. Or, puisqu’il suffit que la force transmise dans les cables soit dirigée entre les
enrouleurs d’un mécanisme a effecteur ponctuel pour que des forces exclusivement de tension
y soient induites, il devrait étre possible, pour un mécanisme disposant d’une grande base,
d’admettre en des positions situées loin de son axe central vertical mais pres de la frontiere

de son espace de travail statique des accélérations translationnelles plus modérées que celles
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prédites par le modele d’'un pendule simple dont I'unique point d’attache se trouve au cen-
troide des enrouleurs du mécanisme. Ainsi, une avenue de recherche potentielle consiste en
le développement de planifications de trajectoires dynamiques qui tirent profit de la taille du
mécanisme pour induire & ’effecteur des vitesses et accélérations translationnelles maximales

plus faibles que celles générées par les formulations proposées dans cette these.

Enfin, un aspect des trajectoires dynamiques de mécanismes a cables suspendus qui présente
possiblement un certain intérét pratique réside en la réalisation d’opérations de lancement de
projectiles en cours de trajectoire. Puisque le projectile suit, une fois relaché de 'effecteur, une
trajectoire balistique facilement calculable, ’exercice consiste a établir I'instant de largage afin
que le projectile atteigne une position cible prédéterminée. Plusieurs enjeux demeurent a étre
résolus avant que cette stratégie puisse étre mise en oeuvre, notamment la minimisation de la
fluctuation des forces dans les cables au moment du reldchement du projectile, la conception
d’un mécanisme de relachement du projectile, une analyse de ’erreur engendrée sur la position
finale atteinte par le projectile pour des erreurs de position, vitesse et accélération du largage,
et la construction d’un prototype. Ainsi, des investigations plus approfondies sont requises

dans ce domaine.
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